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Abstract
The extracellular signal-regulated kinase (Erk) activity contributes to synaptic plasticity, a key
mechanism for learning, memory and chronic pain. Although the anterior cingulate cortex (ACC)
has been reported as an important cortical region for neuronal mechanisms underlying the
induction and expression of chronic pain, it has yet to be investigated whether or not Erk activity
in the ACC may be affected by peripheral injury or in chronic pain state. In the present study, we
use adult rat animal models of inflammatory and neuropathic pain and demonstrate that Erk
signaling pathway in the ACC is potently activated after peripheral tissue or nerve injury.
Furthermore, we demonstrate that mechanical allodynia significantly activated Erk activity at
synaptic sites at two weeks after the injury. We propose a synaptic model for explaining the roles
of Erk activity during different phases of chronic pain. Our findings suggest that cortical activation
of Erk may contribute to both induction and expression of chronic pain.

Short report
Recent studies have consistently indicated that Erk signal-
ing cascade plays an important role in activity-dependent
plasticity in the central nervous system (CNS) and may
contribute to the molecular mechanisms underlying
learning, memory and persistent pain. Previous studies
have found that tissue and nerve injury transiently acti-
vates Erk pathway in the spinal dorsal horn neurons, and
the activation of Erk is required for the central sensitiza-
tion during the development of hyperalgesia and allody-
nia [1-5]. In supraspinal structures, it has been reported
that activation of Erk in the amygdala is induced by
peripheral injury [6], and the increased Erk activity in this
region is acquired for behavioral sensitization to mechan-
ical stimulation after injury [7]. The ACC has been found
to be an important site for cortical regulation of nocicep-
tion and persistent pain after amputation [8-11]. Long-

term potentiation (LTP) in ACC neurons is the likely syn-
aptic model for persistent pain [12-16]. Recent studies
using pharmacological inhibitors has showed that the
activity of Erk contributes to synaptic potentiation caused
by LTP induction protocols [17], and that such inhibitors
are relatively selective and do not affect basic synaptic
transmission. However, little is known about the possible
involvement of Erk in the ACC after tissue or nerve injury
in adult animals.

To determine the possible activation of Erk in the ACC
during acute or chronic pain after peripheral injury, we
carried out experiments in adult male rats using two dif-
ferent injury models. Activation of Erk was monitored by
immunostaining with an antibody that detects the acti-
vated form of Erk (phosphorylated on both thr-202 and
Try-204, P-Erk). For the first pain model, 5% formalin was
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injected into the dorsal part of the unilateral hindpaw as
previously reported [18]. At three different time points
between 15 min to 90 min after the formalin injection,
rats were killed by rapidly anesthetized and perfused
through the heart with fixative. We found that formalin
injection induced a rapid increase in P-Erk expression in
some of layer II neurons in the bilateral ACC at 15 min
after tissue injury (Fig. 1A). The expression of P-Erk was
mainly restricted in the cell bodies but weak in their den-
drites (Fig. 1A). The activated Erk level in the ACC was
reduced at 45 min and declined at 90 min after formalin
injection. There was no obvious Erk activation in the deep
layer neurons in the ACC. Thus, the P-Erk expression pat-
tern in the region is different from that of immediate early
genes, such as c-Fos, which is widely expressed in ACC
neurons located in all layers after formalin injection as
previously reported [18]. These findings suggest that Erk
activation caused by tissue injury is likely occurring at sub-
population of the layer II neurons. It has been known that
neurons in the Layer II/III receive ascending noxious
inputs from the thalamus and communicate with other
cortical areas [19]. Thus, the Erk activation in ACC neu-
rons may play a role in Erk-dependent neuronal plasticity
in the ACC during the induction or development of
inflammatory pain.

Phantom pain is chronic pain occurring after losing or
amputation of a part of limb or organ. Although the ani-
mal model for studying central mechanisms of phantom
pain is rare, investigations of changes in central synapses
in the ACC after amputation in animals may reveal molec-
ular mechanism for plastic changes that are caused by
amputation. We have previously demonstrated that
amputation of a single digit resulted in a loss of synaptic
cortical depression [20,9,11] in brain slice preparations,
and caused LTP of synaptic responses in the ACC to
peripheral sensory stimulation or local synaptic stimula-
tion [11,21], demonstrating that central plasticity takes
place in the synapses of ACC neurons after the amputa-
tion. Because the Erk activity is shown to be required for
cingulate LTP [17], we decided to test if tissue and nerve
injury after the amputation would activate the Erk path-
way in the ACC neurons. As shown in Fig. 1B, we found
that larger number of the layer II pyramidal-like neurons
in the ACC expressed P-Erk immunoreactivity at two
weeks after single digit amputation. Activation of Erk
activity in the ACC is bilateral. Interestingly, the P-Erk
expression in these neurons was present in cytoplasm of
both cell body and dendrites (Fig. 1B). There was some P-
Erk in neurons of the deeper layers, suggesting the possi-
ble interaction between neurons in different layers of the
ACC. This data further indicates that there is a prolonged
activation of Erk in the layer II neurons after amputation.

In addition to spontaneous pain and hyperalgesia, allody-
nia is the most common feature of pathological pain and
is a painful response to a usually innocuous stimulus.
Touch-evoked allodynia occurs often in patients with
phantom pain after amputation. Most of previous studies
focus on the activation of Erk at early time points after the
injury, there is few studies for the possible involvement of
Erk activity during allodynic stimulation. Therefore, we
applied non-noxious mechanical stimuli (brushing) on
amputated hindpaw in rats to identify if Erk signaling in
the ACC may be activated. To our surprise, there was sig-
nificantly enhanced activation of Erk in the ACC neurons
after brushing the amputated hindpaw. In addition to the
increased number of P-Erk labeled neurons in the layer II,
we also observed that there was stronger expression of P-
Erk in the dendrites distributed in the layer I (Fig. 1C), as
compared with that in rats with amputation alone. Most
of P-Erk labeled pyramidal neurons in the layer II exhib-
ited strong immunoreactivity in the main and distal apical
dendrites, which branched upward to the superficial layer
I of the ACC (see Fig. 1C). We also observed that there
were many P-Erk labeled granular-like neurons in the
deeper layers of the ACC. Again, we found similar activa-
tion pattern at bilateral sides of the ACC. By contrast, non-
noxious brushing alone in normal rats did not cause any
detectable Erk activation in the ACC. The enhanced
expression of P-Erk in ACC neurons and their dendrites
after brushing normal skin of amputated hindpaw sug-
gests that Erk activity are recruited at distal synapses in
ACC neurons. It may contribute to local synaptic plasticity
and/or neuronal modulation during allodynia after
amputation.

Our results provide the first evidence for the activation of
Erk activity in the ACC neurons after tissue or nerve injury.
More importantly, we show that the enhanced activation
of Erk activity in synaptic sites in the layer II/III neurons
during the touch-evoked allodynia after the amputation;
suggesting the likely contribution of Erk activity to the
central mechanisms underlying pathological pain. Differ-
ent activation pattern of Erk in the inflammatory and
amputation pain model suggest that Erk may contribute
to different types of chronic pain in different manners.
This is further supported by our observation of distal den-
drite Erk activation during mechanical allodynia. Fig. 2 is
a proposed synaptic model showing different subcellular
location of P-Erk during two different phases of chronic
pain: induction and expression of mechanical allodynia.
The expression of p-Erk in the cytoplasm near the nucleus
during the induction of chronic pain may play roles in the
activation of a series of plasticity-related immediate early
genes such as cAMP response element binding protein
(CREB) [16]. In this case, P-Erk may trigger a series of plas-
ticity-related signaling molecules that are important for
inducing plastic changes in the ACC. In the expression
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Enhanced Erk activation in the ACC after tissue and nerve injuryFigure 1
Enhanced Erk activation in the ACC after tissue and nerve injury. A. Immunohistochemical staining for phosphoryla-
tion of Erk illustrated time course-dependent activation of Erk in layer II neurons of the contralateral ACC after unilateral 
hindpaw injection of formalin (5%, 50 μl, n = 4–5 rats for each time point). B. The P-Erk expression in the layer II ACC neu-
rons and their main apical dendrites (arrows) was increased at 2 weeks after the amputation of the unilateral hindpaw third 
digit (n = 5), compared to sham animals (n = 3). C. Mechanical stimulation by brushing hindpaw of digit amputation induced P-
Erk expression in more number of layer II ACC neurons and the more distinctive apical dendrites at 2 weeks after the ampu-
tation (n = 5), compared to that in rats with amputation alone. There was not P-Erk activation in the ACC in normal animals 
after the brushing (n = 3). Left and middle columns: low power of the coronal ACC sections. Scale bar= 50 μm; Right column: 
enlarged layer II regions corresponding to the small rectangle areas in the middle column, respectively. Scale bar = 25 μm.



Molecular Pain 2008, 4:28 http://www.molecularpain.com/content/4/1/28

Page 4 of 6
(page number not for citation purposes)

A model for activation of Erk in the induction and expression phases of chronic painFigure 2
A model for activation of Erk in the induction and expression phases of chronic pain. A. In the induction phase of 
chronic pain, peripheral injury triggers glutamate release in the ACC synapses. Activation of NMDA receptors leads to an 
increase in postsynaptic Ca2+, and Ca2+ binds to CaM and leads to activation of Ca2+-stimulated AC1. cAMP, a key second mes-
senger, leads to activation of Erk, and PKA-dependent CREB. New protein synthesis is likely triggered as a consequence of 
CREB activation. B. In the expression phase of chronic pain (allodynia), a non-noxious stimuli triggers glutamate release in sen-
sitized ACC synapses. Due to synaptic enhancement caused during the induction phase [13], glutamate triggers greater postsy-
naptic activation because AMPA and NMDA receptor mediated responses are likely enhanced after the injury [13,23]. Such 
postsynaptic sensitization makes activation of Erk at distal synaptic sites possible. Activated Erk at synaptic sites may contribute 
to AMPA receptor modulation, ion channel modulation and other synaptic modifications.
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phase of chronic pain (or mechanical allodynia here), in
part due to prolonged plastic changes triggered in the
induction phase, a normally non-noxious stimulus (i.e.,
non-noxious brushing of the skin) triggers a wide spread
activation of Erk in ACC neurons. In addition to the cyto-
plasm, activation of Erk at synaptic sites is found. These
activated Erk may contribute to rapid synaptic potentia-
tion [17], the regulation of neuronal excitability [5], and
other local modulations of synaptic transmission and
neuronal excitability (see Fig. 2).

Although we cannot distinguish the contribution of Erk
activities to pain perception, pain-related emotional
responses or pain-related memory in the present study, we
believe that such increased Erk activity may contribute to
long-term plastic changes in the ACC caused by the injury
or amputation. In fact, in brain slices, we demonstrate
that Erk activity is required for synaptic potentiation in the
ACC excitatory synapses [17]. One major function of Erk
may contribute to cortical plasticity during the expression
of behavioral allodynia, and serve as one of key signaling
protein kinase in chronic pain [16].

Materials and methods
Animals
Adult male Sprague Dawley rats weighing 250–300 gram
were used. Animals were kept in cages (2 animals per
cage) at an ambient temperature of 20–25°C under a 12
hr light/dark cycle and had free access to food and water.
We adhered to the ethical guidelines for investigation of
experimental pain in conscious animals [22].

Animal models of chronic pain
For inflammatory pain model, fifty microliters of a 5%
formalin solution (dissolved in saline) were injected into
the plantar surface of the left hindpaw. For rat model of
amputation, under brief anesthesia with halothane, the
third digit of the left hindpaw was amputated. In some
cases, at 2 week after the amputation, a brush stimulus
(with number 4 camel's hair artist's brush) was applied for
3 min by stroking vertically at the dorsal part of ampu-
tated hindpaw. At 15 min, 45 min, 90 min and 120 min
after formalin injection, 2 week after the amputation, or
15 min after brush stimulus, rats were deeply anesthetized
with halothane and perfused transcardially with 100 ml of
saline, followed by 500 ml of cold 0.1 M phosphate buffer
containing 4% paraformaldehyde. The brain was
removed, post-fixed for 4 hr, and then cryoprotected.
Coronal sections (25 μm) through the ACC were cut using
a cryostat. Sham groups without formalin injection or
amputation were performed as controls. Sections from
sham and experimental animals were processed simulta-
neously for immunostaining.

Immunohistochemistry
Immunostaining was performed using free-floating sec-
tions [4]. Briefly, the ACC sections were first treated with
0.75% Triton X-100 and 1% H2O2 in PBS for 1 hr, and
then processed for 30 min in 3% normal goat serum, fol-
lowed by incubation with anti-phospho-p44/42 Erk
(Thr202/Tyr204) monoclonal antibody (diluted 1:500;
Cell Signaling, Beverly, MA) overnight at room tempera-
ture. Secondary reactions with biotinylated goat anti-
mouse immunoglobulin (1:400; Vector Laboratories, Bur-
lingame, CA) for 1 h were followed by avidin-biotin-per-
oxidase complexes (1:100; Vector Laboratories) for 1 h. A
nickel-intensified diaminobenzidine with glucose oxidase
was used as the final chromogen. Sections were washed
several times, mounted on gelatinized slides, dehydrated
through a series of ethanol solutions, cleared in xylene,
and covered with glass coverslips. Controls, performed by
replacing primary antibody with 1% NGS in the protocol,
exhibited no staining.
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