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Abstract

Background: Migraine and other headache disorders affect a large percentage of the population and cause
debilitating pain. Activation and sensitization of the trigeminal primary afferent neurons innervating the dura and
cerebral vessels is a crucial step in the “headache circuit”. Many dural afferent neurons respond to algesic and
inflammatory agents. Given the clear role of the transient receptor potential (TRP) family of channels in both
sensing chemical stimulants and mediating inflammatory pain, we investigated the expression of TRP channels in
dural afferent neurons.

Methods: We used two fluorescent tracers to retrogradely label dural afferent neurons in adult mice and quantified
the abundance of peptidergic and non-peptidergic neuron populations using calcitonin gene-related peptide
immunoreactivity (CGRP-ir) and isolectin B4 (IB4) binding as markers, respectively. Using immunohistochemistry, we
compared the expression of TRPV1 and TRPA1 channels in dural afferent neurons with the expression in total
trigeminal ganglion (TG) neurons. To examine the distribution of TRPM8 channels, we labeled dural afferent
neurons in mice expressing farnesylated enhanced green fluorescent protein (EGFPf) from a TRPM8 locus. We used
nearest-neighbor measurement to predict the spatial association between dural afferent neurons and neurons
expressing TRPAT or TRPM8 channels in the TG.

Results and conclusions: We report that the size of dural afferent neurons is significantly larger than that of total
TG neurons and facial skin afferents. Approximately 40% of dural afferent neurons exhibit IB4 binding. Surprisingly,
the percentage of dural afferent neurons containing CGRP-ir is significantly lower than those of total TG neurons
and facial skin afferents. Both TRPV1 and TRPA1 channels are expressed in dural afferent neurons. Furthermore,
nearest-neighbor measurement indicates that TRPAT-expressing neurons are clustered around a subset of dural
afferent neurons. Interestingly, TRPM8-expressing neurons are virtually absent in the dural afferent population, nor
do these neurons cluster around dural afferent neurons. Taken together, our results suggest that TRPV1 and TRPAT
but not TRPM8 channels likely contribute to the excitation of dural afferent neurons and the subsequent activation
of the headache circuit. These results provide an anatomical basis for understanding further the functional
significance of TRP channels in headache pathophysiology.
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Background

Migraine and other primary headache disorders affect a
large proportion of the general population and often
cause debilitating pain. A crucial step in the pathogen-
esis of a headache attack is the activation and
sensitization of primary afferent neurons (PANSs) in the
trigeminovascular system [1-3]. These neurons are pseu-
dounipolar cells, with somata localized in the trigeminal
ganglion (TG) and giving rise to one fiber from which
both the central and peripheral projections derive. The
peripheral fibers innervate the dura mater and cerebral
blood vessels, and the central fibers project to the upper
cervical and medullary dorsal horn. Nociceptive signals
originate from the activation of various chemo- and
mechano-sensors at the peripheral terminals of PANS.
Subsequently, the afferent activity reaches the central
terminals of PANs and activates second-order neurons
in the cervical/medullary dorsal horn, from which the
signals are conveyed to the thalamus and eventually
reach the cortex, where the perception of headache is
formed. Understanding the expression pattern of
chemo-sensing molecules in the PANs of the headache
circuit will add to our understanding of headache patho-
physiology and has the potential to facilitate the devel-
opment of new therapeutics.

Transient receptor potential (TRP) channels are a
large family of non-selective cation channels. Several
TRP channel family members, including TRP cation
channel subfamily V member 1 (TRPV1), subfamily A
member 1 (TRPA1) and TRP channel melastatin 8
(TRPMBS), are expressed in distinct populations of PANs
and are activated in response to both temperature
changes and a broad spectrum of endogenous and ex-
ogenous chemical ligands [4]. Numerous functional
studies have suggested that these TRP channels mediate
hyperalgesia following tissue and nerve injury and there-
fore may represent potential targets for novel analgesic
drugs [5]. Thus, it is important to investigate the contri-
bution of these TRP channels to the activation of PANs
in the headache circuit.

In rats, nerve fibers in the dura mater exhibit TRPV1-
immunoreactivity (TRPV1-ir) [6]. In addition, 97% of
dural afferent fibers in the guinea pig respond to capsa-
icin [7]. However, the effects of TRPV1 antagonists have
been inconsistent in various in vivo models of headache
[8-10]. Mustard oil, a TRPA1 agonist, evoked inward
currents in 42% of dural afferent neurons in rats [11].
TRPA1 activation has also been shown to mediate dural
vasodilation induced by exposure to nasal irritants
[12,13]. It is unclear whether nasal irritants activate
TRPA1 channels in the dural afferent neurons. In fact,
the expression of TRPA1 channels in dural afferent neu-
rons has not been investigated. One hypothesis is that
nasal irritants excite dural afferent neurons via

Page 2 of 19

intraganglionic neurotransmission [14-17]. The irritants
would first activate TRPA1 channels on PANs innervat-
ing the nasal mucosa, leading to spike generation. Subse-
quently, this afferent activity would result in the release
of neurotransmitters and neuropeptides from the somata
of nasal afferent neurons [18-22]. This, in turn, cross-
excite nearby dural afferent neurons within the TG.
However, the spatial distribution of TRPAl-expressing
(TRPA1") neurons in the TG has not been studied, nor
do we know their spatial association with dural afferent
neurons. Likewise, whether TRPMS8 channels are
expressed in dural afferent neurons and, if so, whether
they play a role in the activation of the trigeminovascu-
lar system has not been investigated. It is also important
to characterize both the spatial distribution of TRPMS-
expressing neurons in the TG and their relationship with
dural afferent neurons.

Various genetically modified mouse models offer great
tools to study the functional significance of TRP chan-
nels in headache pathophysiology. Nevertheless, the ma-
jority of studies regarding the subpopulations of TG
neurons that project to the dura and cerebral vessels
were conducted in rats and cats. Given the well-
documented differences between rats and mice with re-
spect to the expression of two commonly used PAN
population markers, calcitonin gene-related peptide
(CGRP) and isolectin B4 (IB4) [23], it is important to
quantitatively assess the abundance of TG neuron sub-
populations in dural afferents to gain insight into head-
ache mechanisms using mouse models.

In the present study, we used two fluorescent tracers
to retrogradely label dural afferent neurons in adult
mice. We quantified the abundance of peptidergic and
non-peptidergic populations within dural afferents using
CGRP-immunoreactivity (CGRP-ir) and IB4 binding, re-
spectively. We also compared the expression patterns of
TRPV1, TRPA1 and TRPMS8 channels in dural afferent
neurons with their patterns in the total TG neuron
population. Our results show that a substantial fraction
of dural afferent neurons bind IB4. Surprisingly, the per-
centage of dural afferent neurons that exhibit somatic
CGRP-ir is only half that the percentage of the total TG
neuron population. We also found that both TRPV1 and
TRPA1 channels are expressed in dural afferent neurons.
Using nearest-neighbor measurement, we predicted that
TRPA1" TG neurons are clustered around a subset of
dural afferent neurons and therefore may have a higher
probability of cross-excitation within the TG. Interest-
ingly, TRPM8-expressing TG neurons are virtually ab-
sent in the dural afferent population, nor do they cluster
around dural afferent neurons in TG. This lack of small-
diameter TRPMS8-expressing neurons may partially ac-
count for the larger sizes of dural afferent neurons rela-
tive to those of the total TG population.
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Results

Localization and size distribution of dural afferent
neurons in the TG

To label dural afferent neurons, we applied the fluores-
cent tracer Fluorogold (FG) to the dura above a section
of the superior sagittal sinus (SSS) in adult mice [24].
Retrogradely labeled neurons were observed in the bilat-
eral TG. First, we examined the distribution of labeled
neurons in the ophthalmic (V;), maxillary (V,) and man-
dibular (V3) divisions of the TG. Consistent with previ-
ous reports [25,26], we found that the majority (~70%)
of FG-labeled neurons were localized in the V; division
of the TG, whereas only a small percentage of labeled
neurons were distributed in the V, and V; divisions
(Figure 1A, B and D, black bars, p < 0.001, one-way
ANOVA with post hoc Bonferroni test). To confirm this
result, we retrogradely labeled dural afferent neurons
with another fluorescent tracer, 1,1'-dioctadecyl-3,3,3',3"-
tetramethylindocarbocyanine perchlorate (Dil) [27]. The
distribution of Dil-labeled dural afferents was similar to
the distribution of FG-labeled neurons, with more than
70% of the labeled neurons localized in the V; division
of the TG (Figure 1C and D, open bars, p < 0.001, one-
way ANOVA with post hoc Bonferroni test, V; versus V,
or V3 distribution in each group).

Next, we compared the size distribution of dural affer-
ent neurons with the distribution of neurons in the V;/
V, divisions of the TG. The mean cross-sectional area of
the V,/V5 neurons was 327 + 4 pmz (n = 2208 neurons
pooled from three mice). In contrast, the mean cross-
sectional area of the FG-labeled dural afferents was 374
+ 5 pum?® (n = 2316 neurons pooled from three mice),
which was significantly larger than that of the V1/V, TG
neurons (Figure 1E, F, p < 0.001, Mann—Whitney U test).
This result is in agreement with previous reports regard-
ing the size distribution of PANs innervating the dura
and intracranial vasculature in rats [25,28,29].

It is possible that FG may preferentially label the TG
neurons that have a larger soma diameter, thereby skew-
ing our size comparison between dural afferent neurons
and V;/V, TG neurons. To address this possibility, we
labeled TG neurons innervating the periorbital skin (be-
tween the eyes) with an intradermal injection of FG. As
with the dural afferents, more than 90% of the FG-
labeled skin afferent neurons were localized in the V;
division of the TG (Figure 1D, hatched bars, p < 0.001,
one-way ANOVA with post hoc Bonferroni test). The
mean cross-sectional area of the skin afferent neurons
was 319 + 25 um? (n = 600 neurons pooled from three
mice), which is similar to the V;/V, TG neurons (p = 0.8),
but was significantly smaller than the FG-labeled dural
afferents (Figure 1E, F, p < 0.001, dural versus skin affer-
ents or versus V;/V, TG neurons, Kruskal-Wallis
ANOVA with Dunn’s post hoc test). We therefore
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conclude that FG labels TG neurons of various soma sizes
with comparable efficiency.

Some recent studies have shown that individual TG
neurons contain collaterals that project to both the men-
inges and extracranial tissue such as the skull and
muscle [30,31]. We applied Dil to the dura above the
SSS and injected FG into the periorbital skin to label
both dural and skin afferent neurons in individual mice.
We found no overlap between Dil-labeled dural afferent
neurons (n = 425 neurons pooled from three mice) and
FG-labeled skin afferents (n = 360 neurons pooled from
three mice, Figure 2). Our result is consistent with a pre-
vious study showing little overlap between the TG neu-
rons that innervate the middle cerebral artery and the
forehead skin in adult rats [25].

The distribution of dural afferent neurons expressing
CGRP

We went on to examine the abundance of TG neurons
subpopulations in the dural afferents. The neuropeptide
CGRP plays an important role in migraine pathophysi-
ology [32,33], and previous studies have shown that the
meninges and cerebral arteries in rodents are densely
innervated by CGRP-expressing (CGRP') TG neurons
[29,34-36]. The population of TG neurons that project
to the cerebral vasculature contains a higher percentage
of CGRP" neurons compared with the entire TG [37].
Accordingly, we labeled dural afferent neurons with FG
and stained TG sections using an anti-CGRP antibody
(Figure 3A). CGRP-ir was observed in 32.4 + 0.8% of the
neurons in the V;/V, divisions of the TG (Figure 3B,
middle plot). Surprisingly, only 14.9 + 1.1% of FG-
labeled dural afferent neurons displayed CGRP-ir, which
was significantly lower than that of V;/V, neurons (p <
0.001, Figure 3B, middle plot).

Our results are in apparent disagreement with a previ-
ous study of the enrichment of CGRP" neurons in TG
population projecting to the cerebral vasculature [37].
One possibility may be that relative to other TG neu-
rons, CGRP* TG neurons may be less efficient at taking
up FG at their terminals and/or transporting FG to the
soma. We labeled TG neurons innervating the periorbi-
tal skin with FG and stained the TG sections using the
CGRP antibody. The percentage of CGRP" neurons in
the FG-labeled skin afferents (30.5 + 2.8%) was compar-
able to that of V;/V, neurons (32.2 + 0.9%, Figure 3B,
left plot), indicating that FG labels CGRP" TG neurons
as effectively as those that do not express CGRP.

To test whether CGRP" dural afferent neurons take up
and/or transport FG less efficiently than other fluores-
cent tracers, we retrogradely labeled dural afferent neu-
rons with Dil and stained TG tissues using the CGRP
antibody. To better preserve the Dil signal, the concen-
tration of the detergent Triton X-100 in the solutions
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Figure 1 Localization and size distribution of the TG neurons innervating the dura and periorbital skin. (A) Representative image of a TG
section showing FG-labeled (FG*) dural afferent neurons. Note that the labeled neurons are distributed predominantly within the V, division and
to some extent in the V, division. (B) High-magnification image of the region indicated in (A). (C) Representative image of Dil-labeled (Dil*) dural
afferent neurons. (D) The distributions of FG* and Dil* in the skin and dural afferent neurons from the three TG divisions (n = 3-4 mice in each
group; on average, 200 labeled neurons from each mouse were counted). The majority of labeled neurons are distributed in the V; and V,
divisions (one-way ANOVA with post hoc Bonferroni test, *** p < 0.001, V; versus V, or V5 distribution in each group; * p < 0.05, * p < 0,001, V,
versus V3 distribution in each group). (E) Histogram of the size distributions of total TG neurons in the V,/V, divisions, FG* skin afferent neurons,
and FG" dural afferent neurons (n = 2316, 600 and 2208 neurons pooled from three mice, respectively). (F) Cumulative distributions of the cross-
sectional areas of total TG neurons in the V,/V, divisions, FG* skin afferent neurons, and FG* dural afferent neurons (the same neurons as in E).
The sizes of dural afferent neurons are significantly larger than those of the skin afferents and the V,/V, TG neurons (p < 0.001, Kruskal-Wallis
ANOVA with Dunn’s post hoc test).
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Figure 2 Retrograde labeling of dural and facial skin afferent neurons from the same mouse. Representative images of a TG section
showing Dil* dural afferent neurons (A) and FG* neurons innervating the periorbital skin (B). Note that there is no overlap between the dural and
skin afferent neurons as seen in the merged image (C) A total of 425 dural and 360 skin afferent neurons from three mice were counted,

was decreased from 0.3% to 0.03% [38]. CGRP-ir was
observed in 32.3 + 1.1% of the V;/V, TG neurons
(Figure 3B, right plot), indicating that the low triton con-
centration did not compromise the sensitivity of the
immunostaining. Only 15.3 + 1.4% Dil-labeled dural af-
ferent neurons exhibited CGRP-ir (p < 0.001, Figure 3B,
right plot), which is in agreement with the results
obtained from the FG-labeled dural afferent neurons.
Taken together, we conclude that the percentage of dural
afferent neurons exhibiting somatic CGRP-ir is signifi-
cantly smaller than that of neurons in the V;/V, TG
divisions.

Both small- (< 600 pm?® cross-sectional area) and
medium-sized (600-1400 pm? cross-sectional area) TG
neurons expressed CGRP (Figure 3C, D, open bars). The
mean cross-sectional area of the CGRP" neurons in the
V,/Vy TG divisions was 417 + 14 umz (n = 661 neurons
pooled from three mice). The mean cross-sectional area
of the CGRP" neurons innervating the dura was 373 +
10 um® (n = 99 neurons pooled from three mice;
Figure 3C, E, black bars), which was comparable to the
size of the CGRP" neurons in the V;/V, TG divisions
(p = 0.7, Mann—Whitney U test, Figure 3C). Therefore,
both small- and medium-sized dural afferent neurons
express CGRP, albeit all at a lower abundance relative
to the total TG neuronal population.

The distribution of dural afferent neurons that bind 1B4

IB4 binding is commonly used to define the non-
peptidergic population of primary afferents, i.e., sensory
neurons that express little or very low levels of neuro-
peptides [39,40]. We labeled dural afferent neurons with
FG and stained the sections with Alexa Fluor 594-
conjugated IB4 (Figure 4A). In the V,/V, divisions of the
TG, 45.5 + 2.2% of the neurons were labeled with IB4
(IB4™). The percentage of IB4" neurons in the dural
afferents was 38.0 + 0.7%, significantly lower than that
in the V,/V, divisions (Figure 4B, p < 0.05). The size dis-
tribution of the IB4" dural afferents was similar to the
total IB4" population of neurons in the V,/V, divisions
of the TG (p = 0.1, Mann—Whitney U test, Figure 4C).

The mean cross-sectional area of the IB4" neurons in
the V,/V, divisions of the TG was 327 + 14 um?® (n = 686
neurons pooled from three mice). More than 95% of the
IB4" neurons had a cross-sectional area smaller than
600 um?®, which is consistent with previous studies and
indicated that these neurons belong to the small-sized TG
population (Figure 4D, p < 0.001 compared with total V,/
V, TG neurons, Mann—Whitney U test). The mean cross-
sectional area of the IB4" neurons in the dural afferents
was 316 + 13 um® (n = 267 neurons pooled from three
mice), which was significantly smaller than that of the
entire FG-labeled population (Figure 4E, p < 0.001,
Mann—Whitney U test).

The distribution of TRPV1 channels in TG and dural
afferent neurons

TRPV1 channels can be activated by noxious heat as
well as by chemical ligands, including capsaicin, ananda-
mide, and protons [41]. TRPV1-ir and sensitivity to cap-
saicin have been reported in dural afferent neurons from
rats and guinea pigs, respectively [6,7]. Here, we investi-
gated whether the distribution of TRPV1 channels in
dural afferent neurons differs from their distribution in
total TG tissue in mice.

We labeled the dural afferent neurons with FG and
stained TG sections with an antibody against TRPV1
channels (Figure 5A). TRPV1-ir was present in 31.0 +
0.6% of the neurons in the V;/V, divisions of the TG, a
significantly higher percentage than in the V3 division
(21.0 + 0.3%, p < 0.001, Figure 5B). In addition, 23.7 +
2.1% of the FG-labeled dural afferent neurons exhibited
TRPV1-ir (Figure 5C), in line with a previous study [6].
The percentage of TRPVI1-expressing (TRPV1') neu-
rons in the dural afferent neurons was significantly
lower than in the total V,/V, TG population (Figure 5C,
p < 0.05).

The size distribution of the TRPV1* dural afferents
was similar to that the distribution of the TRPV1" neu-
rons in the V;/V, divisions of the TG (p = 0.1, Mann—
Whitney U test, Figure 5D). The mean cross-sectional
area of the TRPV1" neurons in V;/V, was 215 + 4 pm?
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Figure 3 (See legend on next page.)
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Figure 3 The distribution of dural afferent neurons expressing the neuropeptide CGRP. (A) Representative images of TG sections
containing FG* or Dil* dural afferent neurons and neurons exhibiting CGRP-ir. Arrowheads indicate double-labeled FG*/CGRP* and Dil*/CGRP*
dural afferent neurons. (B) The abundances of CGRP™ neurons in the V;/V; divisions of the TG, in the FG skin afferent neurons, and in the FG' or
Dil™ dural afferent neurons (n = 3 mice in each group; *** p < 0.001, two-tailed t-test). On average, 685 V,/V, neurons from each mouse were
counted in each group. On average, 296 FG" skin afferent neurons, 233 FG* dural afferents, and 285 Dil* dural afferent neurons were counted
from each mouse. (C) The size distribution of the CGRP™ dural afferent neurons (filled bars, n = 99 neurons pooled from three mice) is similar to
that of the CGRP™ neurons in the V,/V, divisions of the TG (open bars, n = 661 neurons pooled from three mice, p = 0.7, Mann-Whitney U test).
(D) The size distribution of the CGRP* neurons (open bars, the same neurons as in C) and total neurons in the V,/V, divisions of the TG (grey
bars, n = 2041 neurons pooled from three mice). (E) The size distribution of the CGRP™ dural afferent neurons (filled bars, the same neurons as in
Q) and total FG* dural afferents (grey bars, n = 700 neurons pooled from three mice).

(n = 679 neurons pooled from three mice), which was
significantly smaller than that of the total V;/V, TG
neuron population (327 + 11 pm? n = 2189 neurons
pooled from three mice, p < 0.001, Mann—Whitney U
test, Figure 5E). This finding is consistent with previous
reports showing that TRPV1 is expressed almost exclu-
sively in small-diameter c-fiber neurons [42,43]. The
mean cross-sectional area of the TRPV1" dural afferent
neurons (228 + 5 um? n = 151 neurons pooled from
three mice) was also significantly smaller relative to the
entire FG-labeled population (325 + 13 pm? n = 638
neurons pooled from three mice, Figure 5F, p < 0.001,
Mann—Whitney U test).

The distribution of TRPA1 channels in TG neurons and
dural afferent neurons

TRPA1I, another TRP channel family member, has been
reported to sense noxious cold stimuli [44,45] (but see
[46]). In addition, previous studies have shown that
TRPA1 channels act as the sensor of a broad spectrum
of endogenous compounds as well as environmental irri-
tants [47-50]. The TRPA1 agonist mustard oil evokes in-
ward currents in a subset of rat dural afferent neurons
[11], and recent studies have shown that the intranasal
application of TRPA1 agonists induces dural vasodilation
[12,13]. Here, we quantified the distribution of TRPA1
channels in mouse dural afferent neurons.

We labeled the dural afferent neurons with FG and
stained TG sections with anti-TRPA1 antibodies
(Figure 6A, [51]). Within the three TG divisions,
TRPAl-immunoreactivity (TRPAl-ir) was distributed
uniformly in a very small population of TG neurons
(Figure 6B). We found that 5.7 + 0.5% of the FG-labeled
dural afferent neurons were positive for TRPA1-ir, which
is similar to the percentage of TRPA1" neurons in the
total V;/V, TG neuron population (7.5 * 0.7%,
Figure 6C).

The mean cross-sectional area of the TRPA1* neurons
in V1/V, was 262 + 8 um” (n = 130 neurons pooled from
three mice), which is significantly smaller than that of
the total V;/V, TG neurons (325 + 11 pmz, n = 1729
neurons pooled from three mice, p < 0.001, Mann-

Whitney U test, Figure 6E). In fact, 97% of the TRPA1"
neurons had a cross-sectional areas that was smaller
than 500 um? (Figure 6D, E, open bars), which is con-
sistent with previous reports indicating that TRPA1 is
predominantly expressed in small-diameter primary af-
ferent neurons [43,45-47,51,52] (but see [53]). The mean
cross-sectional area of the TRPA1" dural afferent neu-
rons (222 + 9 um? n = 35 neurons pooled from three
mice) was significantly smaller than that of the entire
FG-labeled neuron population (324 + 20 um? n = 620
neurons pooled from three mice, Figure 6F, p < 0.001,
Mann—Whitney U test). Interestingly, the sizes of the
TRPA1" dural afferent neurons were also significantly
smaller than those of the TRPA1* neurons in the V;/V,
divisions of the TG (Figure 6D, p < 0.05, Mann—Whitney
U test).

Recent studies have shown that the intranasal adminis-
tration of TRPA1 agonists stimulates CGRP release and
increases meningeal blood flow, suggesting that these
events may contribute to the onset of headaches trig-
gered by environmental irritants [12,13]. It has been sug-
gested that TRPA1" neurons innervating the nasal
mucosa may cross-excite nearby dural afferent neurons
within the TG via intraganglionic neurotransmission
[14-22]. Here, we used nearest-neighbor measurement
to determine whether TRPA1" neurons are clustered
around dural afferent neurons (or vice versa) [54,55].

First, we tested whether dural afferent neurons are
randomly distributed in the V,/V, divisions of the TG or
are clustered. Thus, for each FG-labeled neuron, we
measured the distance to the nearest FG-labeled neuron.
This analysis allowed us to calculate the value of rA, the
mean distance to the nearest neighbor between FG-
labeled neurons in each mouse. We then calculated R,
the ratio of rA to rE, where rE is the mean distance to
the nearest neighbor expected from a randomly distribu-
ted population of FG-labeled neurons. The value of R
can vary from 0 (for a distribution with maximum aggre-
gation) to 2.1491 (for a perfectly uniform distribution).
An R value of 1 corresponds to a random distribution of
the cell population. The value of ¢, the standard variate
for the normal curve, corresponds to the significance of
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Figure 4 The distribution of IB4" neurons in the V,/V, TG divisions and the dural afferent population. (A) Representative images of a TG
section containing FG* dural afferent neurons and IB4-labeled neurons. Arrowheads indicate neurons that are both FG* and I1B4™. (B) The
percentages of V;/V, TG neurons and FG* dural afferent neurons that are 1B4* (n = 3 mice; on average, 500 V;/V, neurons and 235 FG* neurons
were counted from each mouse; * p < 0.05, two-tailed t-test). (C) The size distributions of the IB4*/FG* dural afferent neurons (black bars, n = 267
neurons pooled from three mice) are similar to the distributions of the 1B4™ neurons in the V,/V, divisions of the TG (white bars, n = 686 neurons
pooled from three mice, p = 0.1, Mann-Whitney U test). (D) The sizes of IB4" neurons (open bars, the same neurons as in C) are significantly
smaller than those of the V,/V, neurons (grey bars, n = 1499 neurons pooled from three mice, p < 0.001, Mann-Whitney U test). (E) The sizes of
IB4*/FG* dural afferents (black bars, the same neurons as in C) are significantly smaller than those of the total FG* dural afferent neurons (grey
bars, n = 704 neurons pooled from three mice, p < 0.001, Mann-Whitney U test).

a departure from the expected value of R = 1. The ¢ the dural afferent neurons from three mice were all close
values of 1.96 and 2.58 represent the 0.05 and 0.01 prob- to 1, and their ¢ values were all lower than 1.96
ability levels of statistical significance for measurements  (Figure 6G), indicating that dural afferent neurons are
of a given population, respectively [54]. The R values of randomly distributed in the V,/V, divisions of the TG.
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Figure 5 The distribution of neurons expressing TRPV1 channels in the TG and dural afferent neuron populations. (A) Representative
images of a TG section containing FG* dural afferent neurons and neurons exhibiting TRPV1-ir. Arrowheads indicate neurons that are both FG*
and TRPV1™. (B) The percentage of TRPV1* TG neurons in the V;/V, and V3 divisions (n = 3 mice; on average, 730 V;/V, neurons and 500 V3
neurons were counted from each mouse; *** p < 0.001, two-tailed t-test). (C) The percentages of V,/V, TG neurons (the same data set as in B)
and FG™ dural afferent neurons that are TRPV1™ (n = 3 mice, on average, 213 FG™ neurons were counted from each mouse; * p < 0.05, two-tailed
t-test). (D) The size distribution of TRPV1*/FG" dural afferent neurons (n = 151 neurons pooled from three mice) are similar to the TRPV1*
neurons in the V,/V, divisions of the TG (n = 679 neurons pooled from three mice, p = 0.1, Mann-Whitney U test). (E) The sizes of TRPV1*
neurons (the same neurons as in D) are significantly smaller than those of the neurons in the V,/V, divisions of the TG (n = 2189 neurons pooled
from three mice, p < 0.001, Mann-Whitney U test). (F) The sizes of TRPV1'/FG"* dural afferents (the same neurons as in D) are significantly smaller
than those of the total FG" dural afferent neurons (n = 638 neurons pooled from three mice, p < 0.001, Mann-Whitney U test).
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(See figure on previous page.)

Figure 6 The distribution of neurons expressing TRPA1 channels in the TG and dural afferent neurons. (A) Representative images of a TG
section containing a FG*/TRPAT™ dural afferent neuron (indicated by the arrowheads; scale bar: 20 um). (B) The percentage of TRPA1* TG
neurons in the V,/V, and Vs divisions (n = 3 mice; on average, 576 V,/V, neurons and 428 V5 neurons were counted from each mouse). (C) The
percentages of TRPA1* V,/V, TG neurons (the same data as in B) and FG™ dural afferent neurons (n = 3 mice, on average, 206 FG™ neurons were
counted from each mouse). (D) The size distribution of TRPAT*/FG* dural afferent neurons are significantly smaller than those of the TRPAT*
neurons in the V,/V, divisions of the TG (n = 35 and 130 neurons pooled from three mice, respectively; p < 0.05, Mann-Whitney U test). (E) The
sizes of TRPAT™ neurons (the same neurons as in D) are significantly smaller than those of the neurons in the V,/V, divisions of the TG (n = 1729
neurons pooled from three mice, p < 0.001, Mann-Whitney U test). (F) The sizes of TRPA1*/FG" dural afferents (the same neurons as in D) are
significantly smaller than those of the total FG* dural afferent neurons (n = 620 neurons pooled from three mice, p < 0.001, Mann-Whitney U
test). (G) Nearest-neighbor measurement shows that both FG* dural afferent neurons and TRPA1* neurons are randomly distributed in the TG (n
=130 TRPAT" neurons and 620 FG" dural afferent neurons from 3 mice, the same cells as in D and F). (H) A modified nearest-neighbor
measurement shows that TRPAT" neurons are clustered around some, but not all, of the FG* dural afferent neurons (the same neurons as in G).

This finding is consistent with a previous study showing
a random distribution of TG neurons innervating the
middle cerebral arteries in rats [25]. Secondly, we exam-
ined the spatial distribution of the TRPA1" neurons in
the V,/V, divisions of the TG. As with the dural afferent
neurons, the mean R value for the TRPA1" neurons was
also close to 1, suggesting that the TRPA1" neurons are
randomly distributed in the V;/V, TG divisions
(Figure 6G).

We proceeded to examine the spatial association be-
tween FG-labeled dural afferent neurons and TRPA1"
neurons using a modified nearest-neighbor measure-
ment [55]. First, we tested whether TRPA1" neurons are
clustered around dural afferent neurons more than
would be expected from a random distribution. We
measured the distance (r) between each FG-labeled dural
afferent neuron and its nearest TRPA1" neuron and cal-
culated the average nearest-neighbor distance (rA). We
then computed the value of R, the ratio of rA to rE,
where rE indicates the mean value of r for complete
spatial independence between dural afferent neurons
and TRPA1" neurons. An R value of 1 indicates a lack of
association (spatial independence) between the two cell
populations, whereas an R value less than or greater
than 1 suggests that the TRPA1" TG neurons are more
clustered than random (i.e., aggregation) or are more
regularly distributed than random (i.e., avoidance), re-
spectively, with respect to the FG-labeled neurons. The
R values of three different mice were all greater than 1
(1.24 + 0.15, Figure 6H). We tested the significance of
this departure from spatial independence (i.e, R = 1) by
calculating ¢, the standard variate of the normal curve.
A mentioned above, c¢ values of 1.96 or 2.58 represent
the 0.05 and the 0.01 levels of significance for a two-
tailed test, respectively [54,55]. The ¢ values from three
different mice were all greater than 2.4 (p < 0.05), sug-
gesting that the TRPA1" neuron population is distribu-
ted farther away from the dural afferent population than
would be predicted by random association.

Since the number of FG-labeled neurons was approxi-
mately 2-3 fold greater than the number of TRPAL"

neurons in each TG section, we tested whether the
TRPA1" neurons cluster around a subgroup of dural af-
ferent neurons but not the entire dural afferent popula-
tion. Accordingly, we measured the distance between
each TRPA1" neuron and its nearest FG-labeled neuron
and calculated the value of R as a measure of the spatial
association. The R values obtained from three mice ran-
ged from 0.46 to 0.74 (Figure 6H). The c values from
these three mice were all greater than 7.5 (p < 0.0001),
indicating a significant departure from spatial independ-
ence, leading to aggregation.

How close are the TRPA1" neurons to their nearest
FG-labeled dural afferent neuron? We found that the
mean distance between the TRPA1" neurons and the
nearest FG-labeled neuron was 56 + 2 arbitrary units
(measured between the centers of the two cells). This
distance was 1.7 £ 0.1 fold the mean distance between
the TRPA1" neurons and their closest neuron (32 + 1 ar-
bitrary units). Thus, there was approximately one
neuron separating each TRPA1" neuron from its nearest
FG-labeled dural afferent neuron. On the other hand, we
found that the mean distance between the closest pairs
of TRPA1" neurons or pairs of FG-labeled dural affer-
ents was significantly greater than the distance between
the TRPA1" neurons and their closest FG-labeled
neuron (101 + 3 versus 77 * 5 arbitrary units, respect-
ively; p < 0.05, one-way ANOVA with post hoc Bonfer-
roni test). Taken together, we conclude that the TRPA1"
neurons are clustered around some, but not all, of the
dural afferent neurons in the TG. It is possible that the
neurotransmitters and neuropeptides that are released
from the soma of TRPA1" neurons have a higher likeli-
hood of cross-exciting this subpopulation of dural affer-
ent neurons within the TG.

TRPM8 channels are not expressed in dural afferent
neurons

TRPMS8 channel is a member of thermo-TRP family and
transduces the cooling and cold sensations in mice [56-
60]. Previous studies indicated that TRPMS8-expressing
neurons innervate both the skin and visceral organs [61-
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63]. Here, we used mice expressing farnesylated
enhanced green fluorescent protein (EGFPf) at one
TRPMS8 locus (TRPMS 7%, [61]) to investigate
whether TRPMS is expressed in dural afferent neurons.
All of the EGFPf-expressing (EGFPf") dorsal root gan-
glion (DRG) neurons from TRPMS8“*7* mice respond
to both cold and menthol, indicating that the EGFP sig-
nal corresponds well with endogenous TRPMS8 expres-
sion [61].

We used Dil to retrogradely label the dural afferent
neurons in TRPM8 ™™+ mice. Remarkably, we found
an almost complete segregation of EGFPf fluorescence
and the Dil signal in the TG (Figure 7A, B). In fact, of
the 619 Dil-labeled dural afferent neurons measured
from three TRPM8 ™+ mice, only three neurons were
EGFPf". To determine whether this segregation is due to
a lack of TRPMS8-expressing neurons in the V;/V, TG
divisions, we examined both the distribution and abun-
dance of EGFP" neurons in all of the TG divisions of the
TRPMS ™" mice. Of all of the EGEPf* neurons that
we counted, approximately half were localized in the V3
division of the TG, and the remaining half were distribu-
ted uniformly between the V; and V, divisions
(Figure 7C, p < 0.001 compared with the V3 division,
one-way ANOVA with post hoc Bonferroni test). This
result is in agreement with a previous report that
TRPMS8 expression is enriched in the V3 division of the
TG [43]. We next measured the abundance of EGFPf"
neurons in the TG divisions. The percentages of TG
neurons expressing EGFPf were similar between the V;/
V5, and V3 divisions (12.6 = 0.9% and 12.9 *+ 0.4%, re-
spectively, Figure 7B). Thus, it is unlikely that the lack of
EGFPf" neurons in the dural afferents arose from a low
abundance of TRPMS8-expressing neurons in the V;/V,
TG divisions. Notably, the overall abundance of EGFPf"
neurons in the TG was consistent with previous studies
using anti-TRPMS8 antibodies [56,64], further validating
the EGFPf signal as a marker of endogenous TRPMS8
expression.

To test whether TRPM8-expressing neurons are defi-
cient in either their ability to take up Dil at terminals
and/or transporting Dil to the soma, we injected Dil
into the skin over the whisker pad in TRPM8 2+
mice. The percentage of EGFPf" neurons in the Dil-
labeled skin afferents (11.3 + 1.3%) was comparable to
that of the V;/V, neurons (12.8 + 0.9%, Figure 7A, D),
indicating that EGFPf" neurons take up and transport
Dil as efficiently as other TG neuron populations.

We showed above that the sizes of the dural afferent
neurons are significantly larger than those of the V;/V,
TG neurons (Figure 1E, F). We wondered whether this
difference stems from an absence of TRPM8-expressing
neurons in the dural afferents. To address this question,
we examined the size distribution of EGFPf" neurons in

Page 12 of 19

the V1/V, division of TG. The mean cross-sectional area
of the EGFPf* neurons in the V,/V, was 223 + 11 pm?
(n = 363 neurons pooled from five mice), which was sig-
nificantly smaller than that of the total V;/V, TG
neuron population (339 + 1 pm? n = 2403 neurons
pooled from five mice, p < 0.001, Mann—Whitney U test,
Figure 7E). This result is consistent with previous
reports that TRPMS8 is expressed predominantly in
small-diameter primary afferent neurons [45,59-62,64].
This finding led us to predict that the absence of
TRPMS8-expressing neurons in the dural afferent popula-
tion could shift its size distribution towards the size of
the EGFPf-negative (EGFPf") V;/V, TG neurons. Be-
cause the Dil-labeled neurons exhibited a punctate pat-
tern of fluorescence, we found it difficult to accurately
calculate their cross-sectional area. We therefore com-
pared the sizes of the total and the EGFPf™ V,/V, TG
neurons with the sizes of the FG-labeled dural afferent
neurons (the solid black line in Figure 1F). As expected,
the sizes of the EGFPf™ V;/V, TG neurons were similar
to those of the FG-labeled dural afferent neurons
(Figure 7F, p = 0.95, Kruskal-Wallis ANOVA with
Dunn’s post hoc test); however, both neuron populations
were significantly larger than the total V;/V, neuron
population (p < 0.001). Taken together, our results indi-
cate that more than 10% of the neurons in the TG have
a small-diameter soma and express TRPM8 but do not
innervate the dura. This finding may account for the lar-
ger sizes of dural afferent neurons relative to the sizes of
the total V;/V, TG neuron population.

We proceeded to assess the spatial distribution of the
Dil-labeled dural afferent neurons and the EGFPf" neu-
rons in the V;/V, divisions of the TG using nearest-
neighbor measurement [54]. The R values of the dural
afferent neurons as well as the EGFPf" neurons were all
close to 1 (Figure 7G), and the ¢ values were all less than
1.96, indicating that both the dural afferent neurons and
the TRPM8-expressing neurons are distributed randomly
in the V;/V, divisions of the TG. We then investigated
the spatial association between the Dil* dural afferent
neurons and the EGFPf" neurons using the modified
nearest-neighbor measurement [55]. We first tested
whether the EGFPf" neurons were randomly distributed,
were more clustered than random (ie., aggregation), or
were more regularly distributed than random (i.e., avoid-
ance) relative to the Dil-labeled dural afferent neurons.
As shown in Figure 7H, the R values from three separate
mice were all greater than 1 (1.32 + 0.11), and the ¢
values were all greater than 5.8 (p < 0.001), suggesting
that the EGFPf" neurons are located further from the
dural afferent population than would be predicted by
random association. Next, we tested whether the EGFPf*
neurons are more clustered around a subpopulation of
dural afferent neurons (as is the case for the TRPA1™"
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Figure 7 The dural afferent neuron population lacks TRPM8-expressing neurons. (A) Representative images of TG sections from TRPM& "
mice following dural Dil application or intradermal Dil injection at the whisker pad. The thick and thin arrowheads indicate Dil" and EGFPf*
neurons, respectively. The arrows in the lower row indicate a Dil™ skin afferent neuron that is also EGFPf*. (B) The percentage of EGFPf* neurons
that are in the V,/V, TG, the V5 TG and the Dil™ dural afferent neuron population (n = 3 mice, on average, 480 V,/V, neurons, 472 Vs, neurons

and 206 Dil" neurons were counted from each mouse; *** p < 0001, two-tailed t-test, V;/V, group versus Dil* dura group). (C) The fraction of
EGFPf* neurons in the three TG divisions (n = 4 mice; on average, 1210 EGFPf™ neurons were counted from each mouse; *** p < 0.001, one-way
ANOVA with post hoc Bonferroni test, all compared with the V5 distribution). (D) The percentage of EGFPf* V;/V, TG neurons and Dil* neurons
innervating the skin over the whisker pad (n = 4 mice, on average, 448 V,/V, neurons and 76 Dil* neurons were counted from each mouse). (E)
The sizes of EGFPf* neurons (n = 363 neurons pooled from five mice) are significantly smaller than those of the neurons in the V;/V; divisions of
the TG (n = 2403 neurons pooled from 5 mice, p < 0.001, Mann-Whitney U test). (F) Cumulative distributions of the cross-sectional areas of the
total TG neuron populations in the V,/V, divisions (the same neurons as in E), the EGFPf™ V;/V, TG neurons (n = 2040 neurons pooled from five
mice), and the FG™ dural afferent neurons (the same neurons as in Figure 1F). The sizes of EGFPf~ V;/V, TG neurons are comparable to those of the
dural afferent neurons, and both populations are significantly larger than the total V;/V, neurons (p < 0.001, Kruskal-Wallis ANOVA with Dunn's

post hoc test). (G) Nearest-neighbor measurement shows that both Dil* dural afferent neurons and EGFPf™ neurons are randomly distributed in the
TG (n = 182 EGFPf* neurons and 619 Dil* dural afferent neurons from three mice, the same neurons as in B). (H) A modified nearest-neighbor
measurement shows that the EGFPf" neurons are located farther away from the dural afferent population than would be predicted by random
association, and vice versa (the same neurons as in G).
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neurons). Accordingly, we measured the distance be-
tween each EGFPf" neuron and its nearest Dil-labeled
neuron and then calculated the R value. The R values
obtained from three mice were all greater than 1 (1.17 +
0.02, Figure 7H), and the c values were all greater than
3.1 (p < 0.01). In fact, the mean distance between the
EGFPf" neurons and their nearest Dil-labeled neuron
was 163 + 11 arbitrary units, which is 3.9 + 0.3 fold
greater than the mean distance between the EGFPf"
neurons and their adjacent neuron (33 + 2 arbitrary
units). Taken together, we conclude that TRPMS8-
expressing neurons and dural afferent neurons are
located farther away from each other than would be
predicted by random association in the V;/V, divisions
of the TG. It is therefore unlikely that these two pop-
ulations of neurons cross-excite each other within
the TG.

Discussion

In this study, we used two fluorescent tracers, FG and
Dil, to retrogradely label dural afferent neurons in adult
mice. This approach allowed us to quantitatively com-
pare both the size distribution and the protein expres-
sion profiles of dural afferent neurons with those of the
total TG neuron population and the facial skin afferents.
Our results show that the TG neurons that innervate the
dura over the SSS are predominantly localized in the V;/
V, divisions of the TG. The sizes of dural afferent neu-
rons in mice are significantly larger than those of the
V1/V5 TG neurons and the facial skin afferents, which is
consistent with previous studies using rats [25,28,29].

A substantial percentage of dural afferent neurons
bind IB4, suggesting that these neurons belong to the
non-peptidergic PAN population. These neurons likely
express P2X; receptors and mediate the pronociceptive
effects of ATP [65]. In contrast, the percentage of CGRP*
dural afferent neurons (~15%) was only half those of
the V,1/V, TG neurons or the facial skin afferents. We
excluded the possibility that this result is due to a low
efficiency of CGRP™ neurons to take up FG and Dil at
their terminals and/or transport the tracers to the soma.
Our result is in contrast with a previous study quantify-
ing the abundance of CGRP' neurons in TG neurons
that innervate the intracranial arteries in rats [37].
O’Connor and van der Kooy (1988) reported that 32% of
the TG neurons that project to the cerebral vasculature
express CGRP, which is much higher than the 23% of
CGRP" neurons that was observed in the entire TG. Dif-
ferences in the animal species (rat versus mouse) and
target tissues (cerebral vasculature versus dura) between
the two studies may account for this discrepancy. We
suspect that one crucial difference may be the way in
which the tissue was prepared prior to immunostaining
with the anti-CGRP antibody. In the previous study, the
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TG tissues were organ-cultured in serum-free medium
containing colchicine for 9-12 hours before fixation and
immunostaining. The colchicine pretreatment and/or
the organ culture procedure per se may have preferen-
tially increased the CGRP levels in the TG neurons that
innervate cerebral arteries. Indeed, recent studies have
shown enhanced CGRP expression in rat TG neurons
during cell and organ cultures in serum-free medium
[66,67]. On the other hand, in our approach, we may
have underestimated the number of CGRP" neurons in
the dural afferents. It is possible that dural afferent neu-
rons exhibit enhanced trafficking of CGRP-containing
vesicles towards the terminals and/or have enhanced
exocytosis of CGRP, either of which could result in a de-
pletion of somatic CGRP stores. The dense innervation
of CGRP" fibers at the meninges and cerebral arteries in
rodents is well-documented [29,34-36]. On the other
hand, acutely-dissociated dural afferent neurons do not
exhibit spontaneous action potential firing [27]. In fact,
injection of a depolarizing current elicits a significantly
higher number of action potentials in skin afferent neu-
rons than in dural afferents, suggesting the lower excit-
ability of the latter population [68]. This argues against
enhanced exocytosis in dural afferent neurons. Further
work is needed to resolve the discrepancy between our
data and previous studies.

The primary purpose of this study was to quantita-
tively evaluate the expression of TRPVI1, TRPA1, and
TRPMS8 channels in dural afferent neurons. First, we
found that the percentages of TG neurons that express
these channels are consistent with previous studies
[7,43,45,51,52,56,58-60,64]. The size distributions of
TRPV1', TRPA1", and TRPMS8-expressing TG neurons
were also similar to previous reports. As summarized in
Figure 8, the sizes of TRPV1" neurons are the smallest
among the three populations of TG neurons (p < 0.001
and p < 0.05 compared with the TRPA1" and EGFPf*
groups, respectively). The cross-sectional areas of the
TRPA1" neurons are significantly larger than those of
the TRPV1" and TRPM8-expressing neurons (p < 0.001
and p < 0.05, respectively, Kruskal-Wallis ANOVA with
Dunn’s post hoc test) neurons. This finding is consistent
with previous reports that TRPA1 is expressed in the
subpopulation of TRPV1 neurons that have a relatively
large diameter soma [45,69]. Secondly, the percentage of
TRPV1" dural afferent neurons in our study is similar to
that in a previous report [6] but is ~20% lower than that
in the total V,/V, TG neuron population. On the other
hand, the percentage of TRPA1" neurons in the dural
afferents is comparable to that in the V;/V, TG popula-
tion. Taken together, our results suggest that compared
with total TG neurons, dural afferent neurons contain a
smaller fraction of TRPV1" cells that do not express
TRPA1 channels.
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Figure 8 Overlay of the cumulative distributions of the TRPV1*,
TRPA1* and TRPM8-expressing neurons in the V,/V, divisions
of the TG. Cumulative distribution of the cross-sectional areas of the
total TG neurons in the V,/V, divisions (dashed gray line, the same
neurons as in Figure 1F), the TRPV1" neurons (solid black line, the
same neurons as in Figure 5E), the TRPAT™ neurons (red line, the
same neurons as in Figure 6E), and the TRPM8-expressing neurons
(dashed green line, the same neurons as in Figure 7E). A Kruskal-
Wallis ANOVA with Dunn’s post hoc test reveals that the sizes of
TRPV1™ neurons are the smallest of the three populations of TG
neurons (p < 0.001 and p < 0.05 compared with the TRPA1* and
EGFPf* groups, respectively). In contrast, the sizes of TRPAT" neurons
are significantly larger than those of the TRPV1" and TRPMS8-
expressing neurons (p < 0.001 and p < 0.05, respectively).

A noteworthy finding in this study is the absence of
TRPM8-expressing neurons in the dural afferent popu-
lation, despite the fact that TRPMS8 is expressed in
more than 10% of both the total and skin afferent TG
neurons. This may, at least partially, account for the
difference in size distribution between the dural affer-
ents and the total TG neurons. Furthermore, results
from our nearest-neighbor measurement predicte that
TRPMS8-expressing neurons and dural afferent neurons
are farther away from each other than would be pre-
dicted by random association, suggesting that TRPMS8
channels may have only a small, or no, contribution to
the activation of PANs in the headache circuit. On the
contrary, not only are TRPA1 channels expressed in a
small population of dural afferent neurons, TRPA1"
neurons are also clustered around some, but not all,
dural afferent neurons in the TG. Previous studies have
shown that stimulating PANs elicits the somatic release
of ATP, substance P, and CGRP [18-22]. These somatic-
ally released neurotransmitters and neuropeptides may
account for the cross-depolarization and cross-
excitation between PANs that have been observed in rat
DRG and nodose ganglia [14-17]. Our data suggest that
TRPA1 channels may directly excite dural afferent neu-
rons as well as play a role in the intraganglionic cross-
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excitation of dural afferents. These results are in agree-
ment with recent studies showing that the intranasal
administration of TRPA1 agonists stimulates CGRP re-
lease and increases meningeal blood flow [12,13]. Our
results provide anatomical evidence to support a pos-
sible scenario by which TRPA1" neurons innervating
the nasal mucosa may cross-excite nearby dural afferent
neurons. Future experiments are necessary to directly
test this possibility.

That said, it is possible that our method may not have
been sufficiently sensitive to detect low expression levels
of TRPMS8 and/or TRPA1 channels in the TG and dural
afferent neurons. Indeed, an in situ hybridization study
showed a low level of TRPMS8 expression in medium-
sized DRG neurons in rats [43]; in our study, all of the
EGFP{" neurons belonged to the small-sized TG popula-
tion (< 600 pm? cross-sectional area; Figure 7E). The
abundance of TRPA1 channels in our study (in 6 ~ 7%
of the TG neurons; Figure 6B, C) is consistent with some
of previous results [45,51] but is much lower than the 20
~ 25% that has been reported in other studies [44,46,47].
Kwan et al. measured Trpal mRNA and found that
mouse DRG neurons of all sizes express TRPA1 [53].
Moreover, a recent functional study found that 40% of
rat dural afferent neurons respond to TRPA1 agonists
[11]. Thus, it is possible that the TRPA1" population in
our study preferentially contains neurons that express
high levels of TRPA1 channels. Taken together, whether
and how various TRP channels contribute to the activa-
tion and/or sensitization of PANSs in the headache circuit
merits further investigation. Our study has established
an anatomical foundation upon which mouse models
can be used to address the role of TRP channels in head-
ache pathophysiology.

Conclusions

In this study, we have quantitatively measured the size
distributions and protein expression profiles of dural af-
ferent neurons in adult mice. We provide evidence that
a substantial fraction of dural afferent neurons bind IB4,
whereas the percentage of CGRP" dural afferent neurons
is significantly lower than in total TG neuron popula-
tion. Both TRPV1 and TRPA1 channels are expressed in
dural afferent neurons. In addition, TRPA1* neurons are
clustered around a subset of dural afferent neurons, sug-
gesting that they may have a higher probability of gener-
ating cross-excitation within the TG. Interestingly,
TRPMS8-expressing neurons are virtually absent in the
dural afferent population, nor do they cluster around
dural afferent neurons. We postulate that this lack of
TRPMS8-expressing neurons may partially account for
the larger sizes of dural afferent neurons relative to
those of the total TG neuron population.
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Methods

Experimental animals

Eight-to-twelve-week old mice on a C57BL/6 back-
ground were used in this study. The care and use of
mice were in accordance with the guidelines of the Ani-
mal Study Committee at Washington University in St.
Louis. Hemizygous mice expressing EGFPf at the
TRPMS8 locus were obtained by crossing heterozygous
breeders. Mice were genotyped by PCR of their tail
DNA as described previously [61].

Retrograde labeling of TG neurons innervating the dura
or the facial skin

Mice were anesthetized with 3-4% isoflurane in an in-
duction chamber until the loss of the righting reflex.
The mice were then mounted on a Stoelting stereotaxic
apparatus and placed on a 37 °C circulating water warm-
ing pad to maintain core body temperature. Anesthesia
was maintained by 1.5-2% isoflurane through a nose
cone. A longitudinal skin incision was made to expose
the cranium, and a craniectomy (~2 mm in diameter)
was made using a cooled dental drill in the skull overly-
ing the SSS, leaving the underlying dura exposed but in-
tact. Topical lidocaine was applied to the skin and skull
to prevent the activation and/or sensitization of the pri-
mary afferent neurons. To prevent spreading of the
tracer to other peripheral sites, a sterile polypropylene
ring was sealed to the skull surrounding the exposed
dura using a mixture of dental cement powder (Stoelting
51459) and superglue adhesive [70]. The viscosity of the
dental cement/superglue mixture prevented spreading to
the exposed dura. After waiting 5-10 min for the mix-
ture to solidify, we applied 7 pl of Dil solution (20 mg/
ml in PBS with 10% DMSO, Invitrogen) or FG (2% in
0.9% saline, Fluorochrome) onto the exposed dura. Sub-
sequently, the dura was covered with a sterile polypro-
pylene cap that was secured over the ring using the
dental cement/superglue mix. The skin incision was
closed using stainless steel wound clips. After recovery
from anesthesia, the mice were housed individually in
the animal facility for five (for FG labeling) or ten days
(for Dil labeling) to allow the transport of the tracer to
the somata in the TG.

To label the TG neurons innervating the facial skin,
we shaved the skin at the periorbital region (between the
two eyes) and injected 7 pl of Dil or FG solution intra-
dermally. The needle was held nearly parallel to the skin
and inserted ~1 mm into the skin. The injection was
performed slowly over a period of ~1 minute. In some
TRPMS ™™ mice, we injected 7 pl Dil intradermally
into the skin over the whisker pad. After the injection,
the mice were housed in the animal facility for five (for
FG labeling) or ten days (for Dil labeling) to allow for
transport of the tracer to the somata in the TG.
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To label both the dural and skin afferent neurons in
the same mouse, we first applied 7 pl of Dil onto the
dura and then injected 7 pl FG solution intradermally
into the periorbital skin five days after the craniectomy.
The mice were housed individually in the animal facility
for an additional five days before being euthanized.

Tissue preparation and immunohistochemistry (IHC)

The mice were euthanized by barbiturate overdose
(200 mg/kg, i.p.) and were transcardially perfused with
0.1 M phosphate-buffered saline (PBS) followed by 4%
formaldehyde in 0.1 M phosphate buffer, pH 7.4 (PB) for
fixation. The TG tissues were removed, post-fixed for
two hours, and then protected overnight in 30% sucrose
in 0.1 M PB. The ganglia were sectioned at 20 pm using
a cryostat, mounted on Superfrost Plus glass slides and
stored at —20 °C. One in every three sections (cut ap-
proximately every 60 um) was processed for each IHC
experiment.

For IHC of the FG-labeled TG, the sections were dried
at room temperature (RT), washed three times in
0.01 M PBS and incubated in blocking buffer (0.01 M
PBS with 10% normal goat serum (NGS) and 0.3% Tri-
ton X-100) for 1 hr at RT. The sections were then incu-
bated overnight with primary antibodies that were
diluted in blocking buffer at 4 °C. Following 3—5 10-min
washes in 0.01 M PBS containing 1% NGS and 0.3% tri-
ton and blocking for 1 hr, the sections were incubated
with the secondary antibodies in blocking buffer at RT
for 1 hour, and then washed three times in 0.01 M PBS.
The sections were cover-slipped using Fluoromount-G
Slide Mounting Medium (Electron Microscopy),
sealed with nail polish, and stored at 4 °C. For IHC of
the Dil-labeled TG, the concentration of Triton X-100
in all solutions was reduced to 0.03% to preserve the
Dil signal [38].

The primary antibodies against CGRP (Millipore) and
TRPV1 (Neuromics) were used at 1:1000 dilution. Two
antibodies against distinct extracellular domains of
TRPA1 were combined and used at 1:50 dilution as
described previously [51]. The Alexa Fluor 568- and
488-conjugated goat anti-rabbit secondary antibodies
(Invitrogen) were used at 1:1000 dilution. To measure
IB4 affinity, the sections were incubated with 2 pg/ml
Alexa Fluor 594-conjugated IB4 in blocking buffer at 4 °C
overnight.

Image acquisition and data analysis

Images of the entire TG section were captured using an
Olympus NanoZoomer Whole-Slide Imaging System at
the Alafi neuroimaging core facility at Washington Uni-
versity Medical School. High-power images of the TG
sections were examined and captured through a 20x ob-
jective on a Nikon TE2000S inverted epifluorescence
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microscope equipped with a CoolSnapHQ? camera
(Photometrics). Cross-sectional somatic area was mea-
sured using SimplePClI software (Hamamatsu). Figures
were prepared using Origin 8.1 (OriginLab). The individ-
ual images were adjusted for contrast and brightness. No
other manipulations were made to the images.

Statistical analysis

All summary data are reported as the mean + standard
error of the mean (SEM). Statistical tests were per-
formed using StatisticalO software (StatSoft). Differences
with p < 0.05 were considered to be statistically signifi-
cant. A two-tailed Student’s ¢-test or one-way analysis of
variance (ANOVA) with post hoc Bonferroni test was
used as the parametric statistical test where appropriate.
The non-parametric Mann—Whitney U test or the
Kruskal-Wallis ANOVA with Dunn’s post hoc test was
used where appropriate to analyze the differences in the
soma size distribution.

Nearest-neighbor measurement

The nearest-neighbor measurement was used to deter-
mine whether cells in a given TG population (e.g., dural
afferent neurons) were distributed randomly or were
clustered together [54]. Briefly, the distance between two
cells (r) was measured from the center of the cell in
question to the center of its corresponding nearest
neighbor, and the mean r value was computed using the
following equation: rA =3 , with N being the total
number of cells in question. The mean r value for a ran-
dom distribution of cells was calculated using the follow-
ing equation: rE = ﬁ, with p being the density of the

cell population of interest. The ratio R = % of the
observed mean distance to the expected mean distance
provides a measure of the degree to which the distribu-
tion pattern of the observed population deviates from
random expectation. R can range in value from 0 (for a
distribution with maximum aggregation) to 2.1491 (for a
perfectly uniform distribution). An R value of 1 corre-
sponds to a random distribution of the cell population.
The significance of the departure from random expect-
ation was tested by the standard variate of the normal
curve using the following equation: ¢ = =14, where orE
is the standard error of rE. The c¢ values 1.96 and 2.58
represent the 0.05 and the 0.01 levels of significance, re-
spectively, for a two-tailed test.

We used a modified nearest-neighbor measurement to
assess the spatial association between two discrete popu-
lations of TG neurons (for example, between dural affer-
ent neurons and TRPMS8-expressing neurons) [55].
Briefly, the value of rA was obtained by averaging the
distances between a given cell in one population and its
nearest neighbor in the other population (ie., the
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nearest-neighbor distance). The mean r value for
complete spatial independence between cells in the two
populations was calculated using the following equation:
rE = 2\n/1‘§+2“2p1 , with nl and n2 being the relative
proportions of the two cell populations (nl +n2 =1), and
pl and p2 being the densities of the two respective cell
populations. The ratio R = % provides a measure of the
spatial association between two populations of cells, with
R = 1 indicating a lack of association (i.e., spatial inde-
pendence). An R value less than or greater than 1 corre-
sponds to a spatial association between two cell
populations that is more clustered than random (i.e., ag-
gregation) or more regular than random (i.e., avoidance),
respectively. The significance of the departure from the
expected spatial independence was tested by the stand-
ard variate of the normal curve as follows: tE-rA

¢= orE
where orE is the standard error of rE. The ¢ values 1.96
and 2.58 represent the 0.05 and the 0.01 levels of signifi-

cance, respectively, for a two-tailed test.
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