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Abstract

due to restrain, amongst others.

mouse models.

these clinically highly-relevant forms of chronic pain.

Background: On-going pain is one of the most debilitating symptoms associated with a variety of chronic pain
disorders. An understanding of mechanisms underlying on-going pain, i.e. stimulus-independent pain has been
hampered so far by a lack of behavioural parameters which enable studying it in experimental animals. Ultrasound
vocalizations (USVs) have been proposed to correlate with pain evoked by an acute activation of nociceptors.
However, literature on the utility of USVs as an indicator of chronic pain is very controversial. A majority of these
inconsistencies arise from parameters confounding behavioural experiments, which include novelty, fear and stress

Results: We have developed an improved assay which overcomes these confounding factors and enables studying
USVs in freely moving mice repetitively over several weeks. Using this improved assay, we report here that USVs
increase significantly in mice with bone metastases-induced cancer pain or neuropathic pain for several weeks, in
comparison to sham-treated mice. Importantly, analgesic drugs which are known to alleviate tumour pain or
neuropathic pain in human patients significantly reduce USVs as well as mechanical allodynia in corresponding

Conclusions: We show that studying USVs and mechanical allodynia in the same cohort of mice enables
comparing the temporal progression of on-going pain (i.e. stimulus-independent pain) and stimulus-evoked pain in

Finding

On-going, long-lasting pain is a classical feature of can-
cer and neuropathic pain. Various types of carcinomas
and sarcomas that metastasize to skeletal bones cause
hyperalgesia, i.e. exaggerated pain in response to noci-
ceptive stimuli as well as on-going, unstimulated pain
[1,2]. Clinical features of neuropathic pain also include
on-going pain [3,4]. In a majority of studies, evoked
motor activities, such as licking, shaking, lifting or with-
drawal of the affected body region, have been used as
indications of disease-induced evoked hypersensitivity.
In contrast, the analysis of on-going pain has remained
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a challenge. A very recent study has described the utility
of analgesic drug-induced conditioned place preference
as an indicator of on-going pain in neuropathic rats,
which can be used to test the effects of novel, putative
analgesic drugs on spontaneous pain in rats [5].
Ultrasound vocalizations (USVs) have been previously
postulated to be an indicator of on-going pain and have
been proposed as a potential method for measuring the
negative affective components of pain. However, convin-
cing experimental evidence has only come from experi-
ments recording USVs evoked acutely upon activation
of nociceptive neurons, e.g. application of nociceptive
irritants, such as capsaicin and formalin, or acute noci-
ceptive stimuli, such as pinch or incision of the skin
[6-9]. Martino et al. [10] showed that the central inflam-
mation caused by intracerebroventricular injection of
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lipopolysaccharide increases USVs in rats. However,
other studies have arrived at different conclusions and
raised doubts about the relevance of USVs to pain
[11-13]. Importantly, several previous studies have failed
to detect increased USVs in models of persistent or
chronic pain [11-13]. Numerous factors can confound
the results obtained in behavioural analyses of USVs
and obfuscate inferences as to whether persistent pain
states are associated with change in USV patterns. For
example, in several studies mice were immobilized in
the vicinity of a detector in a restrained state (e.g. [8]),
thereby raising the possibility of involvement of a large
stress component. Other studies analyzed USVs at a fre-
quency of 22 kHz (e.g. [12,14]), which are known to be
associated with alarm cries in rodents as a part of a
defence pattern in response to a predator [15]. This can
seriously confound observations when several animals
are tested in the presence of each other during analyses
of USVs in pain models. Furthermore, USVs have been
associated with a fear response [14], novelty-induced
alarm and anxiety [16], as well as mating and social
calls, showing that USVs can be generated as by-pro-
ducts of locomotor and exploratory activity of rodents
as well as novelty or predator-induced fear during beha-
vioural analyses. Furthermore, the level of background
noise and the ultrasonic frequency used further repre-
sent decisive factors in these analyses. We therefore set
out to systematically address these confounding factors
in an effort to develop an assay which would enables
delineating whether USVs patterns change in chronic
pain states associated with on-going pain. As models,
we employed spared nerve injury-induced neuropathic
pain in mice (SNI) of the C57BL6, and bone metastases-
induced cancer pain in mice of C3H/HeNCrl
background.

As a first step, we developed a chamber with an
improved design so as to allow analyses of USVs in
unrestrained freely-moving mice. The mice were placed
in a custom-designed recording chamber made of plexi-
glass of the dimensions 23 x 17 x 14 cm. The inner
walls of the chamber were covered with a 1 cm thick
layer of Sylgard to prevent recording of sounds made by
animals during locomotor activity or during exploration
of the walls of the chamber. The measuring chamber
was covered with a plexiglass lid fitted with two mini-3
bat, built-in, ultrasound detectors, each of them set to
detect a different frequency. The recording of USVs was
done using an automated system (Ultravox, Noldus
Technology), consisting of an audio filter and an ADA-
D converter and a computer with an analysis software
(Ultravox 2.0, Noldus Technology). Because it is known
that sonic vocalizations are not elicited in the absence
of evoked pain [8], we only focused on the analyses of
USVs in an effort to quantify ongoing pain in the
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absence of an acute pain stimulus. A trained observer
conducted analyses in order to closely monitor beha-
vioural patterns of the test animals. Tests were done
online; however, the sound-attenuated containment
chamber was also fitted with a video camera to permit
later offline analyses. Based upon previous studies which
have demonstrated the occurrence of USVs following
acute application of nociceptive stimuli [6,8] we chose
37 kHz and 50 kHz as recording frequencies; however,
we avoided 22 kHz, since it is associated with alarm
cries [14,17]. Simultaneous monitoring of behavioural
patterns and USVs enabled filtering out time periods
over which mice indulged in activities which disturb
USV patterns, such as walking, scratching or rearing
along the chamber walls.

In addition to the modifications described above, we
identified the following as interfering parameters, which
may have potentially confounded results from previous
studies: analyzing two mice at the same time (confronta-
tion, fear), number of detectors (interference was seen
when 4 detectors were switched on at the same time),
detector settings (when sensitivity levels were set high,
noise at audible frequencies was heard, which likely
leads to stress in the test animals).

By eliminating the above confounding factors and by
performing experiments in a secluded room with mini-
mum background noise, using the custom-made cham-
ber as described above, we were able to obtain very
stable and reproducible patterns of USVs in mice. How-
ever, when mice are put in the recording chamber for
the first time, which represents a novel and therefore
potentially dangerous environment for the animal, one
would still expect a fear component to the USV patterns
obtained. We tested this notion by comparing USVs in
unacclimatized mice with mice which had been acclima-
tized in the recording chamber for 3 times over duration
of 15 min each 1 day prior to the actual measurements.
Moreover, on the day of testing, the mice were also
acclimatized in the chamber for 10 min prior to the
actual measurement. Experiments showed that acclima-
tization to the recording chamber is a very important
factor determining the outcome of USV patterns in neu-
ropathic pain states. Mice which had not been acclima-
tized showed increased USVs at 1 and 2 weeks after
sham surgery as compared to pre-surgery values at 50
kHz or 37 kHz recording frequencies (Fig. 1A and 1B).
In contrast, sham-operated animals which had been
acclimatized to the recording chamber showed a
decrease in the rate of USVs in comparison to basal
values at both recording frequencies (Fig. 1C and 1D;
p < 0.05, ANOVA, Fisher’s test). Interestingly, SNI-trea-
ted animals which had been acclimatized showed
increased USVs over the 2™, 3" and 4™ weeks following
surgery in comparison to sham-treated animals and
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Figure 1 Analysis of ultrasound vocalizations (USVs) and evoked mechanical hypersensitivity following spared nerve injury (SNI).
C57Bl6 wild-type mice after SNI or sham treatment were tested at 50 kHz or 37 kHz recording frequencies. SNI- or sham-operated mice which
had not been acclimatized to the setup did not show differences in USVs (A and B) (n = 9 mice/group). SNI- or sham-operated mice which had
been pre-acclimatized to the recording chamber (C and D) showed differences in USV rate over basal state (pre-surgery values; t, p < 0.05) or
with respect to each other (*, p < 0.05); ANOVA followed by post-hoc Fisher's test (n = 5 mice/group). Paw withdrawal responses to graded
pressure applied via von Frey hairs prior to and following SNI (E) or sham treatment (F) are shown (n = 5 mice/group).
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corresponding basal (p < 0.05 at 37 kHz and/or 50 kHz;
Fig. 1C and 1D; p < 0.05, ANOVA, Fisher’s test). At 6
weeks following SNI, the number of USVs was not sta-
tistically significantly different from the basal conditions
or from sham-treated animals (Fig. 1C and 1D). These
results show that following SNI-induced neuropathy,
mice show enhanced USVs as compared to sham-trea-
ted animals in the absence of an acute pain stimulus,
thereby indicating ongoing pain.

We also monitored the development of evoked
mechanical hypersensitivity, in response to von Frey hair
application to the plantar surface of the hind paw over
the entire time period over which the animals had been
analyzed with respect to USVs. This enabled directly
comparing the development and temporal progression
of evoked hypersensitivity and ongoing pain following
neuropathy. Animals displayed marked hypersensitivity
to low-threshold mechanical inputs at 1 and 2 weeks
following SNI (p < 0.05; ANOVA followed by post-hoc
Fisher’s test). At 4-8 weeks following SNI, the degree of
hypersensitivity was reduced but still significantly higher
over basal values in SNI-treated animals (Fig. 1E). In
contrast, sham-operated animals did not show any sig-
nificant changes in mechanical sensitivity to von Frey
input (Fig. 1F). Thus, comparing evoked mechanical
sensitivity and USVs in the same cohort of animals
enables us to infer that ongoing pain following SNI is of
a shorter duration (up to 3 weeks after SNI) as com-
pared to mechanical allodynia (more than 8 weeks after
SNI).

We then asked whether USVs could function as an
indicator of ongoing pain in cancer states, particularly
following bone metastases. A model involving injection
of sarcoma cells in the marrow of the calcaneus heel
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bone in mice has been previously shown to closely par-
allel bone cancer-evoked pain in humans [18]. In this
model we observed that at 7 days following injection of
tumour cells, mice displayed a doubling of the rate of
USVs, which was further increased to 2.5 times at 12
days after injection at 50 and 37 kHz (Fig. 2A and 2B).
In contrast, sham-treated mice (PBS injection in the cal-
caneus bone) either demonstrate a decrease over basal
at 50 kHz or no change as compared to the basal values
at 37 kHz (Fig. 2A and 2B, p < 0.05 as compared to
tumour-injected animals, ANOVA followed by post-hoc
Fisher’s test).

We then performed experiments addressing the time-
course over which USVs increase and mechanical allo-
dynia develops in the same cohort of mice. In our
experience, depending upon experimental conditions
pertaining to the injection sarcoma cells into the bone
cavity and the growth curve of the sarcoma cells, the
onset of significant tumour-induced mechanical allody-
nia can vary between 4-7 days [18,19]. In the experi-
ments represented in Fig. 3A, significant mechanical
allodynia was observed in the tumour group at day 7
after tumour implantation, which increased further in
magnitude at day 12. Interestingly, tumour-injected
mice showed a significant increase in USVs at day 7
after tumour implantation, which increased further in
magnitude at day 12 (Fig. 3B). These results indicate
that USV closely paralleled the time frame of mechani-
cal allodynia in this model of bone cancer pain. Taken
together with results from similar experiments per-
formed in the SNI model, these results suggest that an
increase in USVs in the SNI model of neuropathic pain
is short-lived as compared to the persistent increase
in USVs in the tumour-pain model. The duration of
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Figure 2 Analysis of ultrasound vocalizations (USVs) following implantation of sarcoma cells. C3H/HeNCrl wild-type mice injected with
sarcoma cells (tumour) or PBS (sham) in the heel bone were tested at 50 kHz (A) or 37 kHz (B) recording frequencies. Tumour-bearing mice
which had been pre-acclimatized to the recording chamber showed differences in USV rate over basal state (pre-surgery values; 1, p < 0.05) or
over sham-treated mice (¥, p < 0.05); ANOVA followed by post-hoc Fisher's test (n = 9 per group).
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on-going pain may differ between these models, given
the inherent differences in their etiology and pathophy-
siological mechanisms. It is noteworthy that mechanical
allodynia in the tumour model is also significantly stron-
ger in magnitude than in the SNI model and stays per-
manently until the mice are sacriffied [18,19], in
contrast to SNI-induced mechanical allodynia which is
reversible [20]. Strong on-going pain which progressively
increases in magnitude with tumour growth is a hall-
mark of human bone metastases-induced pain [1,2].
Indeed, the observation that USVs progressively con-
tinue to increase over time after tumour implantation
supports the notion that they represent a reasonable
correlate for on-going pain.

In order to further study the association between dis-
ease-induced increase in USVs and on-going pain and
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its comparison to the course of mechanical allodynia,
we studied the effects of clinically efficacious analgesic
drugs on USV and mechanical allodynia behaviour. Fen-
tanyl, an opioid which is clinically efficacious in alleviat-
ing tumour-induced on-going pain (e.g. [21]), has been
shown to reduce mechanical allodynia in mouse models
of cancer pain (e.g. [22]). We observed that an acute
systemic administration of fentanyl significantly reduced
tumour-induced mechanical hypersensitivity (Fig. 3A)
and also completely reversed tumour-induced increase
in USVs (50 kHz) at 7 and 12 days after tumour cell
implantation (Fig. 3B; p < 0.05). Indeed, in the presence
of fentanyl, tumour-bearing mice showed a USV pattern
similar to that shown by sham-treated mice. Similarly,
gabapentin, which is used in the clinical treatment of
neuropathic pain syndromes (e.g. [23]) and has been
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Figure 3 Analysis of the effects of analgesics on ultrasound vocalizations (USVs) and evoked mechanical hypersensitivity. (A and B)
C3H/HeNCrl mice following implantation of sarcoma cells (tumour) in the heel bone were sub-cutaneously injected with fentanyl (0.1 mg/kg) or
vehicle 15 min prior to the measurement of USVs (50 kHz) or von Frey responses (n = 6 mice/group). (C and D) SNI-treated C57BI6 mice were
injected intraperitoneally with gabapentin (30 mg/kg) or vehicle 1 h prior to measurement of USVs (50 kHz) or von Frey responses applied to
the plantar surface (n = 6 mice/group). * denoted p < 0.05 as compared to drug-treated group at the corresponding time points after SNI/
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shown to be efficacious in mouse models of neuropathic
pain [24], inhibited SNI-induced mechanical allodynia
and concurrently reversed SNI-induced increase in
USVs (50 kHz) when tested at 1 and 2 weeks following
SNI (Fig. 3C and 3D; p < 0.05). These results consoli-
date the notion that tumour/neuropathy-induced
increase in USVs is a reliable correlate of on-going pain
in these disease states.

These results show that factors such as restraint,
stress, fear response, novelty-induced alarm calls, mating
and social calls, amongst others confound the beha-
vioural analysis of USVs in states of persistent, on-going
pain. Upon overcoming these factors (at least partially),
we observed that mice showing mechanical allodynia in
neuropathic- and cancer pain states show a marked
increase in USVs in the absence of externally applied
stimuli. Furthermore, production of background noise,
choice of frequency of recordings and reduction of
interference arising from usage of multiple detectors
during recordings were found to be important. Our
results show that upon usage of an improved protocol
as described above, USVs indicate a reliable, objective
and measurable parameter for ongoing pain in neuro-
pathic and cancer states. In the present study as USVs
could be reliably studied in laboratory mice, which,
albeit challenging to study in behavioural paradigms, are
very important from the perspective of genetic and
molecular studies. We believe that analyzing USVs in
the settings described above may help to study mechan-
isms underlying ongoing pain, which is one of the major
burdens in humans with chronic pain. This is particu-
larly relevant because mechanisms underlying ongoing
pain may not overlap with those which mediate evoked
hypersensitivity. Furthermore, employing USVs as a
parameter in analgesic drug screening may improve the
bench-to-bedside translation of novel therapeutics.

Methods and materials

Nociceptive tests and mouse models of cancer pain and
neuropathic pain

All animal use procedures were in accordance with ethi-
cal guidelines imposed by the local governing body
(Regierungsprasidium Karlsruhe, Germany). All beha-
vioural measurements were done in awake, unrestrained,
age-matched adult (more than 3 months-old) mice of
both sexes. Mice were acclimatised to the experimental
set-ups several times before the analysis.

Mechanical sensitivity to graded pressure was tested
via manual application of von Frey hairs to the plantar
surface as described previously [25]. To induce bone
metastases, National Collection of Type Cultures
(NCTCQ) clone 2472 fibrosarcoma cells (ATCC) were
cultured and injected unilaterally into and around the
calcaneus bone in male C3H/HeNCrl mice as described
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previously [18,19]. The resulting vocalization responses
were measured over 12 days in total. Evoked mechanical
hypersensitivity cause by the injection of cancer cells
was tested 7 and 12 days after the injection using von
Frey filaments as described above. In some experiments,
mice were tested prior to and 15 minutes after sub-cuta-
neus injection of fentanyl (0.1 mg/kg) or vehicle.

The Spared nerve injury model was used to study
chronic neuropathic pain as described by Decostered
and Woolf [20]. Briefly, two of the three terminal
branches of the sciatic nerve (tibial and common pero-
neal nerves) were ligated and cut leaving the remaining
third branch (sural nerve) intact. Mechanical hyperalge-
sia cause by the operation was tested over 8 weeks using
von Frey filaments as described previously [25]. Vocali-
zation responses were tested up to 6 weeks after the
operation. In some experiments, gabapentin (30 mg/kg)
or vehicle was injected intraperitoneally 1 h prior mea-
surement of behavioural responses.

Data analysis and statistics

All data are presented as mean + standard error of the
mean (S.E.M.). Analysis of Variance (ANOVA) for ran-
dom measures followed by post-hoc Fisher’s test were
utilized to determine statistically significant differences
(p = 0.05). For data on the number of USVs, statistical
comparisons were done on raw data, not on normalized
values.
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