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Abstract

Background: Clinical data on osteoarthritis (OA) suggest widespread changes in sensory function
that vary during the progression of OA. In previous studies on a surgically-induced animal model
of OA we have observed that changes in structure and gene expression follow a variable trajectory
over the initial days and weeks. To investigate mechanisms underlying changes in sensory function
in this model, the present electrophysiological study compared properties of primary sensory
nociceptive neurons at one and two months after model induction with properties in naive control
animals. Pilot data indicated no difference in C- or Ad-fiber associated neurons and therefore the
focus is on AB-fiber nociceptive neurons.

Results: At one month after unilateral derangement of the knee by cutting the anterior cruciate
ligament and removing the medial meniscus, the only changes observed in AB-fiber dorsal root
ganglion (DRG) neurons were in nociceptor-like unresponsive neurons bearing a hump on the
repolarization phase; these changes consisted of longer half width, reflecting slowed dynamics of
AP genesis, a depolarized Vm and an increased AP amplitude. At two months, changes observed
were in AB-fiber high threshold mechanoreceptors, which exhibited shorter AP duration at base
and half width, shorter rise time and fall time, and faster maximum rising rate/maximum falling rate,
reflecting accelerated dynamics of AP genesis.

Conclusion: These data indicate that AP nociceptive neurons undergo significant changes that
vary in time and occur later than changes in structure and in nociceptive scores in this surgically
induced OA model. Thus, if changes in AB-fiber nociceptive neurons in this model reflect a role in
OA pain, they may relate to mechanisms underlying pain associated with advanced OA.

Background tinct types of OA pain: an early predictable

Osteoarthritis (OA) afflicts an estimated 12-27% of adults
over the age of 26 [1] and is characterized by alterations in
sensory function, including pain [2,3]. Recently, a multi-
center study led by Hawker et al. (2008) revealed two dis-

dull, aching,

throbbing "background" pain and an unpredictable short
episode of intense pain that develops later [4]. During the
progression of OA, pain evolves from the "background"
pain that is use-related in early OA [5]. Later, this evolves
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into unpredictable short episodes of intense pain on top
of the "background" pain in advanced OA. It is this unpre-
dictable intense pain that has the greatest impact on the
quality of life and that results in the avoidance of social
and recreational activities [4]. Chronicity of OA [6] sug-
gests that this is a progressive disorder that develops lon-
gitudinally in time.

In addition to this clinical evidence, further evidence from
animal models of OA support the idea that nociception
varies longitudinally and, as a result, different mecha-
nisms may come into play at different times. For example,
to address mechanisms underlying these functional
changes in OA we have been studying an animal model of
OA that exhibits changes in cartilage and bone closely
matching the human condition, including cartilage
edema and collage turnover [7,8] and that demonstrates
significant changes in gene expression of joint tissues [9].
We have found that development of the typical changes
that are observed may follow a variable trajectory [10].
Some changes occur early but subside later in model
development, including genes in the chemokine,
endothelin and epidermal growth factor signaling path-
ways [7,9]. Further, a recent study done in a surgically-
induced OA model in the guinea pig has reported an aug-
mentation in the joint movement-evoked discharge selec-
tively in C-fibers at one week after model induction and in
Ad neurons at one day, one week and three weeks after
model induction [11]. Importantly, the change in C-fibers
is transient, and reverses by three weeks.

The fact that there is a progression of the pain and of noci-
ceptive signals raises the possibility of a succession of
mechanisms involved in changes in sensory function.
Among the sites to investigate changes in the neural sub-
strate of nociception are the dorsal root ganglia (DRG),
which contain the cell bodies of primary sensory neurons
that project from the periphery to the spinal cord. With
the idea that a change in sensitivity or function of primary
afferent neurons is reflected in the configuration of the
action potential (AP) in these neurons, we undertook a
study to determine whether changes occur in DRG neu-
rons following induction of OA in our rat model, whether
changes observed followed any particular time course of
development, and whether changes were associated with
a particular functional type of neuron. Several proposals
have been made previously to account for the pain of OA,
such as activation of sensitized nociceptive neurons in the
knee [2,12,13]. Nociceptive primary sensory neurons are
those having receptive endings with a high stimulus
threshold and that respond preferentially to noxious stim-
uli [14]. These nociceptive neurons actually conduct in all
three velocity ranges of sensory neurons, C-, As- and Ao/
B, but in many studies are often considered to conduct
only in the C- or A3-range of velocities, and Aa/p primary
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sensory neurons are generally thought to be only non-
nociceptive. Our pilot data, however, did not reveal signif-
icant changes in AP configuration in C- or Ag-fiber associ-
ated neurons, yet changes were seen in A neurons [15].

A perusal of the literature indicates that there is a consid-
erable number of nociceptive neurons that conduct in the
AP range: approximately 12% of A-fibers innervating
hairy skin in the monkey [16], 20% of AB-fibers in cats
[17,18] and 30% of AB-fibers in rodents [19-22]. High
threshold mechanoreceptors are the main type of A-fiber
nociceptor, and the other two less common types are
mechano-heat nociceptors, and mechano-cold nocicep-
tors [16,23]. Moreover, A-fiber neurons have been sug-
gested to be involved in models of chronic pain [24,25].
Therefore, the present study was done to identify any
changes specifically in high threshold AB-fiber neurons,
and to determine whether there is a progression of change
in A-fiber nociceptors through early and later stages of the
progression of the model. The present OA model was
designed to mimic the most prevalent etiology in human
knee OA, which is destabilization of the joint due to an
injury [26]. Results from the present study suggest that fol-
lowing surgically-induced knee derangement nociceptive
neurons in the AP range may undergo important changes
in physiology. Changes in other types of primary sensory
neuron in this model are the subject of other studies.

Methods

Experiments were done on female Sprague Dawley rats
(180-225 g) obtained from Charles River Inc. (St. Con-
stant, QC, Canada). All protocols were approved by the
McMaster University Animal Review Ethics Board and all
experimental procedures conformed to the Guide to the
Care and Use of Laboratory Animals of the Canadian
Council of Animal Care, Vols.1 and 2. Upon completion
of the acute electrophysiological experiment each animal
was euthanized by an overdose of anesthetic.

Induction of the animal model of OA

The model of OA used was based on mechanical derange-
ment of the knee [27]. For surgical induction of the
model, animals were anesthetized with a mixture of keta-
mine (100 mg/ml), xylazine (20 mg/ml) and acepro-
mazine (10 mg/ml) - ketamine from Bioniche (Belleville,
ON, Canada), xylazine from Bayer (Toronto, ON, Can-
ada), acepromazine from Wyeth-Ayerst (Guelph, ON,
Canada). The joint capsule was exposed and the tibial and
medial ligament attachments of the medial meniscus were
severed to allow removal of the meniscus. The anterior
cruciate ligament then became clearly visible and was cut.
The incision was then sutured in two layers. Naive ani-
mals served as controls. Following the surgery, animals
were sequentially given Trimel from Novopharm
(Toronto, ON, Canada) 0.05 ml once per day for 3 con-
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secutive days, and the analgesic, Temgesic from Schering-
Plough (Kenilworth, NJ, USA), twice per day for 2 consec-
utive days.

We have previously found that in this model, mild carti-
lage degeneration, such as surface discontinuity, is
observed 2-4 weeks after surgery [10], yet severe cartilage
degeneration, such as vertical fissure formation and
chondrocyte clusters, appears 8 weeks after surgery [10].
Therefore, 2-4 weeks after knee surgery in present OA
model can be considered the initiation phase, whereas 8
weeks after surgery may represent a more advanced phase.
To determine whether there would be temporal changes
in electrophysiological properties of A nociceptive pri-
mary sensory neurons that would correlate with these
phases, acute electrophysiological recordings were carried
out at two time points, early, at 4 weeks, and late, at 8 or
more weeks following the surgery. Recordings were not
made at 2 weeks after surgery in OA rats to avoid any acute
surgical effect on neuronal properties.

Animal preparation for acute electrophysiological
recording

At one or two months after model induction each animal
was initially anesthetized with the ketamine mixture
described above. The right jugular vein was cannulated for
i.v. infusion of drugs. An initial 1 mg/kg dose of pancuro-
nium from Sandoz (Boucherville, QC, Canada) was given
to eliminate muscle tone; the effect of pancuronium was
allowed to wear off periodically (normally within one
hour of pancuronium administration) in order to confirm
a surgical level of anesthesia by observing the pupil for
dilation and testing for reflex withdrawal from a pinch to
a forelimb. Supplements of pentobarbital (CEVA SANTE
ANIMALE, La Ballastiére, Libourne, France; 20 mg/kg)
and pancuronium (1/3 of the initial dose) were added
every hour; this schedule of pentobarbital administration
was confirmed to be effective in maintaining a surgical
level of anesthesia in non-paralyzed control rats in our
pilot study. An in-house servo-controlled infrared heating
lamp maintained rectal temperature at approximately
37°C. The animals were mechanically ventilated (Model
683, Harvard Apparatus, QC, Canada); the ventilation
parameters were adjusted to maintain the CO, concentra-
tion at approximately 40 mmHg using end-tidal CO2
monitoring (CapStar-100 End-Tidal CO, Analyzer, CWE,
Ardmore, PA, USA).

The L4 DRG was selected for study. While L, and L, receive
the most knee afferents [28] our pilot studies suggested
that not only knee afferents were changed in this model,
but changes were also in neurons innervating neighboring
territories. In addition, in some cases it was important to
stimulate the sciatic nerve and, as the majority of L affer-
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ents do not supply the sciatic nerve, the L4 DRG was
selected for this study.

The rat was fixed in a stereotaxic frame and the vertebral
column was rigidly clamped at the L, and L, vertebrae. The
right femur was fixed by a customized clamp to avoid
movements of the DRG during mechanical searching for
peripheral receptive fields. Connective tissue over L, DRG
was removed with care. Exposed spinal cord and DRG
were covered with warm paraffin oil to prevent drying.
Direct heating of the DRG by the light source for the sur-
gical microscope was carefully avoided. A pair of bipolar
platinum stimulating electrodes (FHC, Bowdoinham, ME,
USA) was placed beneath the L, dorsal root that had been
exposed and cut close to the spinal cord. The distance
from the stimulation site (cathode) to the recording site
(center of the DRG) was measured at the end of the exper-
iment to determine the conductance distance and thereby
calculate the conduction velocity of the fibers associated
with each DRG neuron recorded. This conduction dis-
tance was normally between 12 and 16 mm.

In vivo intracellular recording

The configuration of the AP is characteristic of each partic-
ular functional type of DRG neuron and thus can be used
as one parameter for classification of each neuron
recorded. For example, myelinated afferents that display a
hump on the falling phase of the AP are considered to be
nociceptors, while those that do not bear the hump inner-
vate hairs, muscles, etc. and respond to innocuous stimu-
lation [18,29]. Nociceptive neurons also exhibit other
electrophysiological features, such as a broad AP duration,
a relatively large AP amplitude and a long afterhyperpo-
larization duration [20]. Changes in the physiology of
DRG neurons can be identified through changes in AP
configuration. Thus, AP configuration was compared
between control and model animals with the aim to iden-
tify changes in physiological properties of the neurons.

Thus, APs were obtained by intracellular recordings from
somata in the DRG using micropipettes fabricated from
filament-containing borosilicate glass tubing (1.2 mm
outer diameter, 0.68 mm inner diameter; Harvard Appa-
ratus, Holliston, MA, USA). The electrodes were pulled
using a Brown-Flaming puller (Model P-87; Sutter Instru-
ment Co., Novota, CA, USA) and filled with a 3 M KCl
solution (DC resistance: about 40-70 M Q).

During the acute electrophysiological experiment the
microelectrode was advanced using an EXFO IW-800
micromanipulator (EXFO, Montreal, QC, Canada) until a
hyperpolarization of at least -40 mV suddenly occurred
and an AP could be evoked by stimulation of the dorsal
root; APs were recorded with a Multiclamp 700B amplifier
(Molecular Devices, Union City, CA, USA) and digitized
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on-line via a Digidata 1322A interface (Molecular
Devices) with pClamp 9.2 software (Molecular Devices).

Measurement of electrophysiological parameters has been
reported previously [19,30]. These include conduction
velocity (CV), resting membrane potential (Vm), AP dura-
tion (APD), AP duration at half AP amplitude (AP half
width), AP amplitude, AP rise time, AP fall time, maxi-
mum AP rising rate (MRR), maximum AP falling rate
(MFR), afterhyperpolarization (AHP) amplitude, 50%
AHP recovery time (AHP50) and 80% AHP recovery time
(AHP80). Each of these parameters reflects a different
mechanism contributing to the electrical properties of the
neuron. Analysis was done offline using pClamp 9.2.

Classification of dorsal root ganglion neurons

The criteria for neuron classification based on conduction
velocity followed those reported in a previous in vivo
study, in which AB-fiber conduction velocity was defined
as greater than 6.5 m/s along the dorsal root in female
Wistar rats [20]. We adopted this criterion because it most
closely applied to the present studies compared with crite-
ria from other labs [22,31,32], including the same gender
(female), a comparable age at experiment (~160 gin Law-
son's vs. ~250 g in ours), similar recording temperature
due to similar surgical exposure, heating strategy and core
temperature set-point.

The sensory receptive properties of DRG neurons were
identified using specific mechanical stimuli, and classified
as previously described [20] and as outlined below. High
threshold mechanoreceptors (HTMs) were considered to
be nociceptive neurons if they were activated by high
intensity stimuli such as pinch or squeeze applied with a
fine or coarse-toothed forceps, or a sharp object such as
the tip of a syringe needle. Neurons included in this study
did not show a response evoked by innocuous stimuli
such as gentle pressure or brush with a camel hair brush.

Some neurons were the so-called "unresponsive neu-
rons". These have been identified in earlier studies as
those neurons that are not excited by any of the non-nox-
ious or noxious mechanical stimuli listed above [33].
Among these, some might be nociceptive neurons based
on the fact that they had a prominent inflection on the
repolarization phase of the AP in differentiated record-
ings, which is considered to be a feature unique to nocic-
eptive neurons [22,34] and which has been adopted as a
criterion to differentiate nociceptive neurons from non-
nociceptive neurons in in vitro electrophysiological stud-
ies where sensory property testing is not possible
[18,22,35,36].

Acceptance criteria
All neurons included in this study met the following crite-
ria: they exhibited an evoked AP from dorsal root stimula-
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tion, had a Vm more negative than -40 mV and had an AP
amplitude larger than 40 mV. In addition, for each neu-
ron, before sensory testing was begun a continuous
recording was obtained for >5 min after electrode penetra-
tion; only those neurons that maintained a stable Vm
throughout recording and sensory testing are included in
this report.

Statistical analysis

The D'Agostino and Pearson omnibus test was carried out
to determine normality of the electrophysiological data.
In addition, wherever appropriate, one way analysis of
variance (ANOVA) with Newman-Keuls post test or non-
parametric Kruskal-Wallis test with Dunn's post test was
used for comparison of parameters in control animals and
at both stages of development of the OA model. Fisher's
exact test was used to analyze count data. Statistical tests
and graphing were done using Prism 4 software (Graph-
Pad, La]Jolla, CA, USA), and P < 0.05 was considered to be
significant.

Results

All neurons included in this study were Af nociceptive
neurons judged by sensory testing and by AP features.
Electrophysiological properties of AB-fiber HTMs in con-
trol animals were comparable to those that have been
reported from other research groups for this type of neu-
ron [18-20,22]. Successful recordings that met the accept-
ance criteria were from a total of 23 neurons from 17
control animals and 47 neurons from 19 OA model ani-
mals. Following the criteria of Lawson et al. (1997) these
were further differentiated into the following groups: Ap-
fiber nociceptor-like unresponsive neurons at one-month
after model induction (N = 14), AB-fiber HTMs at one-
month after model induction (N = 18) and AB-fiber HTMs
at two months after model induction (N = 15). Very few
AB-fiber nociceptor-like unresponsive neurons were
observed in two-month OA animals. Therefore, no sepa-
rate group was formed based on this type of neuron.

Ap-fiber nociceptor-like unresponsive neurons and AS-
fiber HTMs

Typical examples of an AB-fiber HTM and of an AB-fiber
nociceptor-like unresponsive neuron are illustrated in Fig.
1. Note the prominent inflection observed in the repre-
sentative AB-fiber nociceptor-like unresponsive neuron
shown in Fig. 1B,E. This is consistent with earlier reports
on this type of neuron from other laboratories and char-
acterizes nociceptive neurons as described above
[18,22,29,34].

The group of AB-fiber nociceptor-like unresponsive neu-
rons might be heterogeneous having a mixture of nocice-
ptive and non-nociceptive neurons. This is the only group
that could have included hypothetical axotomized neu-
rons. The proportion of nociceptor-like neurons in the
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Figure |

Representative APs evoked in Af3 nociceptive neu-
rons by dorsal root stimulation. A-C, evoked APs; D-F,
differentiated derivatives of these APs to determine rate of
change. A and D are from a nociceptive neuron that could
be activated only by high intensity stimuli, including firm pinch
applied to the ankle joint; conduction velocity was 2.4 m/s.
B and E are from an unresponsive neuron classified as an A
fiber on the basis of conduction velocity, which was 8 m/s,
and a plateau was identified on the repolarisation branch of
the AP in the differentiated recording, which is indicative of a
nociceptive neuron. C and F are from another unresponsive
neuron, with a conduction velocity of 18.8 m/s, but with no
inflection on the falling phase in the differentiated recording,
which is considered a non-nociceptive neuron.

total of unresponsive neurons was compared in the con-
trol vs. OA groups, and was 6 out of 21 (28.6%) in control
and 14 out of 31 neurons (45.2%) in OA animals at one
month; this seemly large difference in the proportion of
AB-fiber nociceptor-like unresponsive neurons in OA was
not significantly different (P = 0.26). We also calculated
the proportion of "unresponsive nociceptors" in the noci-
ceptor population between OA and control animals in
case nociceptor-like unresponsive neurons are actual
nociceptors. Again, there was no difference in this propor-
tion: 6 out of 29, 20.7% in control vs. 14 out of 32, 43.8%
in one month OA (P = 0.064). Thus, our observation was
insufficient to substantiate a greater number of nocicep-
tor-like unresponsive neurons in OA animals.

All AB-fiber HTMs in the present study were recorded from
L, DRG. Receptive fields of these neurons encompassed
every major compartment of the ipsilateral lower limb:
from knee joint (N = 3 each in control, OA at one month
and OA at two months), from ankle joint (N = 3 in con-
trol, 2 in OA at one month, and 1 in OA at two months),
from the leg (N = 5 in control, 1 in OA at one month, and
3 in OA at two months), from calf (N = 1 in control, none
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in OA at one month, and 1 in OA at two months), and
from foot (N = 11 in control, 12 in OA at one month, and
4 in OA at two months). There were two general observa-
tions. First, most AB-fiber HTMs innervated deep tissues,
such as joint, muscle and/or periosteum of the leg, and
deep tissue of the foot. Second, the foot receives a rich
innervation from AB-fiber HTMs with a comparable distri-
bution in either hairy or glabrous skin.

Changes in A/-fiber nociceptor-like unresponsive neurons
and HTMs at one month

To examine the possible effects of direct nerve damage on
AP configuration in the OA model, we compared AB-fiber
nociceptor-like unresponsive neurons at one month OA
with naive control AB-fiber HTMs. AB-fiber nociceptor-
like unresponsive neurons were the primary type signifi-
cantly altered in AP configuration at one month. In these
neurons, Vm was significantly depolarized compared with
values from naive controls (-56.3 + 1.23 mV, N =13 in OA
and -64.7 + 1.71 mV, N = 23 in control; P = 0.002; Fig.
2A). However, in this early phase of the model no change
in Vm was observed in AB-fiber HTMs (Table 1).

AP amplitude is the net effect of depolarization and recti-
fication forces, and was significantly less in nociceptive
neurons of OA animals. At one month of the model no
difference in AP amplitude was observed in Ap-fiber
HTMs. In AB-fiber nociceptor-like unresponsive neurons
in OA animals, AP amplitude was 84.0 + 2.33 mV (N =
14). This is 11.5 mV more hyperpolarized than that of the
AB-fiber HTMs in naive control animals, which was 72.5
+2.04 mV (N = 23; P = 0.001; Fig. 2B).

APD reflects the net effect of overall ion flow. This did not
differ in either type of nociceptive neuron between con-
trol and model animals at one month after model induc-
tion (Fig. 3A). Compared with the control animals, a
significantly longer AP half width was found in AB-fiber
nociceptor-like unresponsive neurons in OA model ani-
mals (1.0 + 0.09 ms, N = 14 vs. 0.8 + 0.05 ms, N = 23 in
control; P = 0.027; Fig. 3B).

AP rise time is taken as a measure of the time for depolari-
zation from baseline to peak and largely reflects Na+ flux.
No difference in AP rise time was found in AB-fiber HTMs
or in AB-fiber nociceptor-like unresponsive neurons at
one month after model induction (data not shown).
MRR, used as an additional measure of the dynamics of
depolarization, was derived by mathematical conversion
of the AP waveform as the differentiated derivative of the
AP. Thus, the curve represents the rate of voltage change
over time. MRR reflects the maximum depolarization
driving force, mostly generated by sodium influx current.
MRR in AB-fiber HTMs in OA animals was not signifi-
cantly different from control values (Table 1).
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Table I: Properties of all the nociceptive DRG neurons recorded in control and osteoarthritis animals

Parameter Naive Unrespon-Im HTM-Im HTM-2m

Vm (mV) -64.66 + 1.71, -56.25 + 1.23, -63.65 + 1.85, -61.72 + 1.62,
N =123 N=13 N=17 N=13

Amplitude (mV) 7247 +2.04, 84.01 +2.33, 77.52 + 2.35, 83.19 £ 24,
N=123 N=14 N=18 N=15

APD (ms) 1.56 £ 0.11, 1 0.16, 1.68 £ 0.1 1.13 £ 0.09,
N=23 =14 N=18 N=15

Half width (ms) 0.78 + 0.05, | +£0.09, 0.86 + 0.06, 0.56 * 0.05,
N=23 N=14 N=18 N=15

Rise time (ms) 0.66 * 0.06, 0.71 + 0.06, 0.64 + 0.04, 0.47 + 0.04,
N =123 N=14 N=18 N=15

MRR (mV/ms) 239.1 £19.23, 228.8 + 18.52, 239.1 £ 12.49, 350.4 £ 28.09,
N=123 N=14 N=18 N=15

Fall time (ms) 0.9 + 0.05, 1.09 £ 0.1, 1.04 + 0.06, 0.66 + 0.05,
N=23 =14 N=18 N=15

MFR (mV/ms) 135.7 £ 10.23, 121.1 £ 11.29, 1243 £7.33, 197.5 £ 14.66,
N=23 =14 N=18 N=15

AHP (mV) 10.7 £ 0.68, 11.78 + 1.05, 12.19 + 0.69, 10.11 £0.71,
N =123 N=13 N=15 N=14

AHP80 (ms) 3095 £ 5, 35.9 £ 7.46, 34.71 £ 482, 21.01 £4.92,
N=22 N=13 N=15 N=14

AHP50 (ms) 899 + 1.29, 9.6 + 1.73, 8.67 + .48, 5.71 = 1.62,
N=22 N=13 N=15 N=14

CV (mm/ms) 14.1 £ 1, 11.69 £ 0.8, 13.24 £ 0.66, 16.38 + 1.42,
N=23 N=14 N=18 N=15

"Naive" represents AB-fiber HTMs in control animals. "Unrespon-Im" represents nociceptor-like AB-fiber unresponsive neurons in one month OA
animals. "HTM-Im" and "HTM-2m" represent AB-fiber HTMs from the OA group tested one month or two months after model induction,
respectively. Values are presented as mean * S.E.M. "N" represents the number of neurons.

A similar rationale was adopted to determine the dynam-
ics of repolarisation, where AP fall time and MFR were
used as measures of the dynamics of the repolarisation
phase of the AP. Significant differences in AP fall time and
MFR were not seen between control and OA animals in
AB-fiber HTMs or nociceptor-like unresponsive neurons
(Table 1).

Basically, there are three types of AHP following the spike
- a fast AHP (immediate activation during the spike hav-
ing a duration of several tens of milliseconds), a medium
AHP (immediate activation during the spike having a
duration of several hundreds of milliseconds) and a slow
AHP (slow activation over hundreds of milliseconds hav-
ing a duration of several seconds) [37]. Different calcium-
activated potassium channels underlie different AHPs,

such as BK-type channels for fast AHP, SK-type channels
for medium AHP [37]. The AHP80 in control AB-fiber
HTMs was 30.9 + 4.9 ms (N = 22), suggesting that the
AHP in the present study was likely to be a fast AHP. How-
ever, none of the parameters of the AHP, including ampli-
tude and duration, showed any difference between either
OA AB-fiber HTMs or AB-fiber nociceptor-like unrespon-
sive neurons and naive control AB-fiber HTMs, including
duration or amplitude (Table 1).

Unlike the other parameters measured, which reflect
properties of the soma, conduction velocity reflects prop-
erties of the axon. There were no statistically significant
differences in conduction velocity between AB-fiber HTMs
in controls vs. AB-fiber HTMs or AB-fiber nociceptor-like
unresponsive neurons in OA animals (Table 1).
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Resting membrane potential (Vm) and action potential (AP) amplitude in AP nociceptive DRG neurons in
osteoarthritis (OA) animals at one month and at two months, and in naive control animals. "Naive" represents
AB-fiber HTMs in control animals. "Unrespon" represents nociceptor-like AB-fiber unresponsive neurons in one month OA
animals; an inflection on the falling phase of the differentiated recording was used to classify these neurons [22,34]. "HTM-Im"
and "HTM-2m" represent AB-fiber HTMs from the OA group tested one month or two months after model induction, respec-
tively. One way ANOVA with Newman-Keuls post test was used for multiple comparisons among "Naive" (N = 23), "Unre-
spon" (N = 13 for Vm and N = |4 for AP amplitude), "HTM-Im" (N = 17 for Vm and N = 18 for AP amplitude), "HTM-2m" (N
= 13 for Vm and N = |5 for AP amplitude). In each case the mean (horizontal line) is presented.

Changes in Af-fiber HTMs at two months

At two months of model development, only a few AB-fiber
nociceptor-like unresponsive neurons were recorded.
Thus, the following data are from AB-fiber HTMs. Vm was
similar in AB-fiber HTMs from control vs. model animals
in this later phase of the model (Table 1). However, a sig-
nificantly larger AP amplitude was seen in these neurons
at this phase of model development (83.2 + 2.40 mV, N =
15) compared to controls (72.5 + 2.04 mV, N = 23; P =
0.002; Fig. 2B).

APD was significantly shorter in the OA model rats at two
months compared with the control rats (1.1 + 0.09 ms, N
=15vs. 1.6 + 0.11 ms, N = 23 in control; P = 0.007; Fig.
3A). AP half width was also significantly shorter in OA
model rats in the late phase compared to control rats (0.6
+ 0.05ms, N=15vs. 0.8 + 0.05 ms, N = 23 in control; P
= 0.007; Fig. 3B).

As shown in Fig. 4A, AP rise time was shorter in OA ani-
mals at two months of model development compared to
control rats (0.5 + 0.04 ms, N =15vs. 0.7 + 0.06 ms, N =
23 in control; P = 0.021). MRR was 350.4 + 28.09 mV/ms
(N = 15) in AB-fiber HTMs in the late phase, which was

significantly faster than the 339.1 + 19.23 mV/ms (N =
23) in control rats (P = 0.002; Fig. 4B).

Similarly, as shown in Fig. 5A, a significantly shorter AP
fall time was observed in AB-fiber HTMs at two months
compared to control rats (0.7 + 0.05 ms, N = 15vs. 0.9 +
0.05 ms, N = 23 in control; P = 0.004). Also, as shown in
Fig. 5B, MFR was faster in the late phase OA animals com-
pared to control rats (197.5 + 14.66 mV/ms, N = 15 vs.
135.7 + 10.23 mV/ms, N = 23 in control; P = 0.001).

In AB-fiber HTMs, there were no difference in conduction
velocity or AHP associated parameters between control
and OA animals at two months (Table 1).

Discussion

The present study provides evidence that unilateral knee
derangement induces changes in the AP recorded from
AB-fiber nociceptive primary sensory neurons in the ipsi-
lateral L4 dorsal root ganglion. Interestingly, the neuron
types exhibiting changes differentiate into two groups, AB-
fiber HTMs and Ap-fiber nociceptor-like unresponsive
neurons. These changes were also different in animals
tested at two months after model induction vs. those
tested at one month.
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Figure 3
Action potential duration at base (APD) and AP width at half amplitude (AP half width) in Ap nociceptive

DRG neurons in OA animals at one month and at two months, and in naive control animals. Labeling is otherwise
the same as in Figure 2. One-way ANOVA with Newman-Keuls post test was used for multiple comparisons among groups as
follows: "Naive" (N = 23), "Unrespon" (N = 14), "HTM-Im" (N = 18) and "HTM-2m" (N = I5).
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Action potential rise time (AP rise) and maximum rising rate (MRR) in A} nociceptive DRG neurons in OA
animals at one month and at two months, and in control animals. Labeling is otherwise the same as in Figure 2.
Kruskal-Wallis test with Dunn's post test was used for multiple comparisons among "Naive" (N = 23), "Unrespon” (N = 14),

"HTM-Im" (N = 18) and "HTM-2m" (N = I5).
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Changes in action potential fall time (AP fall) and maximum falling rate (MFR) in A nociceptive DRG neurons
in OA animals at one month and two months, and in naive control animals. Labeling is otherwise the same as in Fig-
ure 2. Kruskal-Wallis test with Dunn's post test was used for multiple comparisons among the "Naive" (N = 23), "Unrespon"

(N = 14), "HTM-Im" (N = 18) and "HTM-2m" (N = 15).

Rationale for model selection and control

Several types of animal model of OA exist, including those
induced by modulation of gene [38] or protein expression
[39], injection of inflammatory cytokines [40] or injec-
tion of photolytic enzymes [41] as well as surgical induc-
tion [42] or excessive use of the joint [43]. The model
selected for the present study is a surgically-induced
derangement of the knee of one hind leg; while OA can
originate from a number of causes, injury is the most com-
mon [26]. We have shown that our OA model successfully
mimic changes in cartilage and bone closely matching the
human condition, including cartilage edema and collagen
turnover [7,8].

Controls for this study were naive rats. Simple surgical
exposure of the joint capsule, regardless of the size of the
surgical exposure has been reported to cause joint insta-
bility [44] and articular cartilage degeneration [45], which
would result in an unwanted comparison between severe
and mild osteoarthritis. Even a surgical incision normally
induces a brief inflammatory phase lasting only days
[46,47], but is fully repaired with scar tissue devoid of
inflammatory infiltration by the end of the first month
[48].

Changes in neuronal physiology in model animals at one
month

The changes at one month were observed only in AB-fiber
nociceptor-like unresponsive neurons bearing a hump on
the repolarization branch. The changes observed reflect
greater excitability, such as a relatively depolarized resting

membrane potential and increased AP amplitude, as well
as slowed dynamics of AP genesis, illustrated as longer AP
half width. These changes might be able to be explained
by nerve injury.

The in vivo intracellular recording technique is a sensitive
means of identifying changes in intact neurons, but is less
sensitive in differentiating between axotomised neurons
from otherwise unresponsive neurons. If the receptive
field of a neuron cannot be identified, there are two pos-
sibilities: either the neuron is axotomised or its receptive
field is not sufficiently activated. The unresponsive neu-
ron group might thus be heterogeneous. They could be
neurons with a very high stimulation threshold, neurons
with inaccessible receptive fields, neurons unexcitable
from any receptive field, neurons that are only responsive
to chemical stimuli [19], or neurons that have lost their
receptive fields due to axotomy. Our OA model involves
transection of the anterior cruciate ligament, which is
innervated mostly by large size neurons from L7 (main
sciatic nerve root) and L5-6 (main femoral nerve roots) in
cats [49], as well as removal of the medial meniscus for
which the anterior and posterior horns are highly inner-
vated by several different mechanoreceptors [50,51]. As
both structures are innervated, following surgery mechan-
ical derangement of the joint may be accompanied by
nerve trauma and may represent a source of pain [52].

Moreover, AB-fiber nociceptor-like unresponsive neurons
were the only group that could include hypothetical axot-
omised nociceptors. The time course of the earliest irre-
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versible stage of DRG neuron death following axotomy,
peaks at two weeks, and continues to lead to the elimina-
tion of neurons, which peaks at one to two months [53].
The fact that this type of neuron was rarely encountered in
model animals studied at two months after model induc-
tion in the present study (data not shown) might agree
with the marked apoptosis of DRG neurons by two
months [53].

Changes in neuronal physiology in model animals at two
months

The changes at two months after model induction were
quite different from those at one month. The major
changes reported here occur at two months or more after
model induction; changes at one month are relatively
minor compared to the later changes. Changes at this
more advanced phase of OA reflected accelerated rather
than slowed dynamics of AP genesis, including shorter
APD and AP half width, shorter AP rise time and fall time,
and faster MRR and MFR. The diverse changes in AP con-
figuration in AB-fiber nociceptive neurons at different
phases of OA might be attributed to transcriptional regu-
lation of a variety of ion channels by neurotrophic factors
[54] and/or other inflammatory mediators. Our previous
microarray data indicate a dynamic change in gene expres-
sion during the progression of the model, which involves
cytokine, chemokine, and growth factor signaling path-
ways [9]. However, detailed pathways leading to the spe-
cific changes are simply unknown at present. These
changes in sensory neurons over such a prolonged period
of time suggest that studies on sensory neuron changes in
animal models should include later time points in model
induction. Moreover, it is possible that these late-develop-
ing changes in sensory neurons may relate in some way to
the types of pain associated with more advanced OA in
humans [4].

Conclusion

Results from the present study suggest that A nociceptive
neurons undergo changes in this surgically-induced
model of OA. If these changes are representative of
changes in injury-induced joint OA, these neurons may
play an important role in OA pain. Importantly, there is a
late onset of electrophysiological changes in these neu-
rons, well beyond the time that changes in structure and
in nociceptive scores appear, and these may relate to the
episodes of intense pain that characterize advanced OA.
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