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Abstract 

Background: Increased nociceptive neuronal excitability underlies chronic pain conditions. Various ion channels, 
including sodium, calcium and potassium channels have pivotal roles in the control of neuronal excitability. The mem‑
bers of the family of G protein‑gated inwardly rectifying potassium (GIRK) channels, GIRK1–4, have been implicated 
in modulating excitability. Here, we investigated the expression and distribution of GIRK1 and GIRK2 in normal and 
injured dorsal root ganglia (DRGs) and spinal cord of rats.

Results: We found that ~70% of the DRG neurons expressed GIRK1, while only <10% expressed GIRK2. The neu‑
rochemical profiles of GIRK1‑ and GIRK2‑immunoreactive neurons were characterized using the neuronal markers 
calcitonin gene‑related peptide, isolectin‑B4 and neurofilament‑200, and the calcium‑binding proteins calbindin 
D28k, calretinin, parvalbumin and secretagogin. Both GIRK subunits were expressed in DRG neurons with nocicep‑
tive characteristics. However, while GIRK1 was widely expressed in several sensory neuronal subtypes, GIRK2 was 
detected mainly in a group of small C‑fiber neurons. In the spinal dorsal horn, GIRK1‑ and ‑2‑positive cell bodies and 
processes were mainly observed in lamina II, but also in superficial and deeper layers. Abundant GIRK1‑, but not 
GIRK2‑like immunoreactivity, was found in the ventral horn (laminae VI–X). Fourteen days after axotomy, GIRK1 and 
GIRK2 were down‑regulated in DRG neurons at the mRNA and protein levels. Both after axotomy and rhizotomy there 
was a reduction of GIRK1‑ and ‑2‑positive processes in the dorsal horn, suggesting a presynaptic localization of these 
potassium channels. Furthermore, nerve ligation caused accumulation of both subunits on both sides of the lesion, 
providing evidence for anterograde and retrograde fast axonal transport.

Conclusions: Our data support the hypothesis that reduced GIRK function is associated with increased neuronal 
excitability and causes sensory disturbances in post‑injury conditions, including neuropathic pain.

Keywords: Axonal transport, Ca2+‑binding proteins, CGRP, Galanin, GIRK channel, Nerve injury, Neuropathic pain, 
Neuropeptides, NPY, Nociceptor, Somatostatin

© 2015 Lyu et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://
creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided 
you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate 
if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/
zero/1.0/) applies to the data made available in this article, unless otherwise stated.

Open Access

*Correspondence:  htylv123@126.com 
1 School of Life Science and Technology,  
Harbin Institute of Technology, 150001 Harbin, China
Full list of author information is available at the end of the article

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12990-015-0044-z&domain=pdf


Page 2 of 19Lyu et al. Mol Pain  (2015) 11:44 

Background
G protein-gated inwardly rectifying K+ (Kir3/GIRK) 
channels belong to the super-family of proteins known 
as inward rectifier K+ (Kir) channels (Kir1–Kir7) and 
are mainly found in the nervous system and heart [1, 2]. 
Kir channels pass current most efficiently at membrane 
voltages negative to potassium’s reversal potential, thus 
allowing large inward flux of potassium ions. Although 
not fully understood, the mechanism behind the rectifi-
cation involves a high-affinity block by endogenous pol-
yamines and magnesium ions at depolarized potentials, 
resulting in a reduction of outward current [1, 2].

Functional GIRK channels in mammals are com-
posed of homo- or heterotetramers consisting of subu-
nits GIRK1–4 (including splice variants of GIRK1 and 
GIRK2) [3–7]. However, it is uncertain whether all 
GIRKs are functional in native tissue. GIRK1 does not 
form functional homomultimeric channels, probably 
due to absence of an endoplasmic export signal [8–10]. 
The activation of inhibitory G-protein-coupled recep-
tors (GPCRs) [2] opens GIRK channels via Gβγ subunits 
released from G proteins. This can suppress neuronal 
excitability and inhibit transmitter release [11]. Numer-
ous GPCRs, including opioid, adrenergic, dopaminergic, 
GABAB, muscarinic cholinergic, cannabinoid, endothelin 
(B), somatostatin and galanin receptors, are functionally 
coupled with GIRK channels in the nervous system [12–
17]. GIRK activation generally decreases neuronal firing, 
leading to neuronal self-inhibition, neuron-to-neuron 
inhibition and inhibition at the network level [18–20]. 
In fact, GPCRs-GIRK signaling pathways contribute to 
many physiological and pathophysiological conditions, 
such as pain, reward, learning/memory, anxiety, schizo-
phrenia and addiction [21].

GIRK channels have functionally been associated with 
pain perception, in particular as major mediators for opi-
oid-induced analgesia in both brain and periphery, as evi-
denced by the use of the specific GIRK channel blocker 
tertiapin-Q (TTQ) and knock-out (KO) mice [22–26]. 
For example, GIRK2 channels are critical for the analge-
sic actions of opioids [22] and GIRK1- and/or GIRK2-KO 
mice display thermal, mechanical and chemical hyperalge-
sia [27, 28]. With regard to chronic, or neuropathic pain, 
which is caused by injury or disease afflicting the nervous 
system, the understanding of the involvement of GIRKs 
is limited [29–32]. This contrasts with the comprehensive 
knowledge of the distribution, function and therapeutic 
potential of other types of potassium channels, especially 
voltage gated channels, in peripheral pathways [33].

GIRK subunits are extensively and differentially distrib-
uted in the mammalian central nervous system [34–36], 
but less is known about the distribution of these channels 
at the spinal level, i.e. in dorsal root ganglia (DRGs) and 

spinal cord. However, detailed analyses, including immuno-
electron microscopy, have been carried out on the mouse 
spinal dorsal horn [28, 37, 38]. Moreover, based on RT-PCR 
and electrophysiology, expression of all four subunits of 
GIRKs in rat DRGs has been reported [39]. Here we exam-
ine the native distribution and injury-induced changes in 
the expression of two GIRK subunits, GIRK1 and -2, in rat 
DRG neurons and spinal cord using immunohistochemis-
try (IHC) and in situ hybridization (ISH).

Results
Expression of GIRK1 and ‑2 in control DRGs
Using IHC, GIRK1 and -2 showed different expression 
patterns in control lumbar 4–5 (L4–5) DRGs (Figures 1, 2). 
GIRK1 was detected in a large proportion (71.5 ± 1.6%) of 
DRG neuronal profiles (NPs) of different sizes (Figures 1A, 
C, 2C), while GIRK2-positive (+) NPs were much fewer 
(8.1 ± 1.1%) and tended to be smaller (Figures 1A, D, 2G). 
GIRK1- like immunoreactivity (LI) was seen as a granu-
lar perinuclear labelling in the cytoplasm of the neurons, 
and appeared occasionally enriched in the cell membrane 
(Figure 2A–A3, D–F). GIRK1-LI was predominantly seen 
throughout the soma of medium-sized and large neurons 
(Figure  2B–B3). GIRK2 staining was evenly distributed 
throughout the cytoplasm of small neurons (Figure  2G, 
I), but was in a few instances also membrane-enriched 
in small neurons (Figure  2H). In large neurons, GIRK2+ 
staining was always found in cell-membrane compart-
ments (Figures 1A, 2J), which can also be confirmed by the 
intensity distribution of different sizes of GIRK2+ neurons, 
where all large GIRK2+ neurons had a much lower inten-
sity compared with small ones (Figure 1D).

We used calcitonin gene-related peptide (CGRP), 
isolectin B4 (IB4), and neurofilament 200 (NF200) as 
phenotypic markers to differentiate small unmyelinated 
peptidergic, small unmyelinated non-peptidergic and 
medium-sized and large myelinated neurons, respec-
tively [40]. GIRK1 and GIRK2 showed different distri-
butions among phenotypic characterized neurons. Of 
all GIRK1+ NPs, 27.2 ± 1.2, 51.1 ± 1.7 and 39.2 ± 3.5% 
co-expressed CGRP, IB4 and NF200, respectively. Con-
versely, 57.7 ±  1.3, 71.7 ±  5.4, and 56.9 ±  6.4% of the 
CGRP+, IB4+, and NF200+ NPs expressed GIRK1, 
respectively (Figure 1A, B). Most GIRK2+ NPs contained 
IB4-reactive glycoprotein (73.4 ± 1.7%) and 32.0 ± 2.6% 
of GIRK2+ NPs expressed NF200, but none CGRP. Con-
versely, 11.4 ±  1.3 and 5.8 ±  0.9% of IB4+ and NF200+ 
NPs expressed GIRK2, respectively (Figure 1A, B).

Previous studies have indicated that GPCR-GIRK 
modulatory pathways may be involved in abnormal sen-
sations such as neuropathic, inflammatory or arthritic 
pain [30, 41]. Here, we examined a set of GPCRs that 
have previously been linked to neuropathic pain, namely 
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neuropeptide Y Y1 receptor (Y1R), somatostatin recep-
tor 1 (SST1) and somatostatin receptor 2A (SST2A), 
with regard to their co-localization with GIRK1 and 
-2 in DRGs. Y1R, SST1 and SST2A were, as expected, 
found on membranes and in the cytoplasm, and all three 
co-existed with GIRK1, occasionally on the membrane 
(Figure  2D–F). In GIRK2+ neurons, SST1-LI, but not 
SST2A-LI or Y1R-LI, was observed (Figure 2K–M).

To further characterize the distribution of GIRK1 and 
GIRK2 among DRG neurons, four calcium-binding pro-
teins (CaBPs), calbindin D28k (CB), calretinin (CR), parval-
bumin (PV) and secretagogin (Scgn), were used as markers 
[42–46]. We found that 12.7 ± 2.1, 14.3 ± 1.3, 29.2 ± 3.6 
and 3.7 ± 0.8% of the GIRK1+ NPs expressed CB, CR, PV 
and Scgn, respectively. Conversely, 58.8 ±  5.4, 78.1 ±  3.1, 
78.7 ± 3.4 and 77.5 ± 5.6% of the CB+, CR+, PV+ and Scgn+ 
NPs expressed GIRK1, respectively (Figure 3A, C). Moreo-
ver, 78.8 ± 3.0% of the GIRK2+ NPs expressed CB, but none 
expressed any of the other three CaBPs. 55.1 ± 4.9% of the 
CB+ NPs expressed GIRK2 (Figure 3B, C).

Thus, GIRK1 was more diversified in its co-localization 
with CaBPs as compared to GIRK2, which only expressed 
one (CB) of the four tested CaBPs.

Co‑expression of GIRK1 and ‑2 with galanin and nNOS 
in DRGs after axotomy
Altered expression of molecular components of signaling 
pathways in DRG neurons induced by peripheral nerve 

injury is usually regarded as one of the mechanisms for 
long-term modulation underpinning neuropathic pain 
development [47]. Two biomarkers, galanin [48] and 
nNOS [49, 50], have been shown to be regulated in ipsi-
lateral rat DRGs after peripheral nerve injury and are 
suggested to be involved in chronic pain states. Here we 
show that GIRK1, but not GIRK2, co-localized with both 
these molecular markers (Figure 4). We found 21.3 ± 2.9 
and 19.6 ±  5.7% of GIRK1+ NPs expressed galanin and 
nNOS, respectively. Conversely, 35.0 ± 6.6, 46.5 ± 4.2% 
of the galanin+ and nNOS+ expressed GIRK1, respec-
tively (Figure 4M).

Expression of GIRK1 and ‑2 in spinal cord
Dense networks of GIRK1+ and -2+ nerve terminals and 
neuronal cell bodies were observed in the superficial 
layers of the spinal dorsal horn (Figures  5A, B, 6A, B). 
GIRK1+ and GIRK2+ fibers were most abundant in the 
lateral aspects and presented in outer and inner lamina 
II, as well as at the border between lamina II and III (Fig-
ures 5H, H2, I, I2, 6C, C2, D, D2). GIRK1- and -2-immu-
noreactive (IR) neuronal cell bodies, including multipolar 
neurons, were seen in different layers (Figures 5 B1–C, E, 
F, 6B1–B3). Some multipolar GIRK1+, but no GIRK2+, 
interneurons were found in the border area between grey 
and white matter at the level of lamina V (Figure 5C). 

In the ventral horn numerous GIRK1- IR neurons were 
observed, extending from lamina VI to IX, also including 

Figure 1 GIRK1 and ‑2 co‑exist with neuronal markers in control DRGs. A GIRK1 co‑exists with CGRP, IB4 or NF200, whereas GIRK2 only co‑exists 
with IB4 or NF200. Arrowheads indicate co‑existence of GIRKs with respective markers. B1 Percentage co‑existence of GIRK1+ and ‑2+ NPs with 
CGRP, IB4 or NF200. B2 Percentage co‑existence of CGRP+, IB4+ or NF200+ NPs with GIRKs. C Fluorescence intensity plotted vs. cross‑sectional area 
of GIRK1+ neurons. D Fluorescence intensity plotted vs. cross‑sectional area of GIRK2+ neurons. Scale bar indicates 40 μm (A, valid for all).
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lamina X surrounding the central canal (Figure 5D, D1). 
All CGRP+ motoneurons expressed GIRK1 (Figure 5G–
G2). GIRK2-IR neurons were not detected in the ventral 
spinal cord.

In order to further investigate the phenotype of GIRK1+ 
and GIRK2+ neurons in the spinal dorsal horn, SST2A 
was used as a marker for GABAergic inhibitory interneu-
rons in lamina I–II. The SST2A+ interneurons represent 

>50% of all neurons in this region [51, 52]. We did not 
observe any co-existence of GIRK1 with SST2A, while 
occasional examples of neurons co-expressing GIRK2 
and SST2A were found (Figure 7A–B3, E–F3). To identify 
excitatory nerve terminals in dorsal horn, we used vesi-
cle glutamate transporter 1 (VGLUT1) as a marker. Some 
examples of co-localization between GIRK1- or -2-LI 
with VGLUT1-LI were noted (Figure 7C–D2, G–H2).

Figure 2 GIRK1 and ‑2‑LIs in control DRG neurons. A–A3 GIRK1 is strongly expressed in the perinuclear region (A, A3), and IB4‑LI in the non‑pep‑
tidergic DRG neurons (A1). Hoechst‑LI (A2) is a nuclear marker, and open arrowheads indicate neurons with co‑existence (here and below). B–B3 
GIRK1‑LI is seen throughout the cytoplasm in medium‑sized and large neurons (B, B3), NF200‑LI is a marker for large myelinated Aβ fiber neurons 
(B1, B3). C GIRK1‑LI is extensively expressed in DRGs, with varying intensities. D–F Double‑staining shows co‑existence of GIRK1 with Y1R (D), SST1 
(E) and SST2A (F). Arrows point to membrane‑association of GIRK1 with the respective GPCR. G–J GIRK2‑LI is found in cell bodies, and also fibers 
(boxed area, solid arrowheads) in a DRG (G). GIRK2‑LI is associated with the cell membrane in both small (H) and large neurons (G, J), and a strong 
cytoplasmic staining is found in small neurons (G, I). K–M Double‑staining shows that GIRK2 co‑exists with SST1 (L), but not with Y1R (K) or SST2A 
(M). Scale bars indicate 100 μm (C, G), 40 μm (A–A3, B–B3, E, H–J, L, M), 20 μm (D, F, K).
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Expression of GIRK1 and ‑2 proteins and mRNAs in DRGs 
and dorsal horn after axotomy
Fourteen days after axotomy, a significant decrease in the 
percentage of GIRK1-IR and GIRK2-IR NPs was observed 
in the ipsilateral as compared to contralateral DRGs 
(GIRK1, 54.7 ±  3.0 vs. 71.53 ±  1.6%, p  <  0.05; GIRK2, 
1.8 ± 0.6 vs. 8.1 ± 1.1%, p < 0.01, n = 8 per group; Fig-
ures 8A, B, 9A, B). The surgical denervation of the DRGs 
was confirmed by an up-regulation of galanin-LI in NPs 
of the ipsilateral DRGs (data not shown) [53]. We next 
used western blot to detect total levels of GIRK1 and -2 
proteins in contra- and ipsilateral DRGs after nerve injury. 
Our results confirmed that both GIRK1 and -2 subunits 
were down-regulated by axotomy (Figures 8C, 9C). 

In situ hybridization demonstrated moderate GIRK1 
mRNA levels in a large proportion of neurons in con-
tralateral DRGs, while the GIRK2 mRNA signal was 
restricted and weak. In ipsilateral DRGs, however, a strong 
reduction of GIRK1 and GIRK2 mRNA levels was evident 
as compared to the contralateral DRGs (Figures 8D, 9D), 
respectively. Taken together, the data indicated a marked 
down-regulation of both protein and mRNA levels of 
GIRK1 and -2 in DRGs after peripheral nerve injury.

Peripheral nerve injury also induced change in protein 
expression in the dorsal horn. Thus, 14  days after axot-
omy we detected a strong reduction in GIRK1 and -2-LIs 
in the ipsilateral dorsal horn lamina II (Figures 8E, F, 9E, 
F).

Figure 3 GIRK1 and ‑2 co‑exist with CaBPs in control DRG neurons. A GIRK1 co‑exists with PV, CB, CR or Scgn. Arrowheads indicate co‑existence of 
GIRK1 with the respective CaBP (yellow). B GIRK2 co‑exists with PV, CB, CR or Scgn. Arrowheads indicate co‑existence of GIRK2 with CB (yellow). This 
co‑existence is only found in small neurons. C Quantification analysis shows the percentage of GIRK1+ and ‑2+ NPs that co‑express the respective 
CaBPs (C1), and conversely the percentage of the respective CaBP+ NPs that co‑expresses GIRK1 or ‑2 (C2). Scale bars indicate 40 μm (A, B, valid for 
all).
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Figure 4 GIRK1 and ‑2 co‑exist with galanin (Gal) or nNOS in ipsilateral DRG neurons after unilateral axotomy. A–F Double staining shows that 
GIRK1 (A, D) co‑exists with Gal (B, C) and nNOS (E, F). Arrowheads indicate co‑existence (yellow). G–L Double staining shows that GIRK2 (G, J) nei‑
ther co‑exists with Gal (H,  I) nor nNOS (K,  L). M Quantification analysis shows the percentage of GIRK1+ and ‑2+ NPs that co‑express Gal or nNOS 
(M1), and conversely the percentage of Gal+ and nNOS+ NPs that co‑express GIRK1 or ‑2 (M2). Scale bar indicates 40 μm (A–L, valid for all).
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Axonal transport of GIRK1 and ‑2
GIRK1- and -2-LIs were observed in nerve fibers of the 
intact sciatic nerve. Double-labelling with the axonal 
marker PGP9.5 suggested co-localization with GIRKs 
in control nerve and after ligation. This was especially 
distinct with GIRK2 (Figures  10A, 11A). After sciatic 
nerve ligation, GIRK1-LI and -2-LIs accumulated both 

proximal and distal to the ligation (Figures 10B, 11B). We 
also detected GIRK1+ and GIRK2+ nerve fibers in der-
mis layers of glabrous skin of the hind paw (Figures 10C, 
11C). Dorsal rhizotomy markedly reduced GIRK1-LI 
in the mid/lateral region in lamina II of the dorsal horn 
(Figure  10D). A similar but less pronounced effect was 
seen for GIRK2-LI (Figure 11D). 

Figure 5 GIRK1‑LI in L4‑5 segments of control spinal cord. A GIRK1‑LI in the L4‑5 spinal cord at low magnification. B GIRK1‑LI in the dorsal horn 
(DH). GIRK1‑IR processes are mainly present in superficial layers. NeuN‑LI (here and below) is used to identify neurons. B1–B2 Double‑staining 
shows the distribution of GIRK1‑IR cell bodies in different DH laminae, from the superficial to deep layers. C GIRK1‑IR multipolar neurons are seen 
both in white matter and deep DH layers at the white matter border. D GIRK1 is extensively expressed in ventral horn (VH) neurons, in lamina VI 
to IX, and around the central canal (lamina X). D1 High magnification image shows the typical expression pattern of GIRK1‑LI in a VH neuron. E, F 
A few GIRK1+ neurons in DH show dot‑like immunoreactivity in soma (solid arrowheads) and processes (open arrowheads). (G–G2) CGRP+ motor 
neurons (G1) express GIRK1 (G). (H–H2) GIRK1‑LI (H, H2) and CGRP‑LI (H1, H2) show only limited overlap. (I–I2) GIRK1‑LI (I) overlaps with PV‑LI (I1) 
in inner lamina II (I2). Scale bars indicate 500 μm (A), 200 μm (D, G–G2), 100 μm (B, H–I2), 20 μm (B1, B2, C, D1, E), 10 μm (F).
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Discussion
In the present study we report that GIRK1 is expressed 
in a majority of DRG neurons of different sizes and thus 
associated with different modalities, whereas GIRK2 is 
limited to a small subpopulation of nociceptors. Both 
are down-regulated after peripheral nerve injury. These 
results provide histochemical support for involvement of 
GIRKs in pain processing at the spinal level as reported 
in earlier studies [29, 30, 38], and complement a large 
number of studies showing a similar regulation, and pre-
sumable function, of voltage gated K+ channels, which 

also are down-regulated by peripheral nerve injury [31, 
33, 54–62].

GIRK1 and ‑2 mRNAs in DRGs
In the current study, we focused on the expression of 
GIRK1 and -2 in DRGs and spinal cord under native 
and neuropathic pain conditions. Our qPCR and ISH 
results show that GIRK1 and -2 mRNAs are expressed 
in rat DRGs, which is in agreement with a previous 
study on rat based solely on RT-PCR [39]. The GIRK1 
and -2 mRNA signals were robust (Ct values around 24 

Figure 6 GIRK2‑LI in L4‑5 segments of control spinal cord. A GIRK2‑LI in the L4‑5 spinal cord at low magnification. (B–B2) Double‑staining shows 
GIRK2‑IR neuron distribution in different dorsal horn laminae, from the superficial to the deeper layers. NeuN‑LI is used to identify neurons (here 
and below). (B3) Typical cytoplasmic staining pattern of GIRK2‑LI. (C–C2) GIRK2‑ (C) and CGRP‑LIs (C1) partly overlap in the dorsal horn (C2). (D–D2) 
GIRK2‑LI (D) overlaps with PV‑LI (D1) in inner lamina II (D2). Scale bars indicate 500 μm (A), 100 μm (B, C–D2), 20 μm (B1, B2), 10 μm (B3).



Page 9 of 19Lyu et al. Mol Pain  (2015) 11:44 

and 28, respectively, data not shown). Also with ISH we 
could detect transcripts for GIRK1 and -2, both of which 
undergo alternative splicing [3, 4].

GIRK1 and ‑2 proteins in DRGs
So far, little is known about the neurochemical pheno-
type of GIRK1 and -2-IR neurons in rat DRGs and spi-
nal cord. Here we observed a patchy, cytoplasmic and 
perinuclear GIRK1-IR staining around the nucleus, 
suggestive of endoplasmic reticulum (ER) localiza-
tion, while a distinct association with the neuronal cell 
membrane was rarely observed. This fits with the notion 
that GIRK1 lacks an ER export signal, and must associ-
ate with another GIRK subunit for expression in the 
plasma membrane [8, 63]. Here GIRK2 would be suit-
able, which was extensively expressed in both cytoplasm 

and on membranes, however in a fairly small population. 
Almost 73% of the GIRK2+ and ~50% of the GIRK1+ 
neurons were IB4+, indicating that nociceptors might 
express GIRK1/2 heterotetrameric channels. In contrast, 
around 27% of the GIRK1+, but no GIRK2+, neurons 
expressed CGRP; thus it is unlikely that heterotetramers 
between these two GIRKs exist in peptidergic nocicep-
tors [40].

The large myelinated neurons, identified by NF200, give 
rise to A-fibers, including Aβ fibres, and mostly subserve 
mechansensory functions [64]. In this cell population, 
GIRK1-LI was expressed in ~39% of the NPs throughout 
the cytoplasm. GIRK2-LI was found in around one-third 
of these neurons, and the immunoreactivity was always 
associated with the cell membrane. Thus, in these neu-
rons functional GIRK1/2 heterotetramers may exist.

Figure 7 The two GIRKs overlap with SST2A and VGLUT1 in control spinal dorsal horn. A GIRK1‑LI overlaps with SST2A‑LI. B–B3 Triple‑staining (B3) 
for GIRK1 (B), SST2A (B1) and Hoechst (B2) shows no co‑existence of GIRK1‑LI (solid arrowheads) with SST2A‑LI (open arrowheads) in the superficial 
laminae. C GIRK1‑LI overlaps with VGLUT1‑LI in the superficial laminae. D–D2 Double‑staining (D2) shows that only a few VGLUT1‑IR boutons (D2) 
are GIRK1+ (D, D2) (open arrowheads), as indicated in the high power magnification (upper box, D2). Most of VGLUT1+ boutons have no GIKR1‑LI 
(solid arrowheads). E GIRK2‑LI overlaps with SST2A‑LI in superficial laminae. F–F3 Triple‑staining (F3) for GIRK2 (F), SST2A (F1) and Hoechst (F2) 
shows a possible membrane associated co‑localization of GIRK2 and SST2A (solid arrowheads), open arrowheads show the GIRK2+, but SST2A‑
negative (−) neurons. (G) GIRK2‑LI overlaps with VGLUT1‑LI. (H–H2) Double‑staining (H2) for GIRK2 (H) and VGLUT1 (H1) shows that some VGLUT1+ 
boutons are GIRK2+ in the spinal dorsal horn (open arrowheads), as shown in high power magnification (upper box, H2). Most of VGLUT1+ boutons 
are however GIRK2− (solid arrowheads). Scale bars indicate 100 μm (A, C, E, G), 25 μm (D–D2, H–H2), 20 μm (B–B3), 10 μm (F–F3).
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Further phenotyping showed that different small 
GIRK1+ neuron subpopulations express all four CaBPs 
studied, the largest one expressing PV (~30%). GIRK2+ 
neurons only expressed CB. The functional implications 
of these results remain to be resolved.

GIRK1 and ‑2 interaction with inhibitory GPCRs
G protein-induced opening of GIRK channels typically 
results in a several-fold increase in potassium conduct-
ance at the resting membrane potential. GIRK opening 
is one of the fastest metabotropic effector mechanisms, 
owing to its short signaling pathway, with the G protein 
as the single link between the receptor and the channel. 
As such, it well suited for rapid responses to neuromodu-
lators [1].

Double immunofluorescence staining of DRG neurons 
showed that GIRK1 co-exists with three neuropeptide 
receptors linked to inhibitory neurotransmission and 
neuropathic pain: the Y1, SST1 and SST2A receptors 
[65]. All these receptors showed a clear membrane asso-
ciation, and in some cases an overlap with GIRK1 stain-
ing was seen, possibly indicating functional interaction. 
GIRK2 was only associated with SST1+ neurons.

GIRK channels are downstream effectors of SST4 
for its analgesic effects in rat DRGs [16, 66], and soma-
tostatin may induce slow inhibitory, postsynaptic cur-
rents (IPSCs) through activation of GIRK channels [12]. 
However, it has been reported that the SST1 receptor, 
in contrast to SST2-5, does not open GIRK channels but 
might instead decrease their currents [67, 68]. Therefore, 

Figure 8 Protein and mRNA expression of GIRK1 in DRGs and spinal cord 14 days after axotomy. A, B Percentage of GIRK1+ NPs is significantly 
decreased in the ipsilateral (n = 8) as compared to contralateral DRGs (n = 8). C Western blot result showing GIRK1 protein levels confirms this 
effect (n = 4 per group). D GIRK1 mRNA is extensively distributed in the contralateral DRG and is ipsilaterally down‑regulated after axotomy (upper 
panel: low magnification; lower panel: high magnification). E GIRK1‑LI (within white frame) in the dorsal horn. F Monitoring fluorescence intensity 
in the dorsal horn shows down‑regulation of GIRK1‑LI in all animals (n = 3 per group). *P < 0.05. Scale bars indicate 500 μm (E), 200 μm (D, upper 
panel; A) and 100 μm (D, lower panel).
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somatostatin may play different roles in different neu-
ronal populations in DRGs.

Furthermore, NPY may via Y1 receptors, and GIRK 
channels cause postsynaptic hyperpolarization in tonic 
firing neurons in substantia gelatinosa [69]. Also in other 
regions of the central nervous system NPY acts via GIRK 
channels, e.g., inhibitory effects of NPY in lateral amyg-
dala have been shown to be mediated through Y1 recep-
tor and GIRK1, 2, and 3 [70].

Also for galanin actions GIRK channels are impor-
tant, since the anticonvulsant effect of a GalR1 agonist 
was abolished by the GIRK channel inhibitor tertiapin Q 
[71]. In addition, galanin has been associated with GIRKs 
at the spinal level [72]. Unfortunately there is no reliable 
antiserum recognizing any of the three galanin receptors, 
GalR1-3, but both GalR1 and GalR3 mediated inhibition 

via opening of potassium channels [17, 73]. ISH has 
shown that >40% of the small and medium-sized NPs in 
rat DRGs express GalR1 mRNA (and ~75% GalR2) [74].

GIRKs have mainly been associated with postsynaptic 
receptors (see below), but DRG neuron cell bodies are 
not considered to be ‘innervated’ by nerve endings and 
thus do not seem to represent a postsynaptic structure. 
However, it was previously shown that the neuropeptide 
substance P can be released from DRG neuron cell soma 
[75], and thus influences adjacent ‘postsynaptic’ DRG cell 
bodies in a paracrine way, or acts on the releasing cell 
itself (‘autocrine’ signaling). We have proposed that also 
NPY and galanin, especially after nerve injury-induced 
up-regulation, in a similar fashion can be released from 
DRG cell soma [76], and thus be involved in chemi-
cally mediated cross-excitation in DRGs as proposed by 

Figure 9 Protein and mRNA expression of GIRK2 in DRGs and spinal cord 14 days after axotomy. A, B Percentages of GIRK2+ NPs is significantly 
decreased in the ipsilateral (n = 8) as compared to the contralateral DRGs (n = 8). C Western blot result showing GIRK2 protein levels confirms this 
effect (n = 4 per group). D GIRK2 mRNA shows a modest signal in the contralateral DRG, and is down‑regulated in the ipsilateral DRG after axotomy 
(upper panel: low magnification; lower panel: high magnification). E GIRK2‑LI (within white frame) in the dorsal horn. F Monitoring fluorescence inten‑
sity in the dorsal horn shows down‑regulation of GIRK2‑LI in all animals (n = 3 per group). **P < 0.01. Scale bars indicate 200 μm (D, upper panel; A 
and E), 100 μm (D, lower panel).
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Figure 10 Axonal transport of GIRK1‑LI. A GIRK1‑LI is observed in many PGP9.5+ fibers in intact sciatic nerve. B After a 10‑h nerve ligation, a strong 
accumulation of GIRK1‑LI is seen on both proximal and distal side (arrowheads). C A few GIRK1+ and PGP9.5+ fibers (arrowheads) are observed in the 
epidermis layer of glabrous skin in rat hind paw. D Twenty‑one days after unilateral lumbar dorsal rhizotomy, a reduction of GIRK1‑LI is seen within 
region 2 (arrowheads), but not in region 1 (arrows), as compared with the contralateral side. A dramatic reduction of CGRP‑LI is seen ipsilaterally. 
Scale bars indicate 500 μm (B), 200 μm (A, C, low magnification; D), 50 μm (C, high magnification).

Figure 11 Axonal transport of GIRK2‑LI. A GIRK2‑LI is observed in many PGP9.5+ fibers in intact sciatic nerve. B After a 10‑h nerve ligation, a strong 
accumulation of GIRK2‑LI is seen on both proximal and distal side (arrowheads). C A few GIRK2+ and PGP9.5+ fibers (arrowheads) are observed in the 
epidermis layer of glabrous skin in rat hind paw. D Twenty‑one days after unilateral lumbar dorsal rhizotomy, a reduction of GIRK2‑LI is seen within 
region 2 (arrowheads), but not in region 1 (arrows), as compared with the contralateral side. A strong reduction of CGRP‑LI is seen ipsilaterally. Scale 
bars indicate 500 μm (B), 200 μm (A, C, low magnification; D), 50 μm (C, high magnification).
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Amir and Devor [77]. Here, GIRKs expressed at the DRG 
neuron cell membrane may be involved in NPY Y1 and 
GalR1 signaling.

GIRK1 and ‑2 in spinal cord
In lamina II of mouse dorsal spinal horn, GIRK1- and 
-2-LI have previously been detected in excitatory 
interneurons (“almost exclusively in postsynaptic mem-
branes”) by immunoelectron microscopy [28, 37, 38]. 
However, expression of these subunits has not been 
explored in the rat spinal cord. Here, we demonstrate 
presence of a dense plexus of GIRK1+ and -2+ neuronal 
processes and cell bodies in, mainly, lamina II in the rat 
dorsal horn, as well as in nerve terminals in the skin. The 
decrease in staining in the dorsal horn after axotomy and 
rhizotomy, suggests that GIRK+ processes not only origi-
nate from local neurons but also represent primary affer-
ents, i.e. GIRK1 and -2 have a presynaptic localization. 
This is also supported by the co-localization of GIRK1 
or -2 with VGLUT1 in a few boutons in the dorsal horn, 
since VGLUT1 in this region is only presented in, even if 
few, primary afferents [78]. Further support comes from 
the fact that the GIRKs accumulate around a ligation 
of the sciatic nerve, i.e. the channels are transported in 
axons.

A presynaptic localization has been shown in some 
studies [79, 80]. Ladera et  al. reported, using immuno-
gold electron microscopy, presence of GABAB receptors 
and GIRK2 and -3 in presynaptic boutons in cerebral 
cortex, and a GABAB-mediated reduction in glutamate 
release that could be reversed by the GIRK channels 
blocker tertiapin-Q [80]. A similar situation exists in 
the cerebellum, here involving parallel fibers and, again, 
GABAB receptors [11]. Taken together, GIRKs may play 
a role in presynaptic control of excitatory signaling also 
in the dorsal horn (and skin) and via such mechanisms 
influence pain signaling.

GIRK1-IR cell bodies were also found in other spinal 
layers, some multipolar neurons in lamina V and white 
matter and fusiform neurons in the deep layers. Thus, 
GIRK1+ neurons exhibit diverse morphological proper-
ties in deep dorsal horn layers. They may also represent 
projection neurons. In addition, an extensive expression 
of GIRK1-LI in the ventral horn was seen from lamina VI 
to X, some of which were co-localized with CGRP and 
thus represent motor neurons. Similarly, GIRK2-IR cells 
bodies were found in different layers of the spinal dorsal 
horn, but none in the ventral horn.

Inhibitory interneurons constitute 30–40% of neurons 
in rat lamina I–III, many of which serve an important 
anti-nociceptive function, and virtually all are GABAe-
rgic, some using glycine as co-transmitter [81–83]. 
Around half of the inhibitory interneurons in lamina I–II 

possess SST2A [52], all of which are GABA+ in lamina I–
II of rat [84]. Here, we did not find any SST2A+ interneu-
rons in rat lamina I–II that were GIRK1+, and only a few 
were GIRK2+. Thus, rat GIRK interneurons may in gen-
eral, as in mouse, be excitatory. Also, GIRK channels may 
be of limited importance in pain signaling through soma-
tostatin receptors at the spinal level, although GIRK3 
and -4 should be considered. In agreement, GIRK chan-
nels influence signaling from myelinated low-threshold 
mechanical nociceptive afferents as well [85].

Axonal transport of GIRK1 and ‑2
GIRK1- and -2-LIs were observed in control rat sciatic 
nerve at apparently comparable levels. This is some-
what surprising, since there are almost 10 times as many 
GIRK1+ as GIRK2+ NPs in the DRGs. Sciatic nerve 
ligation caused an accumulation of both GIRKs on the 
proximal and distal side of the lesion, indicating both 
antero- and retrograde axonal transport of the channels. 
We also found GIRK1+ and GIRK2+ fibers in the der-
mis layer of hind paw. Twenty-one days after dorsal rhi-
zotomy, there was a reduction of both GIRK1- and -2-IR 
processes in the spinal dorsal horn, providing further 
support also for central centrifugal transport from the 
DRG cell bodies.

Regulation of GIRK1 and ‑2 by peripheral nerve injury
Persistent hyperexcitability of peripheral nociceptors 
caused by changes in receptor and ion channel activity 
is an important mechanism in chronic pain conditions 
[33, 86–88]. In the peripheral sensory system, ion chan-
nels like Na+ and Ca2+ channels, contribute to excitation 
of sensory neurons under chronic pain conditions, either 
by up-regulation or enhancement of activity [89, 90]. 
K+ channels set the resting membrane potential in neu-
rons, and thus control the excitability of sensory neurons 
under physiological conditions [1]. Here, we found that 
nerve injury caused a significant down-regulation of the 
K+ channels GIRK1 and -2 in DRG neurons, both at the 
mRNA and protein levels, as well as in the dorsal horn, 
14 days after peripheral nerve injury.

These results are in line with previous studies showing 
that other types of K+ channels also are down-regulated 
after various types of peripheral nerve injury [31, 33]. 
An immunohistochemical analysis of rats subjected to 
the Chung model of neuropathic pain has demonstrated 
expression of various Kv1 family subunits in distinct DRG 
neuron populations, including nociceptors, as well as a 
distinct reduction in channel protein levels [55]. Moreo-
ver, axotomy decreased mRNA levels for certain Kv1 sub-
units with up to 80%, in parallel decreasing K+ currents 
[54]. These findings have in general been interpreted 
to show that a reduction of voltage gated K+ channel 
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activity after trauma causes nerve hyperexcitability, and 
thus may contribute to peripheral and perhaps also cen-
tral mechanisms underlying neuropathic pain [33]. The 
present and other studies suggest that a similar scenario 
then can be advanced for GIRK1 and -2. The conduct-
ance of inwardly rectifying potassium channels is greatest 
at membrane potentials close to the resting voltage [1]. 
Hence, GIRK channels are thought to be a key regulator 
of excitability, increasing the stimulation current needed 
for eliciting an action potential. In contrast, other K+ 
channels which open at more depolarized voltages, have 
less impact on the firing threshold [91].

It has been suggested that many of the changes in pro-
tein expression in DRGs after nerve injury serve to coun-
teract pain [47], for example, the up-regulation of the 
inhibitory transmitters galanin and NPY, and the down-
regulation of excitatory neuropeptides CGRP and sub-
stance P result in attenuated pain signaling in the dorsal 
horn. Thus, this apparently contrasts the consequences of 
the decreased expression of various K+ channels which 
enhance pain sensation. However, it may be speculated 
that a reduced number of presynaptic GIRK1 channels 
may allow facilitated release of up-regulated pain-inhib-
iting molecules like galanin from primary afferents in the 
dorsal horn and thus contribute to pain relief. In sum-
mary our data show a window of opportunities to restore 
or enhance inhibitory signaling by locally produced anal-
gesic peptides by restoring or enhancing downstream 
GIRK mediated suppression of excitability.

Concluding remarks
We show that both GIRK1 and GIRK2 channels are 
expressed in DRG neurons, where GIRK2 appears to 
be selective for small unmyelinated non-peptidergic 
and large myelinated neurons, contrasting the extensive 
expression of GIRK1 (~70% of all NPs) in different types 
on neuron populations. Since GIRK1 needs a partner 
to become functional, and less than 10% of the NPs are 
GIRK2+, a combination with GIRK4 appears as an attrac-
tive alternative. However, GIRK3 also merits investiga-
tion. Nerve injury caused a significant down-regulation 
of both GIRK1 and -2 at mRNA and protein levels. Con-
sidering the importance of K+ channels in setting the 
resting membrane potential, this down-regulation could 
contribute to the hyperexcitability after nerve injury and 
therefore to neuropathic pain.

Methods
Animals
The experiments were performed on adult male Sprague–
Dawley rats (200–250 g, B&K Universal, Stockholm, Swe-
den). All animals were kept under standard conditions on 
a 12-h day/night cycle with free access to food and water. 

The studies were approved by the local Ethical Commit-
tee for animal experiments (Norra Stockholms djurs-
försöksetiska nämnd). Efforts were made to minimize the 
number and discomfort of the animals throughout the 
study.

Surgeries
Animals were deeply anesthetized with isoflurane. 
Unilateral, complete transection (axotomy) of the sci-
atic nerve was performed as previously described [92]. 
All of the operated animals were allowed to survive for 
14  days after surgery. Unilateral dorsal rhizotomy and 
sciatic nerve ligation were carried out according to pub-
lished procedures [93, 94]. Briefly, the skin and muscles 
were incised to expose the vertebral laminae under deep 
anesthesia. Then, the L2–5 dorsal roots were transected, 
and muscle and skin were sutured. All the animals were 
allowed to survive for 21 days after surgery. With regard 
to the nerve ligation, the animals were sacrificed after 
10 h.

Immunohistochemistry
All animals were deeply anesthetized with sodium pento-
barbital (50  mg/kg, i.p.), then transcardially perfused 
with 50 ml warm saline (0.9%; 37°C), followed by 50 ml 
of a mixture of 4% paraformaldehyde and 0.4% picric acid 
in 0.16 M phosphate buffer (pH 7.2, 37°C), and then by 
250 ml of the same, but ice-cold fixative. L4-5 DRGs and 
corresponding segments of spinal cord were dissected 
out and post-fixed in the same fixative for 90 min at 4°C. 
Specimens were stored at 4°C for 2 days in 10% sucrose 
in phosphate buffered saline (PBS, 0.1  M, pH 7.4) con-
taining 0.01% sodium azide (Sigma, St. Louis, MO, USA) 
and 0.02% bacitracin (Sigma) as preservatives. Tissues 
were embedded in OCT compound (Tissue Tek, Sakura, 
Leiden, Netherland), sectioned in a cryostat (Microm, 
Heidelberg, Germany) at 12 μm (DRGs), 14 μm (sciatic 
nerve and skin of hind paw) or 20 μm (spinal cord) thick-
ness and mounted onto slides (SuperFrost Plus, Thermo, 
Waltham, America). Immunoreactivities were visualized 
using the tyramide signal amplification system (TSA Plus; 
NEN Life Science Products, Boston, MA, USA) [46]. For 
double-staining, we first performed TSA Plus staining, 
followed by indirect immunohistochemistry [95].

The primary anti-GIRK1 and -GIRK2 antibodies were 
purchased from Alomone labs (Jerusalem, Israel). The 
polyclonal antibodies against GIRK1 (P63250: Mouse 
437–501 aa, intracellular C terminal) and GIRK2 
(P48542: Mouse 374–414 aa, intracellular C terminal) 
were both raised in rabbits. The sequence of the GIRK1 
immunogen is identical between mouse and rat, and 
with regard to GIRK2 highly conserved between these 
two species (40/41 amino acid residues identical). The 
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antibody information above is from Alomone labs. Spe-
cificities of these two antibodies have been documented 
in previous studies, also using knock-out mice [38, 96], 
and were here further confirmed by incubating sections 
of DRG or spinal cord with antiserum pre-adsorbed with 
the homologous antigen (Alomone labs). This resulted in 
no detectable fluorescent signal (Additional file 1: Figure 
S1).

Details of all primary antibodies used are provided in 
Table 1. Antibodies were diluted in PBS containing 0.2% 
(w/v) bovine serum albumin (Sigma), 0.03% TritonX-100 
(Sigma) and 0.1% (w/v) sodium azide (Sigma). To detect 
IB4+ neurons, the sections were incubated with IB4 from 
Griffonia simplicifolia I (GSA I; IB4; 2.5  g/ml; Vector 
Laboratories, Burlingame, CA, USA) followed by incu-
bation with a goat anti-GSA I antiserum (1:2,000; Vector 
Laboratories) [97].

Western blot analysis
Fourteen days after surgery, ipsi- and contralateral L4–5 
DRGs (n = 4) were removed, immediately put on dry ice, 
separately pooled and placed in lysis buffer containing 
protease inhibitor (P8340; Sigma), and then sonicated. 
Lysates were centrifuged at 12,000 rpm for 30 min at 4°C. 
The supernatant was collected for western blot analysis. 
Protein concentration was measured by Bradford’s Assay 
(Bio-Rad, Hercules, CA, USA). Laemmeli sample buffer 
containing around 20  g of protein was loaded in each 

lane, separated on 10% SDS-PAGE gel, and transferred to 
polyvinylidene fluoride (PVDF) membranes (Millipore, 
Hemel, Hempstead, UK). The membranes were blocked 
with 5% non-fat dry milk in TBS with 0.1% Tween-20 for 
1  h at room temperature (RT) and incubated overnight 
at 4°C with an antibody against GIRK1 (1:400; APC-005) 
or GIRK2 (1:400; APC-006). The membranes were incu-
bated with HRP-conjugated secondary antibodies for 
1  h at RT (1:10,000; DAKO), and exposed to ECL solu-
tion (Bio Rad) for 5 min. The membranes were stripped 
and re-probed for β-Actin (mouse monoclonal, 1:5,000; 
Sigma) as loading control.

In situ hybridization
ISH using oligoprobes was carried out as described 
previously [108]. Commercially available oligonucleo-
tide probes (CyberGene, Stockholm, Sweden) were 
used: (1) GIRK1: TGGGGACTTCAAAGGTTGCATG 
GAACTGGGAGTAATCGA; (2) GIRK2: GTGCTTTTC 
CTTGTGGTGGACAGGGTAGGTTCACTTCATC  
complementary to nucleotide sequences of rGIRK1 [Gen-
Bank: NM_031610.3], rGIRK2 [GenBank: NM_013192.2] 
mRNAs, respectively [109, 110]. Briefly, probes were 
radioactively labelled with 33P-dATP and purified with 
G50 DNA chromatography column (GE Healthcare). 
Only probes with radioactivity above 1 ×  105  CPM/μl 
were used. Twelve μm-thick DRG sections were air-dried 
and incubated with a hybridization solution containing 

Table 1 Primary antibody list

Antibody Host Experiment Dilution Supplier/catalogue # Characterization

GIRK1 Rabbit IHC(TSA) 0.17 μg/ml Alomone Labs/APC‑005 Nockemann et al. [22]

IHC(Coons) 0.75 μg/ml

WB 1:400 Marker et al. [37]

IHC(TSA) 0.2 μg/ml Alomone Labs/APC‑006 Nockemann et al. [22]

GIRK2 Rabbit IHC(Coons) 0.8 μg/ml

WB 1:400 Marker et al. [37]

CGRP Rabbit IHC(Coons) 1:2,000 S.I. Grigis Orazzo et al. [98]

NF200 Mouse IHC(Coons) 1:400 Sigma/N0142 Perry et al. [99]

Galanin Rabbit IHC(TSA) 1:4,000 E. Theodorsson Theodorsson and Rugarn [100]

nNOS Sheep IHC(Coons) 1:400 P. Emson Herbison et al. [101]

NPYY1 Rabbit IHC(Coons) 1:400 J. Walsh, H. Wong Zhang et al. [102]

SST1 Rabbit IHC(Coons) 1:1,000 S. Schulz Imhof et al. [103]

SST2A Rabbit IHC(TSA) 1:100 S. Schulz Imhof et al. [103]

VGLUT1 Rabbit IHC(Coons) 1:400 R.H. Edwards Landry et al. [104]

PGP9.5 Rabbit IHC(Coons) 1:1,600 Ultra Clone Wang et al. [105]

PV Rabbit IHC(Coons) 1:400 Swant/PV 25 Mulder et al. [95]

CR Rabbit IHC(Coons) 1:400 Swant/7699 Mulder et al. [95]

CB Rabbit IHC(Coons) 1:400 Swant/CB 38 Mulder et al. [95]

Scgn Mouse IHC(Coons) 1:1,000 Atlas/13B8 Mulder et al. [106]

β‑actin Mouse WB 1:5,000 Sigma/A5441 Amici et al. [107]
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2  ng of labelled probe/slide at 42°C overnight. After 
hybridization, sections were washed in 1 × SSC 20 min/
time at 55°C, 4 times. Then, sections were dehydrated as 
follows: in distilled water for 10 s, 60% ethanol for 15 s, 
and 95% ethanol for 15 s. The 33P-dATP-labelled sections 
were exposed for 6 weeks after dipping in NTB emulsion 
solution (Carestream Healthcare Inc, NY, USA).

Image analysis and quantification
The stained slides were captured using a 10× (Plan-
APOCHROMAT 10×/0.45) or 20× (Plan-APOCHRO-
MAT 20×/0.8) primary objective on a VSlide 
slide-scanning microscope (Metasystems, Altlußheim, 
Germany) equipped with filter sets for DAPI (EX350/50–
EM470/40), FITC (EX493/16–EM527/30) and Cy5 
(EX630/20–647/long pass). Individual field-of-view images 
were stitched to produce images of entire DRG and spi-
nal cord sections with microscopic resolution. Images 
were analyzed with MetaViewer software (Metasystems) 
separately and merged to evaluate possible co-existence 
through channel operations. Photographs were taken with 
a Nikon Coolpix 5000 digital camera (Nikon, Tokyo, Japan).

To determine the percentage of GIRK1+ and GIRK2+ 
NPs in normal and contra-/ipsilateral DRGs, every 4th 
or 6th 12  μm-thick section was selected for counting. 
All countings were conducted with MetaViewer soft-
ware (Metasystems). Total number of DRG NPs was 
counted using Hoechst staining. The number of GIRK1+ 
or GIRK2+ NPs was divided with total NPs, and percent-
ages were calculated. Four sections from each DRG in 
four animals per group were included in the analysis. To 
determine the percentages of co-existence of GIRK1 and 
-2 with neuronal phenotypic markers including CaBPs, 
DRG sections from five to ten animals were selected 
and counted as previously described [111]. The cross-
sectional area and intensity (mean gray value) of GIRKs+ 
neurons were collected from Image J software (National 
Institutes of Health). Only GIRKs+ neurons with a clear 
nucleus were selected.

Image J software was also used to measure the intensities 
of GIRK1- and GIRK2-LI in contra- and ipsilateral spinal 
cord lamina II after nerve injury. Briefly, images extracted 
from MetaViewer (Metasystems) were opened with Image 
J, the area of lamina II was drawn using outline tool, then 
the mean pixels were calculated by “Measure” function. 
Background intensity was subtracted in each spinal cord.

Statistical analyses
All data were expressed as Mean  ±  SEM. Differences 
between the percentage of GIRK1- and -2-IR NPs in con-
tra- and ipsilateral DRGs, and intensities of GIRK1- and 
-2-LIs in spinal contra- and ipsilateral lamina II were 

evaluated by unpaired Student’s t test. P < 0.05 was taken 
as the criterion for statistical significance.
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