Skip to main content
Figure 2 | Molecular Pain

Figure 2

From: Different forms of glycine- and GABAA-receptor mediated inhibitory synaptic transmission in mouse superficial and deep dorsal horn neurons

Figure 2

GlyR-mediated synaptic transmission in the SDH and DDH. A representative traces showing continuous recordings of GlyR-mediated mIPSCs (holding potential - 70 mV) in the presence of TTX (1 μm), CNQX (10 μm), and bicuculline (10 μm) from an SDH (red traces) and a DDH neuron (blue traces). Note mIPSC frequency is considerably higher in DDH neurons. B individual mIPSCs from traces in A (aligned at rise onset) showing the amplitude variability in GlyR-mediated mIPSCs recorded in both the SDH (red traces) and DDH (blue traces). Inset shows averaged mIPSCs normalised to the same amplitude (same neurons in A). Note the slower decay time of GlyR-mediated mIPSCs in SDH neurons. C overlayed histograms comparing amplitude distributions of GlyR-mediated mIPSCs in SDH (red) and DDH (blue) neurons (n = 25 neurons for SDH and DDH). In the SDH distribution, only 10% of mIPSCs have amplitudes greater than 50 pA, whereas 35% of the mIPSCs in the DDH distribution are greater than 50 pA. Inset shows data presented as cumulative probability plots. D plots comparing group data for GlyR-mediated mIPSC decay time-constant and frequency in SDH and DDH neurons. GlyR-mediated mIPSC decay time-constants were slower and mIPSC frequency was lower in SDH neurons.

Back to article page