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Abstract
NMDA receptors are important elements in pain signaling in the spinal cord dorsal horn. They are
heterotetramers typically composed of two NR1 and two of four NR2 subunits: NR2A-2D. Mice
lacking specific NR2 subunits show deficits in pain transmission yet subunit location in the spinal
cord remains unclear. We have combined electrophysiological and pharmacological approaches to
investigate the composition of functional NMDA receptors expressed by lamina I, substance P
receptor-expressing (NK1R+) neurons, as well as NK1R- neurons. Under low Mg2+ conditions
(100 μM), the conductance of NMDA receptors at -90 mV (g(-90 mV)) with NR2A or NR2B
subunits (NR2A/B) is low compared to conductance measured at the membrane potential where
the inward current is maximal or maximal inward current (MIC) (ratio of ~0.07 calculated from
Kuner and Schoepfer, 1996). For NR2C or NR2D subunits (NR2C/D), the ratio is higher (ratio
~0.4). NK1R+ and NK1R- neurons express NMDA receptors that give ratios ~0.28 and 0.16,
respectively, suggesting both types of subunits are present in both populations of neurons, with
NK1R+ neurons expressing a higher percentage of NR2C/D type NMDA receptors. This was
confirmed using EAB318, an NR2A/B preferring antagonist, and UBP141, a mildly selective NR2C/
D antagonist to increase and decrease the g(-90 mV)/g(MIC) ratios in both subpopulations of
neurons.

Background
NMDA receptors in the spinal cord dorsal horn are key
elements in the initiation of changes in synaptic strength
[1] and pain hypersensitivity [2,3]. These receptors consist
of two obligatory NR1 subunits and two NR2 subunits, of
which there are four types encoded by distinct genes:
NR2A, NR2B, NR2C and NR2D [4]. The incorporation of
different NR2 subunits has a major impact on the func-
tional properties of the NMDA receptor, critically influ-
encing agonist and antagonist affinity, receptor
deactivation kinetics, channel conductance and interac-

tions with intracellular proteins [3]. Additionally, NMDA
receptors with NR2A or NR2B show higher Mg2+ sensitiv-
ity at negative membrane potentials than those with
NR2C or NR2D [5,6].

Involvement of NMDA receptors in dorsal horn function
has been demonstrated through experiments interfering
with expression of different NMDA receptor subunits.
Knockdown of the NR1 subunit of NMDA receptors to
eliminate functional NMDA receptors in the spinal cord
reduces hyperalgesia and allodynia in a number of animal
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models but does not alter acute pain responses [7-9].
NR2A knockout mice show some reduced forms of hyper-
sensitivities [10-12]. However, these NR2A knockouts dis-
play normal acute pain responses [12], formalin-induced
hyperalgesia [13] and nerve ligation or injury-induced
allodynia [14,15]. NR2B knockout mice do not survive
postnatally [16,17], therefore NR2B specific antagonists
have been used to study the role of this protein in pain
hypersensitivity. Intrathecal administration of NR2B
antagonists blocks or decreases PGE2 or NMDA induced
allodynia [11] as well as capsaicin-induced hyperalgesia
[18]. NR2D knockout mice fail to develop nerve ligation
[12], PGE2 [19] or PGF2alpha-induced allodynia [11,20].
Overall, these data suggest that different NR2 subunits are
involved in dorsal horn circuits important for the devel-
opment of hyperalgesia or allodynia but their specific
functions remain unresolved.

Lamina I of the spinal cord is a critical site for nociceptive
processing, receiving abundant monosynaptic input from
nociceptors. The main output neurons of lamina I, the
substance P receptor-expressing (NK1R+) projection neu-
rons, are essential in mediating pain hypersensitivity
[21,22]. NK1R+ neurons express NMDA receptors [23,24]
but little is known about the subtypes of NMDA receptors
they express.

In this paper, we have taken advantage of the different
magnesium sensitivities and pharmacology of NMDA
receptors with different NR2 subunit composition to
identify functionally expressed NMDA receptors on
NK1R+ and NK1R- dorsal horn neurons in lamina I.

Methods
Transverse slice preparation
Lumbar spinal cords were obtained from rats of postnatal
day 14 (P14) to P19. The animals were first anesthetized
with isoflurane and then decapitated. All experiments
were conducted with the approval of the Columbia Uni-
versity Institutional Animal Care and Use Committee and
in accord with the Guide for the Care and Use of Labora-
tory Animals. The spinal cords were excised and placed in
ice-cold oxygenated high Mg2+ Krebs solution (95% O2/
5% CO2 saturated Krebs solution, in mM: NaCl 125 or
sucrose 250, KCl 2.5, NaHCO3 26, NaH2PO4 1.25, glucose
25, MgCl2 6, CaCl2 1.5, pH 7.4) plus 1 mM kynurenic
acid. After removal of the dura mater and arachnoid mem-
branes, all ventral roots were cut close to the cord and the
spinal cord embedded in low melting agarose (Invitrogen
Life Technologies) for slicing. Transverse slices (350–450
μm) with attached dorsal roots were obtained using a
Leica VT1000S vibrating blade microtome. Slices were
then incubated in oxygenated high Mg2+Krebs solution
(no sucrose included) at 36°C for 1 hour before record-
ing.

Recording from pre-identified NK1R+ and NK1R- lamina I 
neurons
The labeling of NK1R+ dorsal horn neurons with fluores-
cent dye has been described elsewhere [25,26]. In brief,
spinal cord slices were incubated in high Mg2+ Krebs solu-
tion containing 20 – 40 nM tetramethylrhodamine-conju-
gated substance P (TMR-substance P) for 20 – 30 minutes
at room temperature following 1 hour of recovery at
36°C. After unbound substance P was washed away for at
least 20 minutes in an incubation chamber containing
oxygenated high Mg2+ Krebs solution, slices were trans-
ferred to a submersion style chamber for recording.
NK1R+ neurons were identified as expressing NK1R by
clear, intense labeling with TMR-substance P. NK1R- neu-
rons were chosen as lamina I neurons showing no evi-
dence of TMR-substance P staining.

Recording solutions
Intracellular solution used for most of these experiments
had the following composition (in mM): Cs-methylsul-
fonate 130, Na-methylsulfonate 10, EGTA 10, CaCl2 1,
HEPES 10, QX-314·Cl 5, Mg2+-ATP 2, pH adjusted to 7.2
with CsOH, osmolarity adjusted to 290 with sucrose. For
some experiments in which intracellular Ca2+ needed to
be strongly chelated, BAPTA intracellular solution was
used. It was composed of (in mM): Cs-methylsulfonate
50, Na-methylsulfonate 10, BAPTA·Cs 40, CaCl2 4,
HEPES 10, QX-314·Cl or QX-222·Cl 5, Mg2+-ATP 2,
TEA·Cl 10, pH adjusted to 7.2 with CsOH, osmolarity
about 310. Junction potentials were measured empirically
and corrected in the bath before GOhm seal formation for
each cell.

Modified Krebs solutions were used for the extracellular
bath. To prevent possible neurotoxicity associated with
Ca2+ influx through activated NMDA receptors, we
replaced 95–98% of the extracellular Ca2+ with 3 mM
Ba2+. The barium Krebs comprised: NaCl 125, KCl 2.5,
NaH2PO41.25, NaHCO3 26, glucose 25, MgCl2 0.1, CaCl2
0.04–0.1, BaCl2 3 and pH 7.4. TTX (0.5 μM), SR95531 (5–
10 μM) and strychnine (1 μM) were included in the extra-
cellular solutions to eliminate action potential generation
and involvement of inhibitory circuits.

Analysis of NMDA induced membrane currents
To obtain the current-voltage relationships of NMDA
receptor-mediated currents, NMDA (15 μM) was super-
fused onto pre-identified, lamina I neurons for 2–3 min-
utes following several minutes of baseline, whole-cell
recording. Triangle voltage ramp commands (the ramp up
and ramp down were 0.9 sec duration each) were applied
continuously at low frequency (0.05 Hz). Digital sam-
pling frequency was 10 KHz. NMDA applications were
repeated 2–3 times before NMDA co-application with
antagonists. The data for the first NMDA application were
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not included for analysis due to changing baseline condi-
tions. Current responses to triangle voltage ramps before
and after recovery from NMDA application were averaged
as a control current then subtracted from each triangle
ramp made during NMDA induced currents. The resulting
NMDA current ramps were plotted as a function of mem-
brane potential and further analyzed. To minimize noise
for measuring the following parameters, NMDA current
ramps were subjected to a rolling average procedure over
a 100 msec time frame.

For each voltage ramp during NMDA applications, the
membrane current at -90 mV (I(-90 mV)), the maximal
inward current (MIC), and the membrane potential for
the MIC (VMIC) were measured (Figure 1E). The current
measured at -90 mV holding potential was determined as
I(-90 mV). The MIC was initially determined as the most
negative current value in the rolling average. The VMIC
was then determined as the voltage corresponding to the
MIC. Because each ramp had an up and a down phase,
each parameter from a ramp current had a pair of values
and they were averaged for following analysis. The con-
ductance at -90 mV and MIC (g(-90 mV) and g(MIC)
respectively) as well as conductance ratio were then calcu-
lated based on the formulae:

g(-90 mV) = -I(-90 mV)/90 mV

g(MIC)= -MIC/VMIC

g(-90 mV)/g(MIC) = I(-90 mV)*VMIC/(90*MIC)

To compare NMDA receptor g(-90 mV)/g(MIC) ratios
under different pharmacological conditions, we averaged
three ratio values calculated for each NMDA application
near the peak NMDA response at -70 mV. The ratios under
different pharmacological conditions or represented by
different neuron populations were then compared.

Only cells starting with reversible NMDA induced mem-
brane currents, in which the difference between g(-90
mV)/g(MIC) ratios during wash-in and wash-out of
NMDA was less than 0.15, were included for analysis.
Cells with high membrane holding current (> -100 pA)
were discarded.

Materials
SR 95531 hydrobromide and QX-222·Cl were purchased
from Tocris Cookson (Bristol, UK). QX-314·Cl was pur-
chased from Sigma-Aldrich or Alomone labs (Jerusalem,
Israel). Low melting point agarose and TMR-substance P
were purchased from Invitrogen Corp. Some TMR-sub-
stance P was synthesized and purchased from AnaSpec,
Inc. Strychnine was obtained from Sigma-Aldrich.
EAB318 was provided by Wyeth Research. EAB318 has

IC50 of 20, 80 and 3500 nM for NMDA receptors with
NR2A, NR2B and NR2C respectively [27]. UBP141 was
synthesized as described [28]. The Ki of UBP141 for
NMDA receptors with NR2A – NR2D are 14, 19, 4 and 2.7
μM respectively [28].

Results
The I-V relationship of NMDA currents induced by 
superfusion of NMDA onto dorsal horn neurons
We investigated the total population of functional NMDA
receptors expressed by different classes of lamina I neu-
rons. NMDA was bath-applied onto spinal cord slices to
activate all functional NMDA receptors. To identify the
type of NMDA receptors expressed by pre-identified lam-
ina I neurons in the spinal cord dorsal horn, we took
advantage of the differential sensitivity to Mg2+ inherent
in NMDA receptors composed of different NR2 subunits.
NMDA receptors containing NR2A or NR2B subunits
show more negative slope conductance at negative mem-
brane potentials than those containing NR2C or NR2D
[6]. Because the measurable difference in Mg2+ sensitivity
is enhanced when extracellular Mg2+ concentration is low,
100 μM extracellular Mg2+ was used throughout these
experiments. SR95532 (10 μM), strychnine (1 μM) and
TTX (0.5–1 μ;M) were always included to eliminate the
inhibitory currents and action potential triggered
responses. Most of the Ca2+ in the Krebs was replaced with
Ba2+ to diminish evoked neurotransmitter release and
Ca2+ dependent currents in the cells.

NK1R+ and NK1R- dorsal horn neurons were visually
identified for whole-cell recording following incubation
of spinal cord slices in TMR-substance P [25,26] as shown
in Figure 1A and 1B, in which fluorescence and IR-DIC
images are shown respectively. Bath application of NMDA
(15 μM) to these neurons generated inward currents at a
holding potential of -70 mV as shown in Figure 1C. To
determine the voltage-dependent Mg2+ sensitivity of these
receptors, triangle voltage ramp commands from -100 mV
to + 50 mV and back to -100 mV were applied before, dur-
ing and after NMDA application at 0.05 Hz (Figure 1C
and 1D). After subtraction of control current, the resulting
ramps of NMDA receptor-mediated current were plotted
as a function of command voltage as shown in Figure 1E.
The voltage sensitivity of the NMDA current generated by
the ascending ramp command is similar to that generated
by the descending command (Figure 1E). In addition, the
current-voltage relationships of these NMDA induced cur-
rents had an average reversal potential of -2.0 ± 1.0 mV (n
= 15), close to the predicted NMDA receptor reversal
potential. The pair of NMDA current responses obtained
from each triangle voltage command were used to deter-
mine the current at -90 mV (I(-90 mV)), the maximal
inward current (MIC) and the membrane potential at
which MIC occurs (VMIC) as illustrated in Figure 1E (see
Page 3 of 11
(page number not for citation purposes)



Molecular Pain 2008, 4:44 http://www.molecularpain.com/content/4/1/44

Page 4 of 11
(page number not for citation purposes)

Parameters representing the voltage sensitivity of current flow through NMDA receptors were determined following NMDA application onto pre-identified dorsal horn neuronsFigure 1
Parameters representing the voltage sensitivity of current flow through NMDA receptors were determined 
following NMDA application onto pre-identified dorsal horn neurons. (A) NK1R+ neuron in the superficial dorsal 
horn was selectively labeled by TMR-substance P in a transverse slice (40 × objective). (B) IR-DIC image showing the NK1R+ 
neuron patched with a pipette. (C) A representative trace shows an NMDA-evoked inward current with 100 μM Mg2+ in the 
bath. (D) Current responses to voltage ramps are shown at expanded time base. (E) The voltage dependence of NMDA recep-
tor-mediated currents derived from NMDA evoked currents. (F) The same as in Figure E. The conductance of NMDA recep-
tors at -90 mV (g(-90 mV)) and MIC (g(MIC)) are illustrated.
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Methods). The membrane conductance at -90 mV (g(-90
mV)) and MIC (g(MIC)) were then calculated as shown in
Figure 1F.

The voltage sensitivity of NMDA currents depends pre-
dominantly on the voltage dependence of Mg2+ block of
the receptors [29,30]. The voltage sensitivity of the agonist
activated NMDA receptors in our experiments was quanti-
fied by dividing g(-90 mV) with g(MIC). The ratio was
then compared to the value derived from heterologous
expression data using specific NR1 and NR2 subunit com-
binations. From such data we calculated that NMDA
receptors containing NR1/NR2A or NR1/NR2B show g(-
90 mV)/g(MIC) ratios of about 0.07 and that their VMIC
is between -37 and -40 mV. Conversely, NMDA receptors
containing NR1/NR2C or NR1/NR2D have ratios around
0.39 and VMICs around -52 to -57 mV (extracted from

Kuner et al. [6]). Thus, for example, lower g(-90 mV)/
g(MIC) ratios near 0.07 and less negative VMICs indicate
expression of NR2A/B-containing NMDA receptors with
high Mg2+ sensitivity.

In Figure 2A, the control response of an NK1R+ neuron to
15 μM NMDA is shown. The ramp response recorded
when the agonist response to NMDA was at its greatest is
plotted at the bottom. The value of the g(-90 mV)/g(MIC)
ratio is 0.2. This is intermediate between the values for
receptors that include NR2A/B and NR2C/D subunits sug-
gesting that NMDA receptors with both types of NR2 sub-
units are present on this NK1R+ lamina I neuron. The
VMIC value (-48 mV in this example) is also intermediate
between the VMIC values of NR2A/B and NR2C/D subu-
nits, supporting the interpretation that the NMDA recep-

The voltage-dependence of NMDA receptor-mediated currents is a good indicator of NMDA receptor subtype expressionFigure 2
The voltage-dependence of NMDA receptor-mediated currents is a good indicator of NMDA receptor subtype 
expression.A-C show current responses to NMDA bath applied to the same NK1R+ neuron as in Figure 1. (A) NMDA-
evoked current response is the same as in Figure 1. (B) Co-application of NMDA and UBP141, an NR2C/D preferring antago-
nist, induced a smaller inward current. The I-V relationship shows a more pronounced negative slope conductance. (C) Co-
application of NMDA and EAB318, an NR2A/B preferring antagonist, induced NMDA receptor-mediated current with less neg-
ative slope conductance.
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tors expressed by this NK1R+ neuron are heterogeneous in
NR2 subtype expression.

Although most of the extracellular Ca2+ was replaced with
Ba2+ in these experiments, it was still possible that the
remaining bath Ca2+ or Ca2+ released from endoplasmic
reticulum (ER) was sufficient to trigger activation of other
currents, altering g(-90 mV)/g(MIC) ratio and VMIC val-
ues. In 9 of 15 cells recorded, intracellular solution con-
taining 40 mM BAPTA was used to fully suppress
accumulation of intracellular Ca2+ associated with NMDA
receptor activation. There was no significant difference
between the g(-90 mV)/g(MIC) values when recording
with BAPTA or EGTA intracellular solutions. Thus the data
from these two groups were pooled.

Pharmacological test of NR2 subunit confirms the 
expression of NR2A/B and NR2C/D type NMDA receptors
Next we used pharmacology to confirm that g(-90 mV)/
g(MIC) ratio and VMIC are good indicators of NMDA
receptor subtypes expressed by dorsal horn neurons.
EAB318 (100 – 200 nM) and UBP141 (20–30 μM) block
different NMDA receptor subtypes: UBP141 [28] is a
mildly selective NR2C/D preferring antagonist while
EAB318 is a NR2A/B selective blocker [27]. If both catego-
ries of NR2 subtypes are present, EAB318 should make the
NMDA evoked current more NR2C/D like and UBP141
should make the current more NR2A/B like. As predicted,
when NMDA was co-applied with UBP141, the current-
voltage relationship had a smaller g(-90 mV)/g(MIC)
ratio and less negative VMIC (Figure 2A and 2B). This sug-
gests that in the presence of UBP141, a higher proportion
of NR2A/B type NMDA receptors dominate the current.
When NMDA was co-applied with EAB318, the current
voltage relationship shifted to a larger g(-90 mV)/g(MIC)
ratio and a more negative VMIC, suggesting that a higher
proportion of NR2C/D type NMDA receptors were
revealed (Figure 2C).

To ensure that the shift of g(-90 mV)/g(MIC) ratio and
VMIC were genuinely associated with selective block of a
subpopulation of NMDA receptors and not simply caused
by errors associated with measuring smaller amplitude
NMDA evoked currents, the relationship between g(-90
mV)/g(MIC) and NMDA evoked current amplitude was
plotted as in Figure 3A. As the NMDA plus antagonists
washed onto the dorsal horn neuron under study, the
impact of the two antagonists on g(-90 mV)/g(MIC) were
different. UBP141 depressed the amplitude of NMDA
evoked currents and g(-90 mV)/g(MIC) values. EAB318
also depressed the amplitude of NMDA evoked current
but caused a large shift to higher g(-90 mV)/g(MIC) val-
ues. In the two situations, UBP141 and EAB318 depressed
the peak amplitudes of NMDA induced currents from -
306 ± 48 to -130 ± 222 pA (n = 15, p < 0.01 for paired t-

test) and -108 ± 16 pA (n = 15, p < 0.01 for paired t-test)
respectively. Figure 3B shows the individual and mean g(-
90 mV)/g(MIC) ratios determined when NMDA evoked
currents were maximal under different drug conditions.
UBP141 significantly decreased the g(-90 mV)/g(MIC)
ratio from 0.23 ± 0.03 to 0.15 ± 0.01 (n = 15, p < 0.01 for
paired t-test) while EAB318 significantly increased the
ratio from 0.23 ± 0.03 to 0.36 ± 0.05 (n = 15, p < 0.01 for
paired t-test) (see Methods). The upper and lower broken
horizontal lines represent the g(-90 mV)/g(MIC) for pure
NR2A/B and NR2C/D-containing NMDA receptors
respectively as calculated using the data of Kuner and Sch-
oepfer [6]. Comparing our data to these benchmarks
shows that the two antagonists are pushing the g(-90
mV)/g(MIC) values in the directions predicted from het-
erologous expression data, assuming both types of subu-
nits are present in the neuron tested.

We also analyzed VMICs under different drug conditions.
Figure 3C, calculated from the same data as Figure 3A,
shows the action of the two antagonists on VMIC. As
expected, UBP141 caused the VMIC to become somewhat
more positive or more NR2A/B like, while EAB318 caused
the VMIC to become more negative or more NR2C/D like.
Figure 3D is the summary showing that UBP141 signifi-
cantly shifted the mean VMIC, measured when the cur-
rents evoked by NMDA were maximal (see Methods),
from -50 ± 2 mV to -45 ± 2 mV (n = 15, p < 0.01 for paired
t-test) while EAB318 significantly changed the mean
VMIC to -53 ± 2 mV (n = 15, p < 0.05 for paired t-test).

To rule out the possibility that the sequence of antagonist
co-application with NMDA may have some effects on the
g(-90 mV)/g(MIC) ratio, we grouped the experiments
according to the order of drug application. In 9 of 15 cells
tested, UBP141 was co-applied with NMDA before
EAB318 co-application with NMDA. In 6 of 15 cells
tested, UBP141 was co-applied after EAB318. UBP141 sig-
nificantly decreased the g(-90 mV)/g(MIC) from 0.23 ±
0.04 to 0.13 ± 0.02 (n = 9, p < 0.01 for paired t-test) and
EAB318 significantly increased the g(-90 mV)/g(MIC)
from 0.23 ± 0.04 to 0.37 ± 0.07 (n = 9, p < 0.01 for paired
t-test) when UBP141 was applied first (Figure 3E left side).
Similarly, EAB318 significantly increased the g(-90 mV)/
g(MIC) from 0.23 ± 0.04 to 0.33 ± 0.06 (n = 6, p < 0.05
for paired t-test) and UBP141 significantly decreased the
g(-90 mV)/g(MIC) from 0.23 ± 0.04 to 0.17 ± 0.02 (n = 6,
p < 0.05 for paired t-test) when EAB318 was applied ear-
lier (Figure 3E right side).

Comparison of NMDA receptor types between NK1R+ 
and NK1R- neurons
Having verified that these two approaches, Mg2+ sensitiv-
ity and pharmacological blockade, allowed us to distin-
guish different NMDA receptor subtypes, we asked if
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The NMDA g(-90 mV)/g(MIC) ratio is not a function of the amplitude of NMDA-evoked membrane currentFigure 3
The NMDA g(-90 mV)/g(MIC) ratio is not a function of the amplitude of NMDA-evoked membrane current. 
(A) The g(-90 mV)/g(MIC) ratio was calculated for each test ramp throughout NMDA applications in the absence and presence 
of antagonists and plotted as a function of NMDA-evoked current amplitude. (B) Summary of the antagonist effects on the g(-
90 mV)/g(MIC) ratio. (C) The VMIC was calculated for each test ramp throughout NMDA applications in the absence and 
presence of antagonists and plotted as a function of NMDA-evoked current amplitude for the same data as (A). (D) Summary 
of the antagonist effects on the VMIC (n = 15). (E) The same data as in (B) but grouped according to the sequences of drug 
application.
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NK1+ and NK1- neurons differed in the proportions of
NR2A/B and NR2C/D containing receptors that they
expressed. Indeed, although co-application of NMDA
with either UBP141 or EAB318 significantly changed the
g(-90 mV)/g(MIC) ratios, the ratio changes were not the
same for all neurons tested. Figure 4A1 shows the
UBP141-induced change in the g(-90 mV)/g(MIC) ratio
in individual lamina I neurons pre-identified as either
NK1R+ or NK1R- neurons. The g(-90 mV)/g(MIC) ratios
of most neurons showed high sensitivity to UBP141, sug-
gesting that most dorsal horn neurons express some
NMDA receptors that include NR2C/D subunits. On aver-

age, NK1R+ neurons had a significantly higher g(-90 mV)/
g(MIC) ratio than NK1R- neurons (0.26 ± 0.03, n = 11 v.s.
0.16 ± 0.02, n = 4, p < 0.05 for unpaired t-test), indicating
that in these neurons, a higher percentage of NMDA
receptors include NR2C/D subunits than in NK1R- neu-
rons (Figure 4A2).

To confirm this observation, we also observed the effect of
EAB318 on the g(-90 mV)/g(MIC) ratio of individual neu-
rons in Figure 4B1. EAB318 increased the g(-90 mV)/
g(MIC) ratio in most, but not all dorsal horn neurons
tested, again suggesting that most of them expressed

NK1R+ neurons express higher proportion of NMDA receptors with NR2C/D subunits than do NK1R- neuronsFigure 4
NK1R+ neurons express higher proportion of NMDA receptors with NR2C/D subunits than do NK1R- neu-
rons. (A1) Individual NK1R+ and NK1R- neurons showed different degree of g(-90 mV)/g(MIC) ratio decrease following 
exposure to UBP141. (A2) Overall, NK1R+ neurons show significantly higher g(-90 mV)/g(MIC) ratio than NK1R- neurons (p 
< 0.05). (B1) Individual NK1R+ and NK1R- neuron showed increased g(-90 mV)/g(MIC) ratio when NMDA was applied in the 
presence of EAB318. (B2) In summary, EAB318 significantly increased g(-90 mV)/g(MIC) ratios in both NK1R+ and NK1R- 
lamina I neurons.
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NMDA receptors with both high and low Mg2+ sensitivity,
consistent with the data of UBP141. On average, EAB318
caused the g(-90 mV)/g(MIC) ratio measured from
NK1R+ neurons to become more NR2C/D like than from
NK1R- neurons (Figure 4B2), consistent with the interpre-
tation that NK1R+ neurons express a higher percentage of
NMDA receptors with NR2C/D subunits.

Discussion
We have identified NMDA receptor subtypes expressed by
two populations of dorsal horn neurons; NK1R+ and
NK1R- lamina I neurons. Based on our experiments, both
highly Mg2+ sensitive (NR2A/B) and poorly Mg2+ sensitive
(NR2C/D) NMDA receptors are expressed by NK1R+ neu-
rons. NR2C/D subunits are less strongly expressed by
NK1R- lamina I neurons and therefore the NR2A/B recep-
tor subtypes dominate more strongly there.

Ratio assay confirmed by pharmacology
The main approach for identification of NR2 subunit
expression by different neurons in our study was to estab-
lish and apply a ratio assay for NMDA receptor-mediated
currents recorded in 100 μM Mg2+. After identifying con-
ditions to minimize the change of the g(-90 mV)/g(MIC)
ratio during activation of NMDA receptors, including
recording in the presence of Ba2+ and using low concentra-
tions of agonist, it was possible to repeatedly measure the
g(-90 mV)/g(MIC) throughout the duration of NMDA
application with minimal variation in the ratio in many of
the neurons tested. The ratio values observed, particularly
in NK1R+ neurons, indicated that functional receptors
composed of NR2A/B and NR2C/D subunits are present.
The reversible shift of the ratios to larger values in the
presence of the NR2A/B antagonist, EAB318, and to
smaller values in the presence of the NR2C/D preferring
antagonist, UBP141, confirm this interpretation. In addi-
tion, the action of these drugs in shifting the measured g(-
90 mV)/g(MIC) ratio in the predicted direction strongly
supports the use of this ratio assay to identify natively
expressed NR2 subunits.

NR2A/B and NR2C/D subunits expressed by 
subpopulations of lamina I neurons
While published evidence suggests expression of both
NR2A/B and NR2C/D subunit types in the dorsal horn
generally, our data, collected on subpopulations of lam-
ina I neurons, show cell specific differences. Previous
reports indicate that NMDA receptors with NR2A and
NR2B subunits are expressed in superficial dorsal horn
based on in situ hybridization [31-33], single cell PCR [34]
and immunostaining [14,35,36] studies. Our observa-
tions show strong evidence of NR2A and/or NR2B expres-
sion in both NK1R+ and NK1R- lamina I neurons. Earlier
studies suggest that NR2D mRNA is expressed by many
and NR2C mRNA by few dorsal horn neurons [34]. In

addition, more NR2D mRNA is expressed in adult dorsal
horn and embryonic spinal cord than NR2C mRNA
[5,37,38]. Further support for the presence of NR2D is
that NMDA receptors with NR2D-like single channel con-
ductance have been reported for lamina II neurons in rat
dorsal horn [39,40]. Based on our experiments, we have
found that NK1R+ neurons express NR2C/D subunits
more strongly than the NK1R- neurons. While it remains
uncertain which NMDA receptors with low Mg2+ sensitiv-
ity are expressed by these lamina I neurons, NR2D is the
best candidate.

NK1R+ lamina I neurons represent a comparatively uni-
form population of neurons that are predominantly pro-
jection neurons [21]. The NK1R- neuron population is
heterogeneous, including inhibitory and excitatory
interneurons as well as a small population of NK1R- pro-
jection neurons [41]. Within the NK1R- population of
neurons, some of the variability of NR2 subunit identity
may represent different receptor configurations on differ-
ent subpopulations of dorsal horn neurons.

At the whole cell level, particularly for NK1R+ neurons,
we have evidence that NMDA receptors with NR2C/D
subunits are present. NMDA receptors with these less
Mg2+ sensitive NR2 subunits could be expressed at syn-
apses, extrasynaptically or both. Momiyama (2000) has
suggested an extrasynaptic localization of NR2D contain-
ing NMDA receptors by lamina II neurons in the dorsal
horn. Because of their higher binding affinity with gluta-
mate, these extrasynaptic receptors may be more sensitive
to ambient glutamate levels in the extracellular space that
could accumulate due to glial release [42,43], spill over
associated with high amounts of activity, and to injury
[44]. Activation of these receptors would be expected to
have a potent impact on neuronal cell function due to
their lowered Mg2+ sensitivity, prolonged time over which
they open following glutamate binding, and lack of
desensitization [5,6,45].

Other factors that could influence NMDA receptor 
conductance ratio
One concern with our approach to NR2 subunit identifi-
cation is the possibility that changes in membrane cur-
rents secondary to NMDA receptor activation will alter the
g(-90 mV)/g(MIC). It is because of this concern that we
have recorded in low Ca2+ solution with added Ba2+ and
limited our analysis to those neurons showing no change
in g(-90 mV)/g(MIC) while NMDA washes on and off the
spinal cord slices. Even more importantly, we have used
pharmacological tools as an independent test of subunit
composition under these carefully controlled drug appli-
cation conditions. In some of the neurons excluded from
these studies, NMDA-induced currents showed strongly
increased g(-90 mV)/g(MIC) ratios during wash-out of
Page 9 of 11
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NMDA (data not shown). The underlying mechanism for
this is not clear. For the data that met the criteria for our
study, we have confirmed identification of subunit com-
position by the use of NMDA receptor specific com-
pounds to alter conductance ratio in predictable ways. The
opposing effects of EAB318 and UBP141 on g(-90 mV)/
g(MIC) supports our interpretation of conductance ratio
in terms of subunit composition.

Significance
We have taken advantage of the Mg2+ sensitivity of NMDA
receptors to identify NMDA receptors of different NR2
subunits in identified subpopulations of lamina I neuorns
and confirmed this with pharmacology. We show that
individual neurons express NMDA receptors with differ-
ent NR2 subunits at different ratios. When comparing
identified populations of lamina I neurons, NK1R+ neu-
rons express a higher mean ratio of NR2C/D type NMDA
receptors compared with NK1R- neurons. NR2D has been
suggested to have a role in the development of allodynia
or hyperalgesia in several different pain models [12] and
lamina I, NK1R+ neurons are importantly involved in the
expression of allodynia [46]. In this context, it is possible
that these receptors may contribute to development of
NR2D-dependent allodynia.
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