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Abstract

Background: The complex neuronal circuitry of the dorsal horn of the spinal cord is as yet poorly
understood. However, defining the circuits underlying the transmission of information from
primary afferents to higher levels is critical to our understanding of sensory processing. In this
study, we have examined phosphodiesterase |C (Pdelc) BAC transgenic mice in which a green
fluorescent protein (GFP) reporter gene reflects Pdelc expression in sensory neuron
subpopulations in the dorsal root ganglia and spinal cord.

Results: Using double labeling immunofluorescence, we demonstrate GFP expression in specific
subpopulations of primary sensory neurons and a distinct neuronal expression pattern within the
spinal cord dorsal horn. In the dorsal root ganglia, their distribution is restricted to those
subpopulations of primary sensory neurons that give rise to unmyelinated C fibers (neurofilament
200 negative). A small proportion of both non-peptidergic (IB4-binding) and peptidergic (CGRP
immunoreactive) subclasses expressed GFP. However, GFP expression was more common in the
non-peptidergic than the peptidergic subclass. GFP was also expressed in a subpopulation of the
primary sensory neurons immunoreactive for the vanilloid receptor TRPVI and the ATP-gated ion
channel P2X;. In the spinal cord dorsal horn, GFP positive neurons were largely restricted to lamina
| and to a lesser extent lamina IlI, but surprisingly did not coexpress markers for key neuronal
populations present in the superficial dorsal horn.

Conclusion: The expression of GFP in subclasses of nociceptors and also in dorsal horn regions
densely innervated by nociceptors suggests that Pde [ c marks a unique subpopulation of nociceptive
sensory neurons.

Background the central nervous system via a heterogeneous popula-
Sensory information is conveyed from the periphery to  tion of primary sensory neurons that have their cell bodies
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in dorsal root ganglia (DRG). Sensory information is then
processed within the complex neuronal circuitry of the
dorsal horn before it is relayed to higher centers and 'per-
ceived'. Key to our understanding of sensory processing is
mapping the organization or 'wiring' of neurons within
sensory pathways. This goal has recently been aided by the
creation of mice expressing fluorescent markers within
specific sensory neuron subpopulations [1-6]. Here we
characterize mice in which green fluorescent protein
(GFP) is specifically expressed in cyclic nucleotide phos-
phodiesterase 1C (Pdelc) positive cells using bacterial
artificial chromosome (BAC) technology [7]. In the BAC
transgenic vectors used to generate BAC transgenic lines,
the endogenous messenger RNA and protein coding
sequences of the gene of interest are replaced by sequences
encoding a GFP reporter gene. As in any gene-replacement
experiment, the stabilities of the reporter gene mRNA and
protein can be different from those of the endogenous
gene products. Thus, GFP expression reflects the relative
rates of transcription of the gene of interest, in this case
Pdelc, and is not a direct measure of mRNA or protein lev-
els in BAC transgenic mice [7].

Pdelc is known to be involved in smooth muscle cell pro-
liferation [8] but little is known about its function in the
central nervous system. However, recent analysis of BAC
transgenic mice has revealed that Pdelc marks popula-
tions of migrating neurons within the developing central
nervous system, including the cerebellum and cerebral
cortex [7]. Examination of the Gene Expression Nervous
System Atlas (GENSAT) web database [9,10] further
shows that Pdelc marks a subpopulation of spinal cord
dorsal horn neurons. This, together with observed Pdelc
protein levels in chick DRG [11], led us to characterize
GFP expression in both the DRG and spinal cord dorsal
horn of Pde1C BAC transgenic mice.

Here we report that GFP marks a subset of nociceptors in
the DRG and also shows a distinct neuronal expression
pattern within the superficial dorsal horn of Pdelc BAC
transgenic mice.

Results

GFP-Pdel c expression in dorsal root ganglia

GFP-Pdelc expression was restricted to primary sensory
neurons that give rise to unmyelinated C fibers. GFP-
immunoreactive neuronal profiles in the DRG were rarely
(<3%) immunoreactive for neurofilament-200 (NF200) a
marker of primary sensory neurons that give rise to myeli-
nated axons [12]. Conversely, NF200-immunoreactive
DRG neurons were not (<1%) immunoreactive for GFP
(Figure 1A-C and Figure 2). Unmyelinated C fibers, most
of which are nociceptors, can be broadly subdivided into
two classes 'peptidergic' and 'mon-peptidergic' (reviewed
in [13]). The peptidergic group expresses neuropeptides
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such as CGRP and requires NGF/trkA signaling for sur-
vival. In contrast, the non-peptidergic group lacks pep-
tides, requires GDNF/c-RET signaling for survival and
binds the plant lectin IB4. The non-peptidergic subclass
express the ATP-gated ion channel P2X,whereas both
groups of C fibers express the capsaicin TRPV1 receptor.

The majority of GFP-Pdelc expressing neurons belonged
to the non-peptidergic subclass of nociceptors (~60% IB4-
binding) with a smaller proportion belonging to the pep-
tidergic subclass (~20% CGRP-immunoreactive; Figure

Figure |
GFP expression in peptidergic and non-peptidergic

nociceptive primary sensory neurons in Pdelc BAC
transgenic mice. Lumbar DRG neurons from Pde/c BAC

transgenic mice were stained with antibodies against GFP
(green) to detect GFP-Pdelc expressing cells and with the
lectin IB4 or antibodies against various sensory neuron mark-
ers (red). Arrows denote examples of GFP-immunoreactive
cells negative for NF200 immunoreactivity (A-C). Arrow-
heads mark examples of GFP-immunoreactive cells double
labeled for a given marker, evident in the overlay in the right
panel (D-O). Images were taken using a wide-field fluores-
cence microscope. Scale bar, 100 um in A applies to A-L; 100
pm in M applies to M-O.
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Figure 2

Summary of GFP expression in DRG sensory neuron
subpopulations in Pdelc BAC transgenic mice. (A) The
percentage of GFP-Pde | c expressing cells double labeled for
a given marker. (B) The percentage of a given DRG sensory
neuron subpopulation double labeled for GFP-Pde/c. Data
are mean x SEM (n = 3)

1D-I and Figure 2A). However, only a small subpopula-
tion of either the IB4-binding (17%) or CGRP-immunore-
active (10%) DRG neurons were immunoreactive for GFP
(Figure 2B). Interestingly, nearly 50% of GFP immunore-
active DRG neurons were immunoreactive for either the
TRPV1 receptor or the P2X, receptor (Figure 1J-O and Fig-
ure 2A) but again only a small proportion of TRPV1 recep-
tor immunoreactive (22%) or P2X; receptor
immunoreactive (9%) neurons were immunoreactive for
GFP (Figure 2B).

GFP-Pdel c expression in spinal cord dorsal horn

GFP-immunoreactive neurons were observed in the super-
ficial dorsal horn of Pdelc BAC transgenic mice. GFP-
immunoreactive profiles were demonstrated to be neuro-
nal given that most (>85%) were immunoreactive for
NeuN, a reliable marker of all spinal cord neurons [14]
(Figure 3A). Given that NeuN is a neuronal nuclear pro-
tein, it seems more likely that the small numbers of pro-
files lacking NeuN-immunoreactivity reflect profiles not
sectioned through the nucleus, rather than non-neuronal
identity. We observed approximately 10 GFP-immunore-
active neurons, per dorsal horn, in each 20 um section.
Immunoreactive fibers were also observed (Figures 3, 4,
5) which may reflect axonal or dendritic processes of GFP-
immunoreactive dorsal horn neurons or primary afferent
terminals of the GFP-Pdelc nociceptors characterized
above. Double labeling with NeuN reveals that GFP-Pdelc
is predominantly expressed in the most superficial neu-
rons in lamina I (Figure 3A). However, double labeling
with PKCy, which results in a dense plexus of immunos-
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taining occupying the ventral part of lamina I [15] dem-
onstrates that some GFP-Pdelc neurons also exist within
lamina II (Figure 3B). Of interest, the central portion of
the dense band of PKCy-immunoreactivity is displaced
from the dorsal aspect, likely reflecting the central thick-
ening of lamina I previously reported in rat [14].

In an attempt to establish the identity of GFP-Pdelc spinal
cord neurons, we performed double labeling immunoflu-
orescence for GFP and well established neurochemical
markers of key superficial dorsal horn neuron subpopula-
tions, with a particular focus on lamina I. The neurokinin
1 receptor (NK1R) has been shown to be expressed by
45% of lamina I neurons but only 6% of neurons in lam-
ina I1 [14] and therefore seemed a likely candidate. NK1R-
expressing dorsal horn neurons are an excitatory popula-
tion, since the vast majority, including all of those in lam-
ina I, are not GABA-immunoreactive [16]. At high
magnification, in single confocal optical sections, NK1R-
immunoreactivity is observed as circular rim staining (Fig-
ure 4B) since the immunostaining is mainly associated
with the cell membrane. To determine whether GFP-
Pdelc neurons express the NKI1R, optical sections were
gathered in 1 pm z-steps through GFP-immunoreactive
neurons and examined for NKI1R-immunoreactivity.
None of the GFP-immunoreactive neurons examined
(~30 per animal) showed any evidence of immunoreactiv-
ity for NK1R, although NKI1R-immunreactive profiles
were clearly observed in the same optical sections (Figure
4A-C).

In a similar manner, GFP-immunoreactive neurons were
examined for immunoreactivity to GABA. 28% and 31%
of neurons in lamina I and II, respectively, have been
shown to be immunoreactive for GABA [17]. To avoid
confounding effects of autofluorescence when using anti-
bodies raised against glutaraldehyde conjugates of GABA
we used an antibody raised against a formaldehyde conju-
gate of GABA [see [18]]. This antibody has been shown to
give a similar distribution of immunostaining as that seen
with conventional antibodies raised against glutaralde-
hyde conjugates of GABA in rat spinal cord [14]. None of
the GFP-immunoreactive neurons examined (~23 per ani-
mal) were immunoreactive for GABA, however GABA-
immunoreactive profiles were evident in the same optical
sections (Figure 4D-F). We were careful to examine GFP-
immunoreactive neurons only in optical sections with
clear GABA-immunostaining but given the potential pen-
etration problems with GABA antibodies we cannot
exclude the possibility of false negatives. However, the
complete lack of overlap would tend to suggest that GFP-
Pdelc expressing neurons are not inhibitory.

We then focused on markers of excitatory dorsal horn

neurons other than the NK1R described above. PKCy,

Page 3 of 8

(page number not for citation purposes)



Molecular Pain 2006, 2:17

Figure 3
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Neuronal GFP expression in the superficial dorsal horn of Pdelc BAC transgenic mice. (A) Overlay showing GFP-

immunoreactivity (green) and NeuN-immunoreactivity (red) in spinal cord dorsal horn of a Pde/c BAC transgenic mouse. The
insets (bottom left) show higher magnification images of the boxed area shown at right. Arrows show examples of double

labeled profiles. (B) Merged images of GFP-immunoreactivity (green) and PKCy-immunoreactivity (red) in the spinal cord dor-
sal horn. The insets (bottom left) show higher magnification images of the boxed area. Dotted line illustrates the displacement
of the dense band of PKCy-immunoreactivity from the dorsal aspect in the central portion. (A) and (B) are both montages of
low magnification single confocal optical sections. Scale bar, 100 um in each panel. Dorsal uppermost, medial left both panels.

somatostatin, neurotensin and MOR-1 have all been used
as markers of excitatory dorsal horn neurons as they are
not immunoreactive for GABA [15,19,20]. However,
given that only PKCy shows immunolabeling of neurons
in lamina I, we focused on this particular marker. Neurons
in lamina I and dorsal lamina II are weakly immunoreac-
tive for PKCy, compared with strong immunoreactive neu-
rons in ventral lamina II/lamina III. In addition those in
lamina I show some overlap with the above-mentioned
NK1R-immunoreactive neurons [15]. Figure 3B shows the
typical dense plexus of PKCy immunostaining in the ven-
tral part of lamina II. Analysis of GFP-immunoreactive
neurons (~60 per animal) revealed that GFP-immunore-
active neurons in both lamina I and II were not immuno-
reactive for PKCy (<1%). The calcium-binding proteins
calbindin and calretinin have been reported to be present
in superficial dorsal horn neurons in the rat [21]. In cul-
ture, it has been shown that dorsal horn neurons immu-
noreactive for calbindin and calretinin  lack
immunoreactivity for GABA suggesting that they may rep-
resent an excitatory neuron population [22]. We found
that the overall distribution of calcium-binding protein
immunolabeling in mice was somewhat different from
that reported in rat. In rat, many lamina I and II neurons
are calbindin-immunoreactive but in mice we found that
while many lamina II neurons are calbindin-immunore-
active very few of those in lamina I express this calcium-
binding protein (Figure 5A). The converse is true with
respect to calretinin. In rats, many lamina II neurons but
few lamina I neurons are calretinin-immunoreactive
while in mice many calretinin-immunoreactive neurons

were present throughout lamina I and II (Figure 5B). Irre-
spective of this overall difference in the expression pattern
of calcium-binding proteins, close examination of GFP-
immunoreactive neurons, (~60 per animal) for either
marker demonstrated that GFP only rarely colocalized
with calbindin (<4%) or calretinin (<3%).

Discussion

We have demonstrated that in Pdelc BAC transgenic mice,
GFP marks a subpopulation of nociceptors in the DRG.
Expression of GFP-Pdelc was found to be more common
in the IB4-binding, non-peptidergic subclass than the
peptidergic subclass. The IB4-binding subclass of nocicep-
tors has recently been the focus of much attention. Using
genetically encoded tracers to mark Mrgprd (Mas-related G
protein-coupled receptor d)-expressing neurons it was dem-
onstrated that a major subpopulation of non-peptidergic
neurons project exclusively to the skin and terminate in
distinct epidermal regions [5]. More recently, using a tract
tracing method in transgenic mice, it has been shown that
non-peptidergic nociceptors are at the origin of a multisy-
naptic ascending pathway that targets limbic/affective
brain regions [6]. Clearly, analysis of transgenic mice
selectively expressing fluorescent markers in sensory neu-
rons subpopulations or pathways has the potential to
greatly expand our knowledge of somatosensory wiring.

Pdelc has also been observed in sensory neurons in the
olfactory system [23]. Many odorants activate olfactory
sensory neurons through G protein-coupled receptors that
elicit a rapid and transient rise in cCAMP levels [24]. Pdelc
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Figure 4
GFP-Pde l c neurons in the superficial dorsal horn are

not immunoreactive for NKIR or GABA. High magnifi-
cation single confocal optical sections of lamina | and Il to
show immunoreactivity to GFP (A, D) and either NKIR (B)
or GABA (E). Overlays are shown in (C) and (F). Arrows
denote GFP-immunoreactive neurons that are not immuno-
reactive for the respective marker. Asterisks show NKIR- or
GABA-immunoreactive neurons that are not immunoreac-
tive for GFP. NKIR-immunoreactive neurons appear as red
circular rim staining because immunostaining is mainly associ-
ated with the cell membrane. Scale bar in A, 10 um applies to
all panels.

is postulated to play a role in the rapid termination of the
odorant-induced cAMP signal, that is thought to be
important for effective olfaction [23]. Nociceptive pri-
mary sensory neurons express an array of G protein-cou-
pled receptors [25]. Pdelc may therefore have a similar
role to play in somatosensory transduction and signaling.

We have also demonstrated that GFP marks a subpopula-
tion of lamina I, and occasional lamina Il neurons, in the
spinal cord of Pdelc BAC transgenic mice. GFP-immuno-
reactive neurons were not, or only very rarely, double
labeled for NK1R, GABA, PKCy, calbindin or calretinin,
markers of key neuronal subpopulations in the superficial
dorsal horn. They were, however, double labeled with the
neuronal nuclear protein NeuN, confirming a neuronal
identity.

Recent studies have utilized the ability to fluorescently
pre-identify and record from specific neuronal subpopu-
lations in the live spinal cord slice preparation. The mor-
phological, neurochemical and electrophysiological
characteristics of a subpopulation of inhibitory superficial

http://www.molecularpain.com/content/2/1/17

dorsal horn neurons, have been studied in transgenic
mice expressing EGFP under the control of the GAD67
promoter [2,3]. A discrete subpopulation of inhibitory
neurons, localized in ventral lamina II has also been
extensively characterized in mice expressing GFP under
the control of a mouse prion promoter [1,4]. In contrast,
notwithstanding the possibility of false negatives, it
would appear that GFP-Pdelc neurons represent a pre-
identifiable population of excitatory neurons in the super-
ficial dorsal horn.

Non-transgenic approaches have also been employed to
fluorescently pre-identify dorsal horn neurons for electro-
physiological recording. Lamina I projection neurons
have been retrogradely labeled from specific brainstem
regions [26-28] and superficial NK1R-expressing neurons
have been identified using fluorescently-conjugated sub-
stance P [29-31]. Approximately 5% of lamina I neurons
are projection neurons [32] and the vast majority (80%)
of these are immunoreactive for the NK1 receptor [33,34].
Therefore, given that the GFP-Pdelc lamina I neurons
were not NK1R-immunoreactive, it is unlikely that they
are projection neurons. Moreover, we observed ~10 GFP-
immunoreactive neurons, per dorsal horn, in each 20 pm
section. This frequency greatly exceeds the 5% of lamina I
neurons (1.6 cells/10 um) that have been shown to
project to higher centers [32].

GFP-Pdelc neurons may therefore represent a novel sub-
group of dorsal horn neurons that can be fluorescently
pre-identified in the mouse spinal cord. Their restricted
expression in the superficial dorsal horn, which is densely
innervated by nociceptors and predominant expression in
lamina I neurons, most of which are nociceptive [35] sug-
gests that they are likely to be involved in pain signaling
in the dorsal horn.

The Pdelc BAC transgenic mice that were analyzed in the
present study were a preliminary line that employed a
GFP rather than an enhanced GFP (EGFP) reporter gene.
It was therefore necessary to use antisera to GFP to amplify
and visualize the reporter gene signal. However, at
present, all mice in the GENSAT BAC transgenics project
now employ an EGFP reporter gene and consequently the
fluorescence signal can be viewed directly without ampli-
fication [7,9]. Notably, this should allow direct targeting
of EGFP-Pdelc neurons for electrophysiological recording,
in live tissue preparations, similar to other studies of EGFP
expressing transgenic mice generated using BAC [36] and
other approaches [1-4]. The present study focused on
lumbar spinal cord and DRG levels because this axial level
is the most extensively characterized with regards to neu-
rochemical markers and sensory processing. It should be
mentioned, however, that the GENSAT database [9]
reveals that GFP-Pdelc neurons are also found in superfi-
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Figure 5

GFP-Pdel c neurons in the superficial dorsal horn are not immunoreactive for calbindin or calretinin. (A) and (B)
show merged images of GFP-immunoreactivity (green) and calbindin-, or calretinin-immunoreactivity (red). (A) and (B) are

overlays of single images taken using a wide-field fluorescence microscope. Scale bar, 100 um in each panel. Dorsal uppermost,

medial left both panels.

cial dorsal horn layers at thoracic and cervical levels.
Moreover, the database also shows that the dorsal horn
expression pattern observed in P21 pups, in the present
study, is broadly similar in P7 and adult animals. Impor-
tantly, it should be noted that as the reporter gene reflects
the relative rates of transcription of the gene of interest
and is not a direct measure of mRNA or protein levels this
approach can reveal differences or novel expression not
observed with in situ and immunohistochemical
approaches [7,9].

Conclusion

The BAC transgenic approach allows reproducible experi-
mental access to specific neuronal subpopulations not
previously available. In this particular BAC transgenic
mouse line GFP-Pdelc shows a restricted expression pat-
tern in nociceptive primary sensory neurons and dorsal
horn neuronal regions which are targeted by nociceptors.
Pdelc-BAC transgenic mice can therefore be utilised to
enable direct access to 'nociceptive' pathways and further
our understanding of pain processing.

Methods

All procedures were in accordance with Columbia Univer-
sity Institutional Animal Care and Use Committee. Post-
natal day (P) 21 Pdelc BAC transgenic mice were
generously provided by Nathaniel Heintz and Mary E.
Hatten of Rockefeller University (GENSAT BAC transgenic
project). In these particular BAC transgenic mice a GFP
reporter gene rather than enhanced green fluorescent pro-
tein (EGFP) was employed, necessitating the use of antis-
era to GFP to amplify the reporter gene signal in fixed
tissue.

Immunocytochemistry

Lumbar dorsal root ganglia (DRG) (L1-6) were obtained
from P21 Pdelc BAC transgenic mice (n = 3) which had
been deeply anesthetized with isoflurane, decapitated and
dissected in cold phosphate buffered saline (PBS). Tissue
was immersion fixed in 2% formaldehyde and 15% fil-
tered saturated picric acid in 0.1 M phosphate buffer (PB),
pH 7.3 at 4°C overnight, dehydrated (in 80% and 100%
EtOH) and permeabilized (in DMSO) then cryoprotected
in 30% sucrose in 0.1 M PB prior to cryostat sectioning.
For comparative purposes, consecutive 10 um sections
were collected on sequential slides, allowing different
antibody combinations to be tested on the same DRG and
ensuring that sections on any given slide were at least 100
pm apart. Sections were blocked (1 h) in 10% normal
goat/normal donkey serum in PBS. Antibody diluent con-
tained 1% normal goat/normal donkey serum in PBS. Pri-
mary antibody incubation was overnight at room
temperature and those in fluorescent secondary antibod-
ies were 3 h. Double immunofluoresence labeling was
performed with rabbit antiserum to GFP (1:1000 Molecu-
lar Probes, Eugene, OR) and biotinylated 1B4 (10 ng/ml,
Sigma, St.Louis, MO), mouse antiserum to NF200
(1:10,000, Sigma) or guinea-pig antiserum to P2X; recep-
tor (1:20,000, Neuromics, Northfield, MN). Sections were
subsequently incubated in a mixture of Alexa 488 goat
anti-rabbit IgG (1:500 Molecular Probes) and Streptavi-
din 568 (1:1000, Molecular Probes), Cy3 goat anti-mouse
or guinea pig IgG (1:500, Jackson Immunoresearch, West
Grove, PA). Double labeling was also performed with
sheep antiserum to GFP (1:500, Biogenesis, Kingston,
NH) and rabbit antisera to CGRP (1:12,000, Chemicon
International, Temecula, CA) or TRPV1 (1:5,000 gift from
D. Julius, University of California at San Francisco, CA)
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followed by FITC donkey anti-sheep (1:200, Jackson
Immunoresearch) and Cy3 donkey anti-rabbit (1:800
Jackson Immunoresearch).

Lumbar spinal cord segments (L4-6) were obtained from
P21 Pdelc BAC transgenic mice (n = 2) which had been
deeply anesthetized with isoflurane then perfused, follow-
ing a brief rinse, with 4% formaldehyde in 0.1 M PB (both
at 37°C). Tissue was postfixed overnight then cryopro-
tected in 30% sucrose in 0.1 M PB prior to cryostat sec-
tioning. Transverse sections (20 pm) were collected
serially, 300 um apart. Sections were blocked (1 h) in 10%
normal goat/normal donkey serum in PBS with 0.1% Tri-
ton X-100. Antibody diluent contained 1% normal goat/
normal donkey serum in PBS with 0.1% Triton X-100. Pri-
mary antibody incubation was overnight at room temper-
ature (except for antisera to GABA, 48 hr at 4°C) and
those in fluorescent secondary antibodies were 3 h. Dou-
ble immunofluoresence labeling was performed with rab-
bit antiserum to GFP (1:1000 Molecular Probes) and
mouse antisera to NeuN (1:1000, Chemicon) or calbin-
din (1:1000, Swant, Bellizona, Switzerland). Sections
were subsequently incubated in a mixture of Alexa 488
goat anti-rabbit IgG (1:500 Molecular Probes) and Cy3
goat anti-mouse IgG (1:500, Jackson Immunoresearch).
Double labeling was also performed with sheep antise-
rum to GFP (1:250, Biogenesis) and rabbit antisera to
NK1 receptor (C terminus, 1:7500 gift from S. R. Vigna,
Duke University Medical Center, Durham, NC), PKCy
(1:1000, Santa Cruz Biotechnology, Santa Cruz, CA) cal-
retinin (1:5000, Swant) and paraformaldehyde conjugate
of GABA (1:5000, gift from D. V. Pow, University of
Queensland, Brisbane, Australia) followed by FITC don-
key anti-sheep (1:200, Jackson Immunoresearch) and Cy3
donkey anti-rabbit (1:800 Jackson Immunoresearch).

Analysis

Images of DRG sections were captured on a Nikon Eclipse
E800 fluorescence microscope (x10 magnification) using
a Nikon FDX-35 camera. GFP-Pdelc colocalization with
each neuronal marker was performed by computer analy-
sis using the MetaMorph Imaging System (Molecular
Devices, Sunnyvale, CA). GFP immunoreactive neuronal
profiles (>10 um) were identified and overlayed images
(FITC and Cy3, with each marker analyzed) were used to
count double labeled neurons. To determine the propor-
tion of a given marker population expressing GFP, posi-
tively immunostained neuronal profiles (neurons with a
clearly identifiable nucleus) for each marker were identi-
fied and the overlayed images were used to count double
labeled neurons. Three independent observers counted
the number of double-labeled neurons in 5/6 sections per
animal for each marker. In each animal an average of ~70
GFP immunoreactive neuronal profiles were examined for
each marker and for each marker an average of ~130 cells
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were assessed for co-labeling with GFP. Counts were aver-
aged across observers to obtain a single percentage of GFP
double labeled neurons for each marker for each individ-
ual animal. Three separate averages (n = 3 animals) were
expressed as the mean + SEM to give the final values.

For spinal cord analysis, colocalization of GFP-Pdelc with
NeuN, PKCy calbindin or calretinin was assessed using a
Nikon Eclipse E800 fluorescence microscope (x40 magni-
fication) connected to a Nikon FDX-35 camera. Approxi-
mately 60 GFP-Pdelc positive cells, across 3 sections per
animal were assessed for each marker. Colocalization of
GFP-Pdelc with NK1 receptor or GABA was examined
using a confocal laser scanning microscope (LSM 510
Meta, Carl Zeiss Inc.). Series of images through the medi-
olateral extent of the superficial dorsal horn were gathered
in 1 pm z-steps using a x 40 objective lens. Individual
optical sections through GFP-Pdelc cells were examined
to determine whether they were also immunoreactive for
NK1 receptor (~30 GFP cells per animal) or GABA (~23
GFP cells per animal).

Adobe Photoshop CS2 (Adobe Systems, Mountain View,
CA) was used to prepare figures. Images were false-colored
and the brightness and contrast adjusted.
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