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Abstract
Background: While acute effects of stress on pain are well described, those produced by chronic
stress are still a matter of dispute. Previously we demonstrated that chronic unpredictable stress
results in antinociception in the tail-flick test, an effect that is mediated by increased levels of
corticosteroids. In the present study, we evaluated nociception in rats after chronic treatment with
corticosterone (CORT) and dexamethasone (DEX) in order to discriminate the role of each type
of corticosteroid receptors in antinociception.

Results: Both experimental groups exhibited a pronounced antinociceptive effect after three
weeks of treatment when compared to controls (CONT); however, at four weeks the pain
threshold in CORT-treated animals returned to basal levels whereas in DEX-treated rats
antinociception was maintained. In order to assess if these differences are associated with altered
expression of neuropeptides involved in nociceptive transmission we evaluated the density of
substance P (SP), calcitonin gene-related peptide (CGRP), somatostatin (SS) and B2-γ-aminobutiric
acid receptors (GABAB2) expression in the spinal dorsal horn using light density measurements and
stereological techniques. After three weeks of treatment the expression of CGRP in the superficial
dorsal horn was significantly decreased in both CORT and DEX groups, while GABAB2 was
significantly increased; the levels of SP for both experimental groups remained unchanged at this
point. At 4 weeks, CGRP and SP are reduced in DEX-treated animals and GABAB2 unchanged, but
all changes were restored to CONT levels in CORT-treated animals. The expression of SS
remained unaltered throughout the experimental period.

Conclusion: These data indicate that corticosteroids modulate nociception since chronic
corticosteroid treatment alters the expression of neuropeptides involved in nociceptive
transmission at the spinal cord level. As previously observed in some supraspinal areas, the
exclusive GR activation resulted in more profound and sustained behavioural and neurochemical
changes, than the one observed with a mixed ligand of corticosteroid receptors. These results
might be of relevance for the pharmacological management of certain types of chronic pain, in
which corticosteroids are used as adjuvant analgesics.
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Background
Nociception can be modulated at different levels of the
CNS through facilitating (pronociceptive) or inhibiting
(antinociceptive) central actions [1-3]. One of the levels
where nociceptive modulation takes place is in laminae I–
II of the spinal dorsal horn [4], where nociceptors synapse
upon interneurons and projection neurons [5,6]. The
transmission of nociceptive information in the dorsal
horn involves several events, neuropeptides and fibres.
After peripheral noxious stimulation of unmyelinated
nociceptors the release of calcitonin gene-related peptide
(CGRP) [7], substance P (SP) [8] and somatostatin (SS)
[4,9] is increased although it remains largely unchanged
after innocuous stimulation or stimulation of large myeli-
nated fibres [8,9]. Spinal nociceptive neurons that are
excited by CGRP and SP [10,11] receive numerous synap-
tic contacts from primary afferent terminals colocalizing
these neurotransmitters, whereas non-nociceptive neu-
rons lack synaptic input from boutons with both peptides
[12]. Spinal SS [13] and GABA [14] have an inhibitory
effect on nociceptive neurons, being present mainly in
fibres belonging to local inhibitory interneurons [15].

Acute stress induces analgesia but the effects of chronic
stress in nociception are still controversial, with studies
reporting hyperalgesia after prolonged stress [16], while
others observed analgesia [17]. Recently, we demon-
strated that animals submitted to chronic unpredictable
stress display antinociception in the tail-flick test [18];
since the plasmatic levels of corticosteroids were increased
throughout the entire experimental period, we implicated
these hormones in that phenomenon. Corticosteroids can
bind to two types of corticosteroid receptors, mineraloco-
rticoid (MR) and glucocorticoid (GR) receptors. In basal
conditions, MR display greater occupancy than GR; thus,
conditions resulting in elevation of corticosteroids, e.g.
stress, will result mainly in increased activation of GR.
Importantly, the spinal cord is a corticoid-responsive tis-
sue [19] and within the spinal cord the greatest density of
GR and MR occurs in laminae I–II [20]. Of notice, CGRP
and SP (but not SS) coexist with corticosteroid receptors
in neurons of dorsal root ganglia [21] and some studies
demonstrate that an imbalanced corticosteroid milieu
may affect neuropeptide content in the DRG [22,23].
Importantly, corticosteroids are often used as adjuvant
analgesics in the management of several types of pain [24-
26]. Taken together, these findings predict a potential
influence of corticosteroids in the modulation of spinal
nociceptive transmission.

In the premise that a distinctive activation of MR or GR
could be responsible for altered levels of neuropeptides
involved in spinal nociceptive transmission and, conse-
quently, for diverse pain-like effects we evaluated the den-
sity of CGRP, SP, SS and GABAB2 innervation in the spinal

dorsal horn of animals submitted to prolonged adminis-
tration of CORT (activating both MR and GR) and DEX (a
selective ligand of GR). These data were correlated with
pain-like behaviour measured through the tail-flick and
hot-plate tests.

Results
Pain-like Behaviour
Evolution within groups during the experimental period
Analysis of TF and HP latency in CONT revealed no signif-
icant differences between testing sessions throughout the
experimental period (ANOVArm, TF, P = 0.29 and HP, P =
0.60).

Tail-flick test
The chronic subcutaneous administration of CORT and
DEX resulted in a significant decrease in pain-like behav-
iour. Statistical data indicate that both CORT and DEX
induced a significant increase in TF latencies on day 21
(ANOVAow, P = 0.002, pos-hoc Bonferroni, CORT × CONT,
p < 0.05; DEX × CONT, p < 0.01) (Fig. 1A). However, with
the prolongation of the treatment (day 28) only subjects
under DEX treatment maintained the significant increase
in TF thresholds; in contrast in CORT-treated animals
nociceptive behaviour decreased slightly (ANOVAow, P =
0.0003, pos-hoc Bonferroni, CORT × CONT, p > 0.05, DEX
× CONT, p < 0.001 and DEX × CORT, p < 0.001) (Fig. 1B).

Hot-plate test
The prolonged administration of DEX but not CORT
resulted in a significant decrease in nociceptive behaviour.
Statistical data indicates that HP latencies are significantly
increased in DEX-treated animals on day 28 (ANOVAow, P
= 0.02, pos-hoc Bonferroni, DEX × CONT, p < 0.05) (Fig.
1D). Contrary to what was observed for the TF test, no dif-
ferences between groups were observed on day 21,
although a trend towards an antinociceptive effect was
already observed (ANOVAow, P = 0.07) (Fig. 1C).

Neurotransmitter Spinal Innervation
All statistical data presented in this section referring to
immunoreactivity evaluation is based on the study of the
lumbar portion of the spinal cord as no differences in neu-
rotransmitter-IR were found between cervical and lumbar
portions.

Stereology
The stereological analysis of CGRP-, SP-, SS- and GABAB2-
IR in the spinal dorsal horn after prolonged CORT and
DEX treatment is summarized in figure 2. The expression
of CGRP-IR was significantly decreased in both DEX and
CORT-treated animals when compared to CONT on day
21 (ANOVA2 w, p < 0.0001, pos-hoc Bonferroni, CORT ×
CONT, p < 0.01 and DEX × CONT, p < 0.001) (Fig. 2A)
although this effect was sustained only in DEX animals on
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day 28 (ANOVA2 w, p < 0.036, pos-hoc Bonferroni, DEX ×
CONT, p < 0.05) (Fig. 2E). The level of SP-IR in CORT and
DEX was not significantly different from CONT on day 21
(ANOVA2 w, P = 0.70) (Fig. 2B) but in DEX-treated ani-
mals there was a significant decrease in SP expression on
day 28 (ANOVA2 w, P = 0.033, pos-hoc Bonferroni, DEX ×
CONT, p < 0.05) (Fig. 2F). No changes were observed
between experimental groups in what concerns SS-IR in
the spinal dorsal horn (ANOVA2 w, day 21, P = 0.86 and
day 28, P = 0.88) (Figs. 2C, G). In DEX-treated animals
GABAB2-IR is significantly increased in both 21 and 28
days (ANOVA2 w, p < 0.0001, DEX × CONT, day 21, p <
0.001 and day 28, p < 0.01). A similar increase was
observed in the CORT-group on day 21 (ANOVA2 w, p <
0.0001, CORT × CONT, day 21, p < 0.001 and day 28, p >

0.05) but GABAB2 to returned to basal levels on day 28
(Figs. 2D, H).

Densitometric Measurements
The results obtained through the densitometric analysis of
CGRP, SP, SS and GABAB2-IR were closely related to those
obtained through the stereological quantification both for
day 21 (Pearson analysis, CGRP21 days, r = 0.98 and p <
0.0001; SP21 days, r = 0.98 and p < 0.0001; SS21 days, r = 0.99
and p < 0.0001; GABAB2,21 days, r = 0.97 and p < 0.0001)
(Figs. 3A, B, C, D) and day 28 (Pearson analysis, CGRP28

days, r = 0.94 and p < 0.0001; SP28 days, r = 0.98 and p <
0.0001; SS28 days, r = 0.94 and p < 0.0001; GABAB2,28 days, r
= 0.95 and p < 0.0001) (Figs. 3E, F, G, H).

Nociceptive behaviourFigure 1
Nociceptive behaviour. Tail (A, B) and paw (C, D) withdrawal latency after chronic corticosteroid treatment for 21 (1) and 
28 (2) days with CORT and DEX. Both CORT and DEX groups display higher TF latencies after 21 days of treatment (A, B) 
although this effect is only sustained by DEX group at the end of the experiment (B); note that only DEX induces an increase in 
hind-paw latency and only after 28 days of treatment (D). (*p < 0.05, **p < 0.01 and ***p < 0.001).
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Neuropeptide and receptor expression in the spinal dorsal hornFigure 2
Neuropeptide and receptor expression in the spinal dorsal horn. Immunoreactive content in the dorsal horn of the 
spinal cord after 21 and 28 days of chronic corticosteroid treatment. (CGRP(A, E), SP(B, F), SS(C, G) and GABAB2(D, H); *p < 
0.05, **p < 0.01 and ***p < 0.001).
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Pearson correlation between densitometry and stereology quantification methodsFigure 3
Pearson correlation between densitometry and stereology quantification methods. Pearson correlation for valida-
tion of densitometric versus stereologic quantification methods on days 21(A-D) and 28(E-H). (SS(A, E), SP(B, F), CGRP(C, G) 
and GABAB2(D, H)).
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Discussion
The present study demonstrates that prolonged adminis-
tration of corticosteroids decreases nociception. The anti-
nociceptive effect reflects both a decrease of
pronociceptive neuropeptide expression and an increased
availability of GABA receptors in laminae I–II of the spinal
dorsal horn. After 21 days of treatment the decrease in
pain-like behaviour was correlated with a decrease in
CGRP and an increase in GABAB2 receptors in the spinal
cord of CORT and DEX treated-animals. Interestingly, the
antinociceptive effect in the CORT-group vanished after
four weeks of treatment (which was paralleled by a resto-
ration of CGRP and GABAB2 expression towards control
levels) while it remained unchanged in DEX-treated rats
(which were correlated with a decrease in spinal content
of both CGRP and SP and increased availability of
GABAB2). These findings confirm that corticosteroid
receptors play a crucial role in the mediation of pain trans-
mission at the spinal cord level.

Pain perception involves the transmission of nociceptive
messages from the periphery to the CNS. This transmis-
sion can be modulated by acute [16] and chronic stress
[16,17]. Recently, we showed that chronic unpredictable
stress, which results in a prolonged elevation of plasmatic
glucocorticoid (GC) levels, decreases pain-like behaviour
[18]. Most actions mediated by chronic stress are attrib-
uted to hypercortisolemia, as the increased secretion of
corticosteroids characterizes the sustained phase of the
stress response [27]. Because corticosteroids can bind to
two types of receptors we decided to further explore the
role of each of these corticosteroid receptors on the noci-
ceptive modulation. It is important to note at this point,
that the confounding effect of drug potency has been con-
sidered, as the doses of each corticosteroid were adjusted
accordingly to their glucocorticoid potency. Thus, in this
experimental paradigm CORT treatment differs from DEX
administration basically in terms of MR activation: while
CORT treatment activates these receptors, DEX does not
bind to MR and because it shuts-off the endogenous secre-
tion of corticosteroids, MR remains unoccupied [28].

The results observed after prolonged daily treatment with
corticosteroids demonstrate that these steroids promote
antinociception. GR are likely to mediate this phenome-
non since a similar response was observed in DEX-treated
animals. The TF test evaluates a spinally organized reflex
[29,30] mediated by C-fibres innervating the tail [31,32]
and motoneurons innervating the three sets of back mus-
cles that control tail movements [33-35]. In contrast, the
HP test involves a supraspinally integrated response, and
thus, represents a more complex behavioural response
[36]. Such difference in the neuroanatomical substrates
implicated in both tests might explain why there was only

a trend towards increased HP latencies after 21 days of
CORT and DEX treatments.

It is admissible that the influence of GC upon neuropep-
tidergic innervation results both from direct and indirect
actions. Indirect actions may result from altered availabil-
ity of GABAB2 receptors in CORT and DEX treated animals
on day 21, as GABAB receptors are well known players in
pain modulation [15,37]. Moreover Kangrga and col-
legues [38] described that the antinociceptive effect of
GABAergic transmission in the spinal dorsal horn results
from presynaptic inhibition of the release of excitatory
amino acids and neurotransmitters from the primary
afferents [14,39] which is in accordance with our observa-
tions that CGRP, a pronociceptive neuropeptide, is
decreased in both CORT- and DEX-treated groups. An
alternative indirect action of glucocorticoids might occur
through the modulatory actions of arachidonic pathways
which down-regulate nerve growth factor (NGF); this, in
turn, is known to exert an inhibitory effect in both the
accumulation and release of CGRP mRNA in nociceptors
[40,41]. In parallel, the direct modulation of glucocorti-
coids can be ascribed to the fact that approximately one
third of the afferents that are immunoreactive to SP or
CGRP, also display immunoreactivity to GR [21]. Thus, it
is plausible to assume that GR activation of nuclear
responsive elements alters the expression of such trans-
mitters in spinal dorsal horn afferents. This hypothesis is
further supported by the fact that it was recently shown
that stressors decrease CGRP expression in the frontal cor-
tex, hippocampus, occipital cortex and hypothalamus
[42].

Curiously, the dissimilarity in pain-like behaviour
observed between CORT and DEX groups after 28 days of
treatment, suggests that other mechanisms involving MR
activation are implicated in the modulation of pain. In
fact, the behavioural differences observed between CORT
and DEX treatment at 28 days were paralleled by distinct
patterns in CGRP, SP and GABAB2 expression in the super-
ficial dorsal horn: while in CORT-treated animals the
expression of both CGRP and GABAB2 was restored to con-
trol levels, DEX treatment resulted in a decreased expres-
sion of SP and CGRP and sustained increase in GABAB2.
The explanations for such discrepancy are more complex,
as besides the local effects at the spinal cord level, they
might involve alterations at the supraspinal level. Indeed,
there is a complex feedback system between the neuro-
transmitters herein studied and GC involving supraspinal
processing that is regulated by MR. There is evidence that
the activation of MR is correlated with GABA modulation
[43] in lamina II [44] of the spinal cord, namely in
interneurones [45], and in other supraspinal pain modu-
lating areas such as the rostroventral lateral medulla
(RVM) [46] or the periaductal grey matter (PAG) [47].
Page 6 of 11
(page number not for citation purposes)



Molecular Pain 2009, 5:41 http://www.molecularpain.com/content/5/1/41
This effect of GABAergic transmission appears to selec-
tively inhibit the release of SP, but not of CGRP, [15]
which may account at least partly for the differences
observed between the groups. Another alternative, but not
exclusive, mechanism to explain the differential effect of
DEX and CORT upon neuropeptidergic spinal expression
derives from the specific modulatory effects of MR upon
preprotachykinin (PPT), the precursor of SP expression; in
fact, MR activation has been shown to positively regulate
(up to 50%) mRNA PPT expression in the nervous tissues
[48]. The more persistent changes in pain perception
induced by DEX treatment and measured by an increase in
both the TF and HP latency at day 28 might therefore
result from a decrease in SP fibre innervation in the spinal
dorsal horn.

Contrary to CGRP, SP and GABAB2, no effect of GC was
observed on the spinal levels of SS. This differential
change observed between these neuropeptides illustrates
the selectivity of this process, and is likely to be related
with the lack of coexistence of corticosteroid and SS in the
spinal cord [21]. Interestingly, different neurotransmitters
are associated with different roles in pain modulation
[5,49]. In contrast to CGRP/SP, SS is a tonic inhibitor of
peripheral nociceptors [50]. Thus, the data herein
reported suggests that the effects of chronic corticosteroid
treatment on pain perception are associated with changes
in the nociceptive transmitting system (CGRP/SP) but
would not involve specific alterations in the spinal intrin-
sic modulatory system (SS).

In addition to their presence in the spinal dorsal horn,
both glucocorticoid- [51] and mineralocorticoid- [52]
receptors are present also in neurons of a large number of
supraspinal sites along the rostrocaudal extent of the neu-
raxis in the rat. These include several forebrain and brain-
stem components of the supraspinal pain control system,
including areas like the anterior cingulate cortex [53],
amygdala [54], paraventricular hypothalamic nucleus
[55], periaqueductal grey matter [56], locus coeruleus
[57], rostral ventromedial medulla [58], dorsal reticular
nucleus [59] and caudal ventrolateral medulla [60]. Tak-
ing into account data obtained in the present study on the
effect of corticosteroid manipulation upon spinal neuro-
transmitter content, future studies should explore altera-
tions induced at supraspinal levels. Accordingly,
profound structural, physiological and neurochemical
alterations have been observed at different forebrain areas
following chronic manipulation of corticosteroids [30,61-
63].

Conclusion
The present study shows that corticosteroids modulate
nociception by altering the expression of neuropeptides
involved in nociceptive transmission at the spinal cord

level. Moreover, we demonstrate differential modulatory
actions of different ligands of corticosteroid receptors,
which are of relevance for the pharmacological manage-
ment of those conditions involving chronic pain, in
which corticosteroids are recommended as adjuvant anal-
gesics.

Methods
Subjects
Wistar Han rats obtained from Charles Rivers (Barcelona,
UE), weighting between 200–240 g, at the beginning of
the experiment, were housed in groups of three in stand-
ard polycarbonate cages (45.4 × 25.5 × 20 cm). The light
cycle was 12:12 h with lights on at 9:00 am and housing
was maintained at 22°C and 30% relative humidity.
Water and food were available ad libitum. All regulations
determined by the local veterinarian committee (in
accordance to the European Community Council Direc-
tive 86/609/EEC) concerning the handling of laboratory
animals and the international ethical guidelines for the
study of experimental pain in conscious animals were fol-
lowed [64].

Chronic corticosteroid treatment
Corticosterone, dexamethasone and sesame oil were
acquired from Sigma (St Louis, MO, USA). Subjects were
assigned to one of the following three groups (n = 24):

(i) Controls (CONT). Rats were submitted to vehicle
injection (0.5 ml sesame oil) everyday (05:00 pm), during
3 weeks (n = 4) and 4 weeks (n = 4).

(ii) Corticosterone-treated (CORT). Rats were submitted
over a period of 3 weeks (n = 4) and 4 weeks (n = 4) to a
daily subcutaneous injection (05:00 pm) of 40 mg/kg
dose of 4-Pregnene-11β,21 diol-3,20-dione in sesame oil.

(iii) Dexamethasone-treated (DEX). Rats were submitted
over a period of 3 weeks (n = 4) and 4 weeks (n = 4) to a
daily subcutaneous injection (05:00 pm) of 300 μmg/kg
dose of 9α-fluoro-16α-methylpredenisolone in sesame
oil.

Nociceptive testing
Pain-like behaviour was analyzed for each animal using
the tail-flick (TF) and the hot-plate (HP) tests. In the TF
(Ugo Basile, Comerio, Italy) the time spent the start of the
stimulus and the withdrawal of the tail (nociceptive
latency) was recorded, whereas in the HP (Ugo Basile,
Comerio, Italy) as the heating plate was kept at a constant
temperature of 54 ± 0.5°C, it was the latency for hind paw
licking or jumping was recorded.

In order to determine the nociceptive threshold, rats were
tested before corticosteroid administration (day 0) and on
Page 7 of 11
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days 7, 14, 21 and 28 of the treatment; each testing day
animals were submitted (11:00 am) to 3 TF tests, within a
2 min interval, and 2 HP test, with 45 min interval (Fig.
4). To avoid bias related with the handling and testing of
the rats, a one-week period prior to the first nociceptive
test was established for the habituation of the animals to
the behavioural test equipment and the researcher. Ani-
mals were placed daily in the test room for 2 h followed
by a 10 minute handling and 1 minute training session in
the TF and the HP apparatus (without performing the
test).

Immunocytochemistry
At the end of the experimental period (21 or 28 days), ani-
mals were anesthetized intraperitoneally (sodium pento-
barbital, 0.5 mg/kg) and perfused transcardially with 4%
paraformaldehyde in PBS 0.1 M, pH 7.2. The spinal cord
was removed and placed in 30% sucrose for 24 h. Portions
of the cervical and lumbar spinal cord enlargements were
sampled. Sections, 30 μm thick, were cut on a vibrating
blade microtome (Leica, Germany) and collected in
superfrosted slides. Sections from the same region for all
subjects and treatments were exposed to the same solu-
tions. Sections were permeabilized for 10 min in 0.2% Tri-
ton X-100 in Tris buffer saline (TBS) and microwaved (20
min) while immersed in citrate buffer (0.1 M). Endog-
enous peroxidase activity was blocked with 3% H2O2 in
PBS (10 min) and non-specific staining was blocked with
4% bovine serum albumin (BSA) in PBS (30 min). Alter-
nating sections were incubated overnight at room temper-
ature in rabbit primary antibodies against CGRP (1:3000;
Chemicon, USA) (Fig. 5), SP (1:3000; Chemicon, USA),
SS (1:3000; Chemicon, USA) and GABAB2 (1:1000,
Chemicon, USA) (Fig. 6) in 0.02% Triton X-100 (PBST).
Antigen visualization was carried out using a universal
detection system (BioGenex, San Ramon, CA) and diami-

nobenzidine (DAB; 0.025% and 0.5% H2O2 in Tris-HCl
0.05 M, pH 7.2).

Stereology
The stereological analysis was performed in the dorsal
horn of CGRP-, SP-, SS-and GABAB2-immunoreacted (IR)
spinal cord sections using StereoInvestigator software
(MicroBrightField, Williston/VT, USA). From each set of
serial sections, ten photomicrographs of areas within the
spinal laminae I–II were obtained at a primary magnifica-
tion of × 50 and analyzed at a final magnification of ×
1000. The number of stained fibres per unit of laminae I–
II volume (numerical density) was estimated using the
optical fractionator method [65]. The surface volume
occupied by laminae I–II stained fibres was calculated on
the basis of the surface density of the fibres (surface area
per unit volume, SV) and the volume of laminae I–II. The
SV was estimated, using a 'staggered' cycloid test system in
order to obtain the total number of intersections between
cycloid arcs and stained fibres. Measurements were made
on laminae I–II regions randomly selected by the soft-
ware.

Densitometric Measurements
The densitometric analysis was performed in the dorsal
horn of CGRP, SP, SS and GABAB2-IR spinal cord sections
using a Zeiss light microscope coupled to a PC, using NIH

Time course of testing and sampling sessions throughout the four week experimental periodFigure 4
Time course of testing and sampling sessions 
throughout the four week experimental period. 
Within a testing session, tail-flick and hot-plate tests were 
performed according to the time course example for day 7.

Photomicrographs of superficial dorsal horn sectionsFigure 5
Photomicrographs of superficial dorsal horn sections. 
Examples of photomicrographs of superficial dorsal horn sec-
tions immunoreacted for CGRP (A) on days 21 (A1–3) and 28 
(A4–6) for CONT (A1,4), DEX (A2,5) and CORT (A3,6).
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Image 1.52 software. The sampling area for optical density
measurement corresponded to all the area occupied by
laminas I and II of the spinal dorsal horn, bilaterally. Den-
sity levels and distribution of CGRP-, SP-, SS- and
GABAB2-IR were quantified and, for all sections, back-
ground density measurements were subtracted to these
values.

Data analysis
Statistical analysis was performed using GraphPad Prism
version 4.00 for Windows (GraphPad Software, San Diego
California, USA). A two-way ANOVA (ANOVA2 w) was
used to analyze differences between groups at different
time points, while repeated-measures ANOVA (ANO-
VArm) was used to evaluate efficiency of treatment along
different time points within groups; pos-hoc Bonferroni's
test was used to detect significant differences for both
ANOVA analysis. Densitometric and stereological data
was compared using the Pearson correlation analysis. Dif-
ferences were considered statistically significant when p <
0.05. All values are presented as mean ± SD.
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Photomicrographs of superficial dorsal horn sections. 
Examples of photomicrographs of superficial dorsal horn sec-
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28 (B4–6) for CONT (B1,4), DEX (B2,5) and CORT (B3,6).
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