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Abstract

Previous studies in several different trigeminal nerve injury/inflammation models indicated that the hyperexcitability
of primary afferent neurons contributes to the pain pathway underlying mechanical allodynia. Although multiple
types of voltage-gated ion channels are associated with neuronal hyperexcitability, voltage-gated K* channels (Kv)
are one of the important physiological regulators of membrane potentials in excitable tissues, including
nociceptive sensory neurons. Since the opening of K* channels leads to hyperpolarization of cell membrane and a
consequent decrease in cell excitability, several Kv channels have been proposed as potential target candidates for

pain therapy. In this review, we focus on common changes measured in the Kv channels of several different
trigeminal neuropathic/inflammatory pain animal models, particularly the relationship between changes in Kv
channels and the excitability of trigeminal ganglion (TRG) neurons. We also discuss the potential of Kv channel
openers as therapeutic agents for trigeminal neuropathic/inflammatory pain, such as mechanical allodynia.

Introduction

Pain caused by a lesion of the peripheral or central ner-
vous system is commonly termed neuropathic pain, and
this type of pain frequently persists, even following nor-
mal repair of the injured tissue [1-3]. In a clinically sig-
nificant proportion of cases, the neuropathic pain
becomes chronic, severely debilitating, and extremely
difficult to treat. Although several different types of neu-
ropathic pain animal models have been developed and
extensively studied [4,5], no common therapeutic mole-
cular target has been identified for neurons located in
the nociceptive pathway.

Multiple types of voltage-gated ion channels are asso-
ciated with neuronal excitability. Among these, voltage-
gated K" (Kv) channels are important physiological reg-
ulators of membrane potentials, action potential shape,
and firing adaptation in excitable tissues including noci-
ceptive sensory neurons [6-8]. Dorsal root ganglion
(DRG) and trigeminal ganglion (TRG) neurons
expressed three distinct classes of K' currents in varying
quantities: slow-inactivating sustained (K-current; Iy),
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fast-inactivating transient (A-current; 1), and slow-inac-
tivating transient (D-current; Ip) currents based on their
inactivation of kinetics and sensitivities to tetraethylam-
moniun (TEA), 4-aminopyridine (4-AP) and o-dendoro-
toxin (a-DTX), respectively [9-13]. Peripheral nerve
injury and inflammation markedly reduces the densities
of Kv channels, implicating them in the development of
neuropathic/inflammatory pain [14-17]. Since the open-
ing of K' channels leads to hyperpolarization of cell
membrane and a resultant decrease in cell excitability,
several types of Kv channels have been proposed as
potential target candidates for such pain pathways [18].
Recent studies in various pain models identified the vol-
tage-gated KCNQ/Kv7 channel (M-current) opener
[19-21] and alterations in either calcium-activated (Kc,)
or ATP-sensitive potassium (Karp) channels as potential
therapeutic targets for neuropathic/inflammatory pain
[22,23].

We recently reported on the hyperexcitability of pri-
mary afferent neurons in several different trigeminal
nerve injury and inflammation animal models, including
chronic constriction nerve injury (CCI), axotomy, and
inflammatory models [17,24-26]. In these models, we
systemically investigated the mechanism of mechanical
allodynia underlying changes in the TRG neuronal
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excitability due to several types of neuropathic/inflam-
matory conditions in rats, using behavioral analysis as
well as extracellular single-unit and whole-cell patch-
clamp recordings.

This review therefore focuses on changes in the Kv
channels studied in different trigeminal neuropathic/
inflammatory pain animal models, and particularly the
relationships between Kv channels and TRG neuron
excitability. We also discuss potential therapeutic targets
identified thus far for the prevention of pathological
pain, such as those targeting mechanical allodynia.

Pathological pain models

Peripheral nerve injury/inflammation produces sensory
abnormalities associated with chronic pain. Peripheral
tissue inflammation can alter the property of somatic
sensory pathways, resulting in behavioral hypersensitivity
due to the increased responses to pain caused by nox-
ious stimulation (hyperalgesia) as well as the normally
non-noxious stimulation (allodynia). Several different
types of animal nerve injury models have been devel-
oped to elucidate the neuronal mechanisms underlying
these abnormal pain sensations (allodynia and hyperal-
gesia) [27-29]. Among these models, the CCI model
shows inflammation and nerve injury, and can mimic
neuropathic pain in human [27,30]. CCI of the sciatic
nerve is indeed one of the most reliable models of neu-
ropathic pain [31]. Following peripheral nerve injury,
primary afferent neurons exhibit high frequency back-
ground activity or irregular burst discharges [27]. On
the other hand, in the axotomy of primary afferent neu-
ron model (axotomy model), the hyperexcitability of pri-
mary afferent neurons induced by peripheral nerve
injury is thought to result from extensive changes in the
ionic currents of DRG neurons [32,33]. Moreover,
changes in the excitability of primary afferent neurons
were also observed at the adjacent intact primary affer-
ent neurons after nerve injury (axotomy spared neuron
models) [34,35].

Any discussion of trigeminal neuropathic pain should
consider the following points. First, the trigeminal nerve
has some unique characteristics that may influence its
response to injury, such as its embryological origin, and
the proportion of myelinated and unmyelinated nerves,
and sympathetic fibers [36-38]. In addition, the location
of some branches of the nerve within bony canals pro-
tects them from exogenous stimuli, but makes them vul-
nerable to pressure (e.g., edema or displacement of
fractured bone fragments) [36]. To elucidate the
mechanism underlying trigeminal mechanical allodynia
in different neuropathic pain/inflammatory models, we
recently investigated four such animal models, as
described in the following sections.
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Changes in potassium currents and trigeminal
neuropathic and inflammatory pain

Figure 1 summarizes the changes in TRG neuronal
excitability associated with the changes in Kv channels
using whole-cell patch-clamp recording in our trigem-
inal neuropathic/inflammatory pain animal models
[17,24-26]. In each animal model, mechanical allodynia
was determined by withdrawal threshold for the
mechanical stimulation of the whisker pad area.
CCl-model

Trigeminal nerve has a predominant sensory function
compared with that of other peripheral nerves such as
sciatic nerve because it is predominantly composed of
sensory afferents, and only contains a small number of
efferent fibers. It can be assumed that the infraorbital
nerve (ION) does not contain any motor fibers, thus the
trigeminal CCI model provides evidence to demonstrate
the neuropathic pain mechanism following a purely sen-
sory nerve injury [25]. In our study, mechanical allody-
nia appeared at three days after ION-CCI and lasted for
14- days. Whole-cell patch-clamp recordings from med-
ium-/large-diameter CCI-TRG neurons revealed that
both I and I, in rats with ION-CCI were significantly
smaller than in naive rats (Figure 1A). Changes in the
duration of the depolarization phase (DDP) and repolar-
ization phase (DRP) contribute to the I, and Ik respec-
tively [12], thus suppression of these current in TRG
neurons following CCI correlated with a decrease in
DDP and an increase in DRP, respectively. Also, the
TRG neuronal action potentials (and consequently, the
total action potential duration) in rats with ION-CCI
were significantly prolonged than those in naive rats.
Under current-clamp experiments, TRG neurons follow-
ing ION-CCI showed a significant decrease in threshold
currents for generating spike and a depolarizing effect of
resting membrane potentials. In addition, depolarizing
pulses following ION-CCI significantly increased the
discharge frequencies of the TRG neuronal action
potentials. These changes in medium-/large-diameter
CCI-TRG neurons could contribute to the development
of mechanical allodynia.

Axotomy-spared neuron model

Uninjured TRG neurons show similar alterations to
adjacent TRG neurons following injury [24,34]. In this
same model, we found that mechanical allodynia in the
territory of ION was observed at 3 days after inferior
alveolar nerve (IAN) transection. As shown in Figure
1B, voltage-clamp recording indicated that both Ix and
I, in the medium-/large-diameter spared (uninjured)
TRG neurons innervating second branches of the tri-
geminal nerve (ION) in rats with IAN were significantly
smaller than those in naive rats, as for the CCI model.
Corresponding with these changes, we also measured
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Figure 1 Trigeminal neuropathic/inflammatory pain models and changes in TRG neuronal activities. A: Chronic constriction nerve injury
(CCl) model. Three days after infraorbital nerve (ION) chronic constriction. Target trigeminal ganglion (TRG) neurons were labeled by fluorogold
(FG). Whole-cell patch-clamp recordings under current-/voltage-clamp configurations were performed on medium/large-diameter CCl neurons. B:
Axotomy-neighboring neuron model. In this model, we found mechanical allodynia in the territory of ION at 2 days after inferior alveolar nerve
(IAN) transection. Uninjured TRG neurons innervating the territory of ION were labeled by FG and patch-clamp recordings under current-/
voltage-clamp configuration was performed on medium-/large-diameter neurons. C: Axotomy-regenerated neuron model. In this model, we
observed mechanical allodynia at 14 days after IAN transection. FG-injection at 14 days after IAN transection showed massive labeling of
trigeminal ganglion containing FG-labeled small/large-diameter neurons and the patch-clamp recordings under current-/voltage-clamp
configuration indicated axotomy-regenerated neurons. D: Inflammation model. Inflammation was induced by injection of CFA into the rat
temporomandibular joint (TMJ). We found mechanical allodynia in the territory of ION at 2 days after CFA injection. In FG-labeled small-diameter
TRG neurons innervating TMJ, the whole-cell patch-clamp recordings under current-/voltage-clamp configurations were performed on
inflammatory neurons. Blackened circles indicate the trigeminal ganglion neurons. I-lll: trigeminal nerves, |5 transient K current, I: sustained K
currents, 1: increase, |: decrease, ¥: tendency for decrease in Iy, but not significant, A: tendency for depolarization of membrane potential (Vm),
but not significant, Depo: Depolarization, V-clamp : Voltage-clamp, I-clamp: Current-clamp.
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the following changes under current-clamp conditions:
1) frequencies of the spike discharge induced by depo-
larizing pulses and duration of uninjured TRG neurons
in rats with IAN were significantly increased; and 2) sig-
nificant decrease in threshold current for generation of
spike and a depolarizing effect of resting membrane
potentials of spared TRG neurons after IAN transection.
These changes of medium-/large-diameter spared TRG
neurons might contribute to the development of
mechanical allodynia through paracrine signaling (e.g.,
brain-derived neurotrophic factor) from adjacent injured
TRG neurons [24].

Axotomy-regenerated neuron model

Injured nerves regenerate several weeks after nerve
damage [39-41]. Some clinical reports have noted that
areas innervated by the regenerated nerve show an
altered sensitivity to a variety of stimuli compared to
those innervated by the intact nerve activity [42-45].
The regenerated neurons also exhibit ectopic discharges
[46,47]. Recently we investigated the neural mechanisms
underlying abnormal pain following regeneration of the
injured IAN [26]. In this model, we observed mechanical
allodynia at 11-14 days after IAN transection. Injection
of the retrograde tracer, fluorogold (FG), at 14 days
after IAN transection showed extensive labeling of TRG
neurons, suggesting that most of the TRG neurons pre-
sent at that stage were regenerated. Whole-cell patch-
clamp recording of FG-labeled small-/medium-diameter
reinnervated TRG neurons showed a significant decrease
in both I, and Ix in the TRG neurons, a response that
was associated with an increase in the spike generation,
resulting in the hyperexcitability of reinnervated IAN-
TRG neurons (Figure 1C). Taken together with previous
results from intracellular single-unit recording [26],
these changes may be due to the mechanical allodynia.
Inflammation-model

Complete Freund’s adjuvant (CFA) models of inflamma-
tion in the orofacial region have been developed in rats
to study the trigeminal nervous system [48,49]. Tempor-
omandibular joint (TM]) inflammation is associated
with spreading pain and hyperalgesia [50] and TM] dis-
order paitients complain of pain from innoxious vibro-
tactile stimulation [51]. We recently reported that TM]
inflammation modulates the excitability of AB-TRG
neurons innervating the facial skin via a paracrine
mechanism due to the release of substance P (SP) from
the small-diameter TRG neurons. Such a release may be
important in determining the trigeminal inflammatory
allodynia associated with TM]J disorders [52,53]. Using
this TMJ inflammatory model, we found that mechani-
cal allodynia in the whisker skin region and I, densities
in the small-diameter TRG neurons innervating TM]
were both significantly decreased in inflamed rats com-
pared to naive rats [17]. TM] inflammation significantly
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reduced the threshold current and significantly
increased action potential firing evoked by depolarizing
current pulses. In this model there is a tendency for
decreases in I density in TM] inflamed rats compared
to naive rats, although the change is not significant.
Since application of 4-aminopyridine (A-type K channel
blocker) to naive rats TRG neurons mimicked the
changes in the firing properties observed after CFA
treatment [17], I suppression of the TRG neurons
innervating the TM]J could affect trigeminal inflamma-
tory allodynia in TM] disorders via paracrine mechan-
isms of SP in the trigeminal ganglia.

Potassium channels as a potential target for trigeminal
neuropathic/inflammatory pain

Lawson et al. [18] reported that several types of Kv
channels have been proposed as potential target candi-
dates for pain therapy. It was recently demonstrated
that a selective KCNQ/Kv7 channel opener (retigabine),
which mediates M-currents, selectively reduces the
activity of axotomized Ad/C-fibers, but not uninjured
axons [19], and human C-fiber axons [21]. Xu et al. [20]
also demonstrated that this KCNQ/Kv7 channel opener
could attenuate allodynia due to TMJ inflammation in
rats. Similarly, axotomy reduces K¢, channel activity in
the small to medium sized DRG neurons, which would
also increase membrane excitability [21]. Thus, these
channels may be involved in the development of hyper-
algesia and allodynia. On the contrary, spinal nerve liga-
tion suppressed K,tp channels only in large-diameter
neurons, but not in small-diameter neurons, from
hyperalgesic rats [23].

As described in the preceding chapter, experiments in
our trigeminal neuropathic/inflammatory pain model
indicated that the common changes in the Kv channels,
such as I, Ix in rats with neuropathic/inflammatory
pain, were significantly suppressed compared to those in
naive rats. Since previous reports suggested that I, and
I are important for regulating the firing frequency and
duration of action potentials in the TRG neuron, respec-
tively [12,13], these Kv changes caused an incremental
spike discharge and prolongation of duration of action
potentials in the neuropathic/inflammatory pain rats.
The relationship between depression of Kv and excit-
ability of TRG neurons under trigeminal neuropathic/
inflammatory pain conditions are summarized in Figure
2. It is well established that the duration of action
potentials in primary afferents influences the amount of
neurotransmitter released from the soma and the per-
ipheral and central terminals [10,11]. Increased action
potential duration and firing frequencies prolong the
opening of voltage-gated Ca>* channels, probably poten-
tiating Ca®* influx and causing an increase in the neuro-
transmitter released from the cell bodies and/or
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peripheral and central terminals (Figure 2B). Thus,
enhancing the amount of neurotransmitter released
from central terminals probably contributes to the
hyperexcitability of second-order nociceptive and wide
dynamic-range neurons in the trigeminal spinal nucleus
neurons (central sensitization) [24,25,49-54]. In addition,
increasing the neurotransmitters/neuromodulators (e.g.,
SP) released from the cell body of TRG neurons through
a paracrine or autocrine mechanism may activate the
neighboring TRG neurons [52,53]. Since previous stu-
dies suggested that peripheral inflammation can depolar-
ize trigeminal satellite-glial cells via activation of

neurokinin 1 receptor (SP release from small diameter
TRG neurons) [55,56], such changes may further pro-
mote the interaction between satellite-glial cells and
TRG neurons associated with pathological pain within
the trigeminal ganglia [55-57].

The precise mechanism by which Kv depression of
TRG neurons affects the neuropathic/inflammatory con-
dition remains to be determined. Recent studies demon-
strated that small- to medium-diameter TRG neurons
express glial cell line-derived neurotrophic factor
(GDNF) and its receptor components, such as GFRa1
[58,59]. To this end, we recently found that acute
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application of GDNF enhances the neuronal excitability
of adult rat small-diameter TRG neurons, which inner-
vate the facial skin in the absence of neuropathic and
inflammatory conditions [60]. This potentiation of
small-diameter TRG neuronal excitability is mediated by
inhibition of Kv channels, and transection of sciatic
nerve in rat upregulated the expression of GDNF and
GFRoa-1 mRNA in the proximal nerve trunk [61,62].
Thus, GDNF-induced potentiation of sensory neuronal
excitability may account for enhanced pain sensitivity,
resulting from increased levels of GDNF after tissue
injury, and further studies are needed to elucidate possi-
ble mechanisms underlying this effect.

Finally, opening of K channels leads to hyperpolariza-
tion of the cell membrane, and a resultant decrease in
cell excitability. We thus propose the potential develop-
ment of I and/or I channel openers as therapeutic
agents for preventing trigeminal neuropathic pain, such
as mechanical allodynia. Kv channel subunits, Kv2.1 and
Kv2.2, contribute to the Ix channel and play a distinct
role in regulating neuronal excitability [63,64]. However,
Kv1.4 and 4.1-4.3 channels may also be involved in
forming A-type Kv channels in sensory neurons [65-67].
Among these Kv channel a subunits, Kv1.4, 2.2, and 4.2
mRNAs are downregulated under neuropathic condi-
tions involving the transection and CCI of sciatic nerves
[15,16]. Rasband et al. [65] demonstrated that Kv1.4 is
the sole Kv a subunit expressed in smaller diameter
DRG neurons, and not Kv4-family channels. Since the
pharmacology and gating properties of DRG A-type Kv
channels are similar to those of heterogeneously
expressed Kv4 channels [66,67], we could not comple-
tely rule out a potential role for Kv4.1, 4.2, and 4.3 in
neuropathic pain. Previously, we reported that TM]
inflammation decreased the expression of Kv1.4 subu-
nits in small-/medium-diameter (Ad-/C-) TRG neurons
and that this may contribute to trigeminal inflammatory
allodynia associated with TM]J disorders [68]. Nerve
injury also induces accelerated reduction in Kv 1.4
expression in the small-diameter nociceptive DRG neu-
rons [65]. Taken together, these findings suggest Kv 1.4
channel as candidate molecular targets, and further stu-
dies are needed to explore this possibility.

Conclusion

Several different animal models of trigeminal nerve
injury/inflammation showed depression of both I, and
Ix in TRG neurons, compared to naive rats. These com-
mon changes contribute to the incremental spike dis-
charge and action potential prolongation in these
neurons, and may alter the properties of trigeminal pain
pathways. Our results therefore would suggest that Kv
channel (I, and Ix) openers have potential as
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therapeutic agents against trigeminal neuropathic/
inflammatory pain, such as mechanical allodynia.

List of abbreviations used

4-AP: 4-aminopyridine; CCl: chronic constriction nerve; CFA: Complete
Freund's adjuvant; DDP: duration of depolarization; DRG: dorsal root
ganglion; DRP: duration of repolarization; a-DTX: a-dendorotoxin; FG:
fluorogold; GDNF: Glial cell-deribed neruotrophic factor; Ia: fast inactivating
transient current (A-current); | . dominant sustained current (K-current); IAN:
Inferior alveolar nerve; ION: infraorbital nerve; Katp: ATP-sensitive potassium;
Kc,: Calcium activated potassium; Kv: voltage-gated K* channels; SP:
Substance P; TEA: Tetraethylammoniun; TMJ: temporomandibular joint; TRG:
trigeminal ganglion.

Author details

'Department of Physiology, School of Life Dentistry at Tokyo, Nippon Dental
University, 1-9-20, Fujimi-cho, Chiyoda-ku, Tokyo,102-8159, Japan.
’Department of Physiology, School of Dentistry, Nihon University, 1-8-13,
Kandasurugadai, Chiyoda-ku, Tokyo, 101-8310, Japan. *Division of Oral
Physiology, Department of Oral Biological Science, Niigata University
Graduate School of Medical and Dental Sciences, 2-5274, Gakkocho-dori,
Niigata, 951-8514, Japan. “Department of Hygiene and Oral Health, Showa
University School of Dentistry, 1-5-8, Hatanodai, Shinagawa-ku, Tokyo, 142-
8555, Japan.

Authors’ contributions

MT conceived and wrote the manuscript. YT, JK, and KN carried out the
experiments in the main part of references [242526]. Kl designed the main
part of experiments [242526]. SM conceptualized the manuscript and helped
to finalize the manuscript. All authors read and approved the final
manuscript.

Competing interests
The authors declare that they have no competing interests.

Received: 2 November 2010 Accepted: 10 January 2011
Published: 10 January 2011

References

1. Devor M: Strategies for finding new pharmacological targets for
neuropathic pain. Clin Pain Head Reports 2004, 8:187-191.

2. Niv D, Devor M: Refractory neuropathic pain: the nature and extent of
the problem. Pain Prac 2006, 6:3-9.

3. Schwartz J, Naff N: The management of neuropathic pain. Neurosurg Clin
N Am 2004, 15:231-239.

4. Scholtz J, Woolf CJ: Can we conquer pain? Nat Neurosci 2002, 5:1062-1067.

5. Costigas M, Scholz J, Woolf CJ: Neuropathic pain: A maladaptive response
of nervous system to damage. Annu Rev Neurosci 2009, 32:1-32.

6. Ficker E, Heinemann U: Slow and fast transient potassium currents in
cultured rat hippocampus cells. J Physiol (Lond) 1992, 445:431-455.

7. Wu LG, Saggau P: Presynaptic inhibition of elicited neurotransmitter
release. Trend Neurosci 1997, 20:204-212.

8. Hille B: Potassium channels and chloride channels. In lon channels of
excitable membranes.. 3 edition. Edited by: Hiile BD. Sunderland: Sinauer
Associates; 2001:134-167.

9. Everill B, Rizzo MA, Kocsis JD: Morphologically identified cutaneous
afferent DRG neurons express three different potassium currents in
varying properties. J Neurophysiol 1998, 79:1814-1824.

10. Takeda M, Tanimoto T, lkeda M, Kadoi J, Matsumoto S: Activation of
GABAg receptor inhibits the excitability of rat small diameter trigeminal
root ganglion neurons. Neuroscience 2004, 123:491-505.

11. Takeda M, Tanimoto T, lkeda M, Kadoi J, Nasu M, Matsumoto S: Opioidergic
modulation of excitability of rat trigeminal root ganglion neuron
projections to the superficial layer of cervical dorsal horn. Neuroscience
2004, 125:995-1008.

12. Yoshida S, Matsumoto S: Effects of a-Dendrotoxin on K* currents and
action potentials in tetrodotoxin resistant adult rat trigeminal ganglion
neurons. J Pharmacol Exp Ther 2005, 314:437-445.


http://www.ncbi.nlm.nih.gov/pubmed/15177322?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12403987?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19400724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19400724?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1501141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1501141?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9141196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9141196?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9535950?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14698756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14698756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14698756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14698756?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15120859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15120859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15120859?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15831438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15831438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15831438?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15831438?dopt=Abstract

Takeda et al. Molecular Pain 2011, 7:5
http://www.molecularpain.com/content/7/1/5

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

32.

33.

34.

Matsumoto S, Yoshida S, Takahashi M, Saiki C, Takeda M: The roles of Ip, Ia
and Ik in the electrophysiological functions of small-diameter rat
trigeminal ganglion neurons. Curr Mol Pharmacol 2010, 3:30-36.

Everill B, Kocsis JD: Reduction in potassium currents in identified
cutaneous afferent dorsal root ganglion neurons after axotomy.

J Neurophysiol 1999, 82:700-708.

Kim DS, Choi JO, Rim HD, Cho HJ: Down regulation of voltage gated
potassium channels a gene expression in dorsal root ganglion following
chronic constriction injury of rat sciatic nerve. Mol Brain Res 2002,
105:146-152.

Park SY, Choi JY, Lee YS, Cho H, Kim DS: Down regulation of voltage-
gated potassium channel a gene expression by axotomy and
neurotrophin in rat dorsal root ganglia. Mo/ Cell 2003, 16:256-259.
Takeda M, Tanimoto T, lkeda M, Nasu M, Kadoi J, Yoshida S, Matsumoto S:
Enhanced excitability of rat trigeminal root ganglion neurons via
decrease in A-type potassium currents following temporomandibular
joint inflammation. Neuroscience 2006, 138:621-630.

Lawson K: Potassium channel as targets for the management of pain.
Cent Nerv Syst Agents Med Chem 2006, 6:119-128.

Rosa C, Lopez-Garcia JA: Retigabine, the specific KCNQ channel opener,
blocks ectopic discharges in axotomized fibers. Pain 2008, 138:537-545.
Xu W, Wu Ym, Bi Y, Tan L, Gan Y, Wang KW: Activation of voltage-gated
KCNQ/Kv7 channels by anticonvulsant retigabine atteneuates
mechanical allodynia of inflammatory temporomandibular joint in rats.
Mol Pain 2010, 6:49.

Lang PM, Fleckenstein J, Passmore GM, Brown DA, Grafe P: Retigabine
reduces the excitability of unmyelinated peripheral human axons.
Neuropharmacology 2008, 54:1271-1278.

Sarantopoulos CD, McCallum JB, Ringaud M, Fuchs A, Kwok WM,

Hogan QH: Opposing effects of spinal nerve ligation on calcium-
activated potassium currents in axotomized and adjacent mammalian
primary afferent neurons. Brain Res 2007, 1132:84-99.

Kawano T, Zoga V, McCallum JB, Wu HE, Gemes G, Liang MY, Abram S,
Kwok WM, Hogan QH, Sarantopoulos CD: ATP-sensitive potassium currents
in rat primary afferent neurons : Biophysical, pharmacological properties,
and alterations by painful nerve injury. Neuroscience 2009, 162:431-443.
Tsuboi Y, Takeda M, Tanimoto T, lkeda M, Matsumoto S, Kitagawa J,
Teramoto K, Shimizu K, Yamazaki Y, Shima A, Ren K, Ilwata K: Alternation of
the second branch of the trigeminal nerve activity following inferior
alveolar nerve transection in rats. Pain 2004, 111:323-334.

Kitagawa J, Takeda M, Suzuki |, Kadoi J, Tsuboi Y, Honda K, Matsumoto S,
Nakagawa H, Tanabe A, lwata K: Mechanisms involved in modulation of
trigeminal primary afferent activity in rats with peripheral
mononeuropathy. Eur J Neurosci 2006, 24:1976-1986.

Nakagawa K, Takeda M, Tsuboi Y, Kondo M, Kitagawa J, Matsumoto S,
Kobayashi A, Sessle BJ, Shinoda M, lwata K: Mechanisms involved in
modulation of trigeminal primary afferent activity in rats with peripheral
mononeuropathy. Mol Pain 2010, 6:9.

Bennett GJ, Xie YK: A peripheral mononeuropathy in rat that produces
disorders of pain sensation like those seen in man. Pain 1988, 33:87-107.
Decosterd |, Allchorne A, Woolf CJ: Progressive tactile hypersensitivity
after a peripheral nerve crush: non-noxious mechanical stimulus
induced neuropathic pain. Pain 2002, 100:155-162.

Seltzer Z, Dubner R, Shir Y: A novel behavioral model of neuropathic pain
disorders produced in rats partial sciatic nerve injury. Pain 1990,
43:205-218.

Stusse SL, Crisp T, McBunney DL, Schechter JB, Lovell JA, Cruce WL:
Neuropathic pain in aged rats: Behavioral responses and astrocytic
activation. Exp Brain Res 2001, 137:219-227.

Guilbaud G, Benoist JM, Jazat F, Gauton M: Neuronal responsiveness in
the ventorobasal thalamic complex of rats with an experimental
peripheral mononeuropathy. J Neurophysiol 1990, 64:1537-1554.

Abdula FA, Smith PA: Axotomy- and autotomy-induced changes in the
excitability of rat dorsal root ganglion neurons. J Neurophysiol 2001,
85:630-643.

Abdula FA, Smith PA: Changes in Na* channels currents of rat dorsal root
ganglion neurons following autotomy and axotomy-induced autotomy. J
Neurophysiol 2002, 88:2518-2529.

Fukuoka T, Noguchi K: Contribution of the spared primary afferent
neurons to the pathomechanisms of neuropathic pain. Mol Neurobiol
2002, 26:57-67.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

Page 7 of 8

Fukuoka T, Tokunaga A, Tachibana T, Dai Y, Yamanaka H, Noguchi K: VR1,
but not P2X(3) increase in the spared L4 DRG in rats with L5 spinal
nerve ligation. Pain 2002, 99:111-120.

Fried K, Bongenhielm FM, Boissonade FM, Robinson PP: Nerve injury-
induced pain in the trigeminal system. Neuroscientist 2001, 7:155-165.
Sessle BJ: Acute and chronic, craniofacial pain: brainstem mechanisms of
nociceptive transmission and neuroplasticity, and their clinical
correlates. Crit Rev Oral Biol Med 2000, 11:57-91.

Hoffmann KD, Matthews MA: Comparison of sympathetic neurons in
orofacial and upper extremely nerve: implications for causalgia. J Oral
Maxillofac Sug 1990, 48:720-726.

Cain P, Frank ME, Barry MA: Recovery of chorda tympani nerve function
following injury. Exp Neruol 1996, 141:337-346.

Lago N, Uchida E, Ramachandran A, Navarro Z: Neurological assessment of
regenerative electrodes for bidirectional interfacing injured peripheral
nerves. IEEE Trans Biomed Eng 2007, 54:1129-1137.

Lee YS, Lin CY, Robertson RT, Hisao |, Lin VW: Motor recovery and
anatomical evidence of axonal regrowth in spinal cord-repaired adult
rats. J Neuropathol Exp Neruol 2004, 63:233-245.

deMedinacell L, Hurpeau J, Merle M, Bergorre H: Cold and post-traumatic
pain: modeling of the peripheral nerve message. BioSystems 1989,
496:228-240.

Ochs G, Schenk M, Struppler A: Painful dysaesthesia following peripheral
nerve injury: clinical and electrophysiological study. Brain Res 1989,
496:228-240.

Saito T, Schbamori Y, Manabe Y, Yamaguchi T, Yamamoto T, Ohtsubo T,
Saito H: Morphological and functional study of regenerated corda
tympani nerves in humans. Ann Otol Rhinol Larygol 2000, 109:703-709.
Sawai S, Kanai K, Nakata M, Hiraga A, Misawa S, Isose S, Hattori T,
Kuwabara S: Changes in excitability properties associated with axonal
regeneration in human neuropathy and mouse Wallerian degeneration.
Clin Neurophysiol 2008, 119:1097-1105.

Gorodetskaya N, Constantin C, Jang W: Ectopic activity in cutaneous
regenerating afferent nerve fibers following nerve lesion in the rat. fur J
Neurosci 2003, 18:2487-2497.

Jang W, Grossmann L, Gorodetskaya N: Mechano- and thermosensitivity
of regenerating cutaneous afferent nerve fibers. Exp Brain Res 2009,
196:101-114.

Imbe H, Iwata K, Zhou QQ, Zou S, Dubner R: Orofacial deep and
cutaneous tissue inflammation and and trigeminal neuronal activation.
Cells Tissue Organs 2001, 169:238-247.

Iwata K, Tashiro A, Tsuboi Y, Imai T, Sumino R, Morimoto T, Dubner R,

Ren K: Medullary dorsal horn neuronal activity in rats with persistent
temporomandibular joint and perioral inflammation. J Neurophysiol 1999,
82:1244-1253.

Sessle BJ, Hu JW: Mechanism of pain arising from articular tissues. Can J
Physiol Pharmacol 1999, 69:617-626.

Takeda M, Tanimoto T, lkeda M, Nasu M, Kadoi J, Shima Y, Ohta H,
Matsumoto S: Temporomandibular joint inflammation potentiates the
excitabilities of trigeminal root ganglion neurons innervating the facial
skin in rats. J Neurophysiol 2005, 93:2723-2738.

Takeda M, Tanimoto T, Nasu M, lkeda M, Kadoi J, Matsumoto S: Activation
of NK1 receptor of trigeminal root ganglion via substance P paracrine
mechanism contributes to the mechanical allodynia in the
temporomandibular joint inflammation in rats. Pain 2005, 116:375-385.
Iwata K, Imai T, Tsuboi Y, Tashiro A, Ogawa A, Morimoto T, Masuda Y,
Tachibana Y, Hu JW: Alternation of medullary dorsal horn neuronal
activity following inferior alveolar nerve transection in rats. J Neurophysiol
2001, 86:2868-2877.

Nomura H, Ogawa A, Tashiro A, Morimoto T, Hu JW, Iwata K: Induction of
Fos protein-like immunoreactivity in the trigeminal spinal nucleus
caudalis and upper cervical cord following noxious and non-noxious
mechanical stimulation of whisker pad of the rat with a inferior alveolar
nerve transection. Pain 2002, 95:225-238.

Takeda M, Tanimoto T, Kadoi J, Nasu M, Takahashi M, Kitagawa J,
Matsumoto S: Enhanced excitability of nociceptive trigeminal ganglion
neurons by satellite glial cytokine following peripheral inflammation.
Pain 2007, 29:155-166.

Takeda M, Takahashi M, Matsumoto S: Contribution of activated
interleukin recpotrs in trigeminal ganglion neurons to hyperalgesia via


http://www.ncbi.nlm.nih.gov/pubmed/20030627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20030627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20030627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20030627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20030627?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10444667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10444667?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12399117?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16387448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16387448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16387448?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18331780?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20796319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20796319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20796319?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18474382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18474382?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17184741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17184741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17184741?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19422886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19422886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19422886?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15363876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15363876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15363876?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17040479?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/20122287?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2837713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2837713?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12435468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12435468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12435468?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1982347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/1982347?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11315551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11315551?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2283540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2283540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2283540?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11160499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11160499?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12424291?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12392056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12392056?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12237189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12237189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12237189?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11496926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11496926?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10682901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10682901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10682901?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17554832?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2804632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/2804632?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18342570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18342570?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14622149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/14622149?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19139872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19139872?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10482744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10482744?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15625101?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15985331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15985331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15985331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15985331?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11731543?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11839422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11839422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11839422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11839422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11839422?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18440198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/18440198?dopt=Abstract

Takeda et al. Molecular Pain 2011, 7:5 Page 8 of 8
http://www.molecularpain.com/content/7/1/5

satellite glial interlekin-1( paracraine mechanism. Brain Behav Immun
2008, 22:1016-1023.

57. Takeda M, Takahashi M, Matsumoto S: Contribution of activation of
satellite glia in the sensory ganglia to pathological pain. Neurosci
Biobehav Rev 2009, 33:784-792.

58. Quartu M, Sera MP, Bachis A, Lai ML, Ambu R, Del Fiacco M: Glial cell line-
derived neurotrophic factor-like immunoreactivity in human trigeminal
ganglion and nucleus. Brain Res 1999, 847:196-202.

59. Quartu M, Serra MP, Mascia F, Boi M, Lai ML, Spano A, Del Fiacco M: GDNF
family ligand receptor components Ret and GFR alpha-1 in the human
trigeminal ganglion and sensory nuclei. Brain Res Bull 2006, 69:393-403.

60. Takeda M, Kitagawa J, Nasu M, Takahashi M, Iwata K, Matsumoto S: Glial
cell line-derived neurotrophic factor acutely modulates the excitability
of rat small diameter trigeminal ganglion neurons innervating facial
skin. Brain Behav Immun 2010, 24:72-82.

61. Hoke A, Cheng C, Zochodne DW: Expression of glial cell line-derived
neurotrophic factor family of growth factors in peripheral nerve injury
rats. Neuroreport 2000, 11:1651-1654.

62. Bennett DL, Bouucher TJ, Armanini MP, Poulsen KT, Michael GJ, Priestley JV,
Phillips HS, McMahon SB, Shelton DL: The glial cell line-derived
neurotrophic factor family receptor components are differentially
regulated within sensory neurons after nerve injury. J Neurosci 2000,
20:427-443.

63.  Murakoshi H, Trimmer JS: Idetification of Kv2.1 K* channel as a major
component of the delayed rectifier K* current in rat hippocampal
neurons. J Neurosci 1999, 19:1728-1735.

64. Malin SA, Nerbonne JM: Delayed rectifier K™ currents, IK are encoded by
Kv2 alpha-subunits and regulate tonic firing in mammalian sympathetic
neurons. J Neurosci 2002, 22:10094-10105.

65.  Rasband MN, Park EW, Vanderah TW, Lai J, Porreca F, Trimmer JS: Distinct
potassium channels on pain-sensing neurons. Proc Natl Acad Sci USA
2001, 98:13373-13378.

66. Mathie A, Woolton JRA, Watkins CS: Voltage-activated potassium channels
in mammalian neurons and their block by novel pharmacological
agents. Gen Pharmacol 1998, 30:13-14.

67. Winkleman DL, Beck CL, Ypey DL, O'Leary ME: Inhibition of the A-type K
channels of dorsal root ganglion neurons by long duration of anesthetic
butamben. J Pharmacol Exp Ther 2005, 314:1177-1186.

68. Takeda M, Tanimoto T, Nasu M, Matsumoto S: Temporomandibular joint
inflammation decreases the voltage-gated K* channel subtype Kv1.4-
immunoreactivity of in trigeminal ganglion neurons in rats. fur J Pain
2008, 12:189-195.

doi:10.1186/1744-8069-7-5

Cite this article as: Takeda et al.: Potassium channels as a potential
therapeutic target for trigeminal neuropathic and inflammatory pain.
Molecular Pain 2011 75.

Submit your next manuscript to BioMed Central
and take full advantage of:

e Convenient online submission

e Thorough peer review

¢ No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

¢ Research which is freely available for redistribution

Submit your manuscript at ( -
www.biomedcentral.com/submit BiolVed Central



http://www.ncbi.nlm.nih.gov/pubmed/18440198?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19167424?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10575088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10575088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10575088?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16624671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16624671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/16624671?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19679180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19679180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19679180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/19679180?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10852218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10852218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10852218?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10627618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10627618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10627618?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/10024359?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12451110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12451110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12451110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/12451110?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11698689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/11698689?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9457476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9457476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/9457476?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/15923341?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584507?dopt=Abstract
http://www.ncbi.nlm.nih.gov/pubmed/17584507?dopt=Abstract

	Abstract
	Introduction
	Pathological pain models
	Changes in potassium currents and trigeminal neuropathic and inflammatory pain
	CCI-model
	Axotomy-spared neuron model
	Axotomy-regenerated neuron model
	Inflammation-model

	Potassium channels as a potential target for trigeminal neuropathic/inflammatory pain

	Conclusion
	Author details
	Authors' contributions
	Competing interests
	References

