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Most neuroscientists measure neuronal activity in the
brain to predict or explore the contribution of neurons to
physiological/pathological functions of the brain. For
example, if an increase in neuronal activity is detected in
one brain region by peripheral noxious stimuli, we call
this area the pain region or pain matrix. In the case of
activity detected during conscious processes, such as pla-
cebo treatment, we label these regions as responsible for
the placebo treatment. Due to limited access to the con-
scious brain and the reductionist nature of most modern
neuroscience, we are all reluctant to explore more sophis-
ticated hypotheses. Few studies have performed experi-
ments at neuronal network levels.

Like other higher order brain functions, the investigation
into the neuronal mechanisms of placebo analgesia is
proving to be difficult for clinicians and basic researchers.
For example, there are individual differences in the
response to placebos, called responders and non-respond-
ers. Certain populations of individuals show a signifi-
cantly greater response to placebos than others. Evidence
for environmental and social impacts on brain develop-
ment is increasing; therefore, individual differences in
higher order brain functions such as placebo analgesia is
expected. Levine and colleagues (1978) performed a clas-
sic study on placebo analgesia [1]. Their hypothesis is
based on the discovery of endogenous opioid peptides in
the central nervous system. Placebo analgesia in patients
was blocked by naloxone, an opioid receptor antagonist.
These experiments indicate that the endogenous analgesia
systems are likely to be activated during placebo analge-
sia, possibly at different levels of the central nervous
system.

Major recent findings: alternations in ACC brain
activity and placebo analgesia

Even though animal experiments are well designed and
controlled, it is very difficult to test mechanisms of pla-
cebo analgesia in animal preparations. One major study
using human brain imaging showed the activation of fore-
brain structures, in particular the ACC, during placebo
analgesia. The correlation between ACC activity and pla-
cebo analgesia, as well as opioid analgesia, was shown in
another study [2]. Considering the sensitivity of placebo
analgesia to naloxone, it is proposed that increased ACC
activity recruits endogenous analgesia systems by project-
ing innervations to the midbrain periaqueductal gray
(PAG). Since a large number of opioid receptors are found
in the ACC [3,4], opioids are likely to be released within
the ACC (as measured by increased activity during imag-
ing) during placebo analgesia [2]. Activation of these opi-
oid receptors somehow activates endogenous analgesia
systems originating from the PAG, thereby producing
analgesic effects [5]. Although functional imaging data is
interesting and important, the explanation of these find-
ings is obscure due to the limitations of human imaging
techniques. Here, I would like to propose that several
brain mechanisms might contribute to placebo analgesia,
which may not be revealed by human imaging studies.

Activation of the ACC in the human brain

Neurons in the ACC receive inputs from highly wired net-
works (see [6]). Therefore, it is not surprising that activa-
tion of the ACC is reported during different physiological
or pathological conditions. For example, ACC activity is
increased by acute pain, opioid analgesia and placebo
analgesia [2,7,8]. It is proposed that the ACC functions
heterogeneously, playing various functions through its
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A model neuronal network explaining placebo anal-
gesia-related activation of ACC neurons. Placebo leads
to activation of inhibitory neurons within the ACC. These
inhibitory neurons then release an inhibitory neurotransmit-
ter, GABA. GABA acts on postsynaptic GABA receptors to
inhibit ACC neurons that are involved in pain perception. In
some neurons, endogenous neuropeptides such as enkapha-
lin (Enk) may also be released to produce similar inhibitory
effects (a). Inhibitory neurons may also affect ACC neurons
that form descending facilitatory innervations with the spinal
cord dorsal horn. Activation of inhibitory neurons within the
ACC causes the reduction of descending facilitatory influ-
ences. The reduced facilitatory influence on spinal nocicep-
tive transmission therefore produces analgesic effects.

multiple connections with other cortical and subcortical
nuclei. This heterogeneity indicates that ACC neurons are
not solely responsible for physiological functions, such as
pain, attention etc, and this complexity certainly makes it
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more difficult for scientists to obtain simple and easily
interpreted results (Table 1).

Opposite types of neurotransmission in the
brain: excitatory/inhibitory

It is well documented that neurons are highly connected
by chemical synapses in the brain and spinal cord [9].
Excitatory synaptic transmission is mainly carried out by
glutamate. In both the spinal dorsal horn and ACC, fast
excitatory transmission is mediated by glutamate
[3,10,11]. To prevent and control widely distributed exci-
tatory transmission, neurons have local inhibitory syn-
apses to prevent them from over-excitation and
undergoing glutamate-induced neuronal death. There-
fore, at any given moment, neurons that form excitatory
and inhibitory synapses are likely to be continuously
active. For this reason, it is critical to remember that meas-
ured neuronal activity may contain both excitatory and
inhibitory neuronal activities, and that some of the meas-
ured activity may not play a physiological function.

Limitations of imaging and recording studies in
monkeys and humans

Human imaging and awake monkey recordings provide
physiological evidence for the role of neurons in perform-
ing a single, or a series, of functions. Under well control-
led experimental conditions, ACC neurons show
consistent patterns of activity [12,13]. However, due to
poor access to individual neurons in experimental sub-
jects, many key questions remain unanswered. First, in
most monkey studies neither the exact location nor the
type of neuron (pyramidal versus local interneurons)
recorded is known. In the case of human brain imaging
studies, it is not very clear whether the increase in meta-
bolic activity during testing is due to changes in neurons
versus glia cells, inhibitory versus excitatory neurons
(although, in most cases, investigators interpret this activ-
ity as excitatory neuronal activity), or local modulatory
neurons containing neuropeptides. All of these factors
limit our ability to compare discoveries from conscious
monkeys or humans to the findings of molecular and cel-
lular studies using rats and mice. Furthermore, we may
still miss sub-threshold activity or activity in other key
structures using human imaging studies. It is necessary to
keep in mind that a big change may not necessarily be an
important one or one directly related to the task.

Do ACC neurons serve as a higher cortical
activator of the endogenous analgesia system
(PAG-RVM-spinal cord)?

After discussing central neural transmission and the limi-
tations of imaging studies, we are ready to explore one
hypothesis proposed for placebo analgesia. That is, activa-
tion of the ACC triggers the endogenous analgesia system
and modulates sensory transmission at the level of the spi-
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nal cord by descending inhibitory mechanisms, thereby
contributing to placebo analgesia (see Discussion in [2]).
Evidence for such descending inhibitory modulatory sys-
tems comes from electrophysiological, pharmacological,
and behavioral studies in animals. For example, activation
of the PAG or RVM by electrical stimulation or glutamate
decreases responses of spinal cord dorsal horn neurons,
including those that send ascending projections, to
peripheral noxious stimulation (see [5,14]) and inhibits
the spinal nociceptive tail-flick reflex. Anatomical studies
reveal that neurons in the dorsal horn receive descending
inhibitory innervations. Application of a pharmacological
antagonist can block theses inhibitory effects. This key
hypothesis assumes that the connections from the ACC to
the midbrain/brainstem trigger these descending inhibi-
tory systems. However, recent studies show that activation
of ACC neurons by electrical stimulation, or the activation
of glutamate synapses, does not produce any analgesic
effects [15-19]. In contrast, facilitation of the spinal noci-
ceptive tail-flick reflex, aversive learning or fear memory
was reliably induced by ACC stimulation [20]. Consistent
with this notion, inhibition of opioid receptors in the
ACC inhibited excitatory synaptic transmission [3,4],
reduced nociceptive hot-plate responses, inhibited behav-
ioral nociceptive responses to formalin injection and
blocked chronic pain in some clinical studies [21,22]. Fur-
thermore, enhanced excitatory synaptic transmission and
long-term plasticity were found in ACC neurons after tis-
sue injury [23]. Intracellular recordings from ACC pyram-
idal neurons reveal that injury causes rapid excitatory
responses in the ACC. Studies using genetically modified
mice lend further support to the excitatory role of the ACC
in chronic pain. Genetic over-expression of NMDA NR2B
receptors selectively enhanced chronic pain [24], and
genetic deletion of calcium-stimulated adenylyl cyclases
(AC) 1 and 8 blocked persistent pain in various pain mod-
els [25]. In summary, enhanced excitatory transmission in
the ACC is unlikely to activate endogenous analgesia
systems.

ACC activity during placebo analgesia

An alternative explanation for the role of ACC activation
in placebo analgesia is increased activity of local inhibi-
tory neurons. Increased inhibitory activity within the ACC
thus reduces the amount of excitatory responses to painful
stimuli. By doing so, subjects report less pain (placebo
analgesia). Based on the network connections that the
ACC has with other pain-related neuronal structures, we
propose that ACC activation can lead to placebo analgesia
through the following neuronal mechanisms:

Mechanism I. Inhibition of pain-processing neurons in the
ACC
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Table I: Evidence for the pro-nociceptive effects of ACC

ACC manipulation Nociceptive (+)/

analgesia (-)
Anatomic lesions in the ACC -
Electrical stimulation locally in the ACC +
Chemical activation within the ACC +
Opioid injection in the ACC -
Electrophysiological recordings from the ACC +
Imaging data +/-

Many neurons in the ACC respond to acute pain and the
amount of this activation is related to pain unpleasant-
ness. Activation of inhibitory neurons in the ACC can
affect the excitability of these neurons by releasing GABA
onto their postsynaptic receptors. Consequently, the excit-
ability of ACC neurons is reduced, and neurons respond
less to noxious stimuli (Figure 1a).

Mechanism II. Activation of local opioid-containing neurons in
the ACC

Similar to Mechanism [, neurons containing opioid pep-
tides may be activated. Opioids may act presynaptically
and/or postsynaptically to inhibit excitatory synaptic
transmission and reduce neuronal responses to subse-
quent peripheral noxious stimuli. This mechanism could
explain the fact that some placebo effects are sensitive to
blockade by naloxone (Figure 1a).

Mechanism 1I1. Inhibition of descending facilitatory modula-
tion from the ACC

The release of the inhibitory neurotransmitter GABA and/
or opioids will reduce the excitability of ACC neurons that
send descending innervations directly or indirectly to
RVM neurons. Consequently, descending facilitatory
influences will be reduced (Figure 1b).

Mechanism IV. Mixed activation of excitatory and inhibitory
transmission by placebo treatment with the net result within the
ACC being reduced excitatory transmission.

Conclusion and future directions

Recent progress in neuroscience research provides us new
opportunities to investigate higher order brain functions
such as placebo analgesia. However, the mechanism is
likely to be complex. Long-term plasticity of both excita-
tory and inhibitory transmission, postsynaptic trafficking
and recycling of various receptors, activation of immedi-
ate early genes, and constant changes in synaptic structure
and connections, are potential mechanisms for higher
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brain functions. Integrative approaches, from genetically
manipulated mice to human brain imaging, will improve
our understanding of placebo analgesia.
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