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Abstract

Background: Cuff and spared nerve injury (SNI) in the sciatic territory are widely used to model neuropathic pain.
Because nociceptive information is first detected in skin, it is important to understand how alterations in peripheral
innervation contribute to pain in each model. Over 16 weeks in male rats, changes in sensory and autonomic innerva-
tion of the skin were described after cuff and SNI using immunohistochemistry to label myelinated (neurofilament
200 positive—NF2004) and peptidergic (calcitonin gene-related peptide positive—CGRP+) primary afferents and
sympathetic fibres (dopamine B-hydroxylase positive—DBH+)

Results: Cuff and SNI caused an early loss and later reinnervation of NF200 and CGRP fibres in the plantar hind

paw skin. In both models, DBH+4 fibres sprouted into the upper dermis of the plantar skin 4 and 6 weeks after injury.
Despite these similarities, behavioural pain measures were significantly different in each model. Sympathectomy
using guanethidine significantly alleviated mechanical allodynia 6 weeks after cuff, when peak sympathetic sprout-
ing was observed, having no effect at 2 weeks, when fibres were absent. In SNI animals, mechanical allodynia in the
lateral paw was significantly improved by guanethidine at 2 and 6 weeks, and the development of cold hyperalgesia,
which roughly paralleled the appearance of ectopic sympathetic fibres, was alleviated by guanethidine at 6 weeks.
Sympathetic fibres did not sprout into the dorsal root ganglia at 2 or 6 weeks, indicating their unimportance to pain

behaviour in these two models.

Conclusions: Alterations in sympathetic innervation in the skin represents an important mechanism that contributes

to pain in cuff and SNI models of neuropathic pain.

Keywords: Innervation, NF200, CGRP, Sympathetic nervous system, Neuropathic pain, Sprouting, Skin, Guanethidine,
Sympathectomy, Dopamine beta-hydroxylase, Tyrosine hydroxylase

Background

Animal models are very important to study the mecha-
nisms that contribute to the development and main-
tenance of neuropathic pain and to identify and assess
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novel therapeutics to help manage this disabling condi-
tion. These models can be broadly divided into two cat-
egories, the constriction and transection models. Of
relevance to this study are the cuff and spared nerve
injury (SNI) models. The cuff model involves placement
of a polyethylene cuff of fixed diameter around the sciatic
nerve [1], while the SNI model consists of transecting two
of the three terminal branches of the sciatic nerve (tibial
and common peroneal), leaving the sural nerve intact [2].
Each model produces unique alterations in nociceptive
behaviour and in peripheral innervation.

© 2015 Nascimento et al. This article is distributed under the terms of the Creative Commons Attribution 4.0 International
License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any
medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons

license, and indicate if changes were made. The Creative Commons Public Domain Dedication waiver (http://creativecommons.
org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s12990-015-0062-x&domain=pdf

Nascimento et al. Mol Pain (2015) 11:59

Normally, the skin is densely innervated by primary
afferents, including myelinated, neurofilament 200
(NF200) immunoreactive (IR) fibres, most of which
transmit non-nociceptive information, and calcitonin
gene-related peptide (CGRP)-IR small diameter fibres
that convey pain-related information [3]. Injuries to the
sciatic nerve often result in an early denervation of the
skin, with re-innervation seen at different times depend-
ing on the fibre type and model. Significant changes in
the density of NF200 and CGRP fibres in the skin have
been described in both chronic constriction [4—6] and
transection models [6-11], however no studies have
looked at the innervation of the skin after cuff.

Nerve injury also provokes changes in the innerva-
tion of postganglionic sympathetic fibres, immunore-
active for dopamine § hydroxylase (DBH) and tyrosine
hydroxylase (TH). After nerve injury, a sprouting of
sympathetic fibres into the dorsal root ganglia (DRG)
of rats [12-14] and humans [15] has been reported,
where they form baskets around sensory neurons.
This abnormal coupling between sensory and sympa-
thetic fibres in the ganglia was initially proposed to
account for sympathetically maintained pain, however
sympathetic sprouting did not often correlate with the
presence or degree of neuropathic pain [16, 17]. Sym-
pathetic fibres also sprout into the upper dermis of the
skin, a region from where they are normally absent,
after chronic constriction injury (CCI) of the sciatic
nerve [4] or the mental nerves in the trigeminal sys-
tem [18]. Like in the DRG, these newly sprouted sym-
pathetic fibres form close associations with sensory
fibres [4, 18]. To date, the contribution of these ectopic
sympathetic fibres in the skin to pain, and their pres-
ence in other nerve injury models have not been
described. This information is important as the extent
and rate of sympathetic sprouting varies considerably
between models [19].

To fill these gaps in knowledge, we compared the time-
dependent changes in peripheral innervation and pain-
related behaviour in two distinct and commonly used
models of neuropathic pain: the cuff and SNI models.
Over 16 weeks, the density of NF200 and CGRP afferents
was studied in the skin of the hind paw where mechanical
and cold behaviour was measured. In addition, the pres-
ence of ectopic sympathetic fibres in the skin and DRG
was examined, and their contribution to pain-related
behaviour was assessed with guanethidine, a means of
chemical sympathectomy, at different times after injury.
Understanding how the pattern of skin innervation is
altered in neuropathic pain is important, as it is in this
region where sensory stimuli, including the nociceptive,
are first detected. The results from this paper identify
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aberrations in sympathetic innervation in the skin as an
important mechanism contributing to neuropathic pain.

Results

Cuff and SNI rats develop mechanical allodynia and cold
hyperalgesia

Spared nerve injury surgery involves the transection of
the tibial and common peroneal branches of the sciatic
nerve, leaving the sural nerve intact, while cuff surgery
involves the application of a polyethylene cuff around the
sciatic nerve before it branches (Fig. 1a). The presence of
cold hyperalgesia, measured using a cold plate set to 5 °C,
and mechanical allodynia, were assessed at 1, 2, 4, 6, 8
and 16 weeks after surgery in cuff and SNI animals. Cuff
animals developed early cold hyperalgesia, as indicated
by an increase in the ratio of ipsilateral to contralateral
paw lifts at 1 and 2 weeks after surgery, with a return to
sham levels at later time points (Fig. 1b). The develop-
ment of cold hyperalgesia was delayed in SNI animals
and was present only at 4, 6 and 8 weeks, before return-
ing to normal at 16 weeks (Fig. 1b).

Mechanical thresholds were assessed in the center of
the paw, behind the tori, in sham, cuff and SNI rats, in a
region we named plantar paw (Fig. 1a; p). Slight ipsilat-
eral hypoalgesia was seen in SNI animals, however these
values were not significantly different from sham at any
time point. In contrast, application of the cuff resulted in
significant reductions in 50 % withdrawal thresholds from
1 to 8 weeks after surgery, with values returning to sham
levels by 16 weeks (Fig. 1c). In SNI animals, mechanical
thresholds were also measured at the boundary between
the hairy and glabrous skin, which remains innervated
by the intact sural nerve, in a region we named the lat-
eral paw (Fig. 1a; 1). SNI caused a significant reduction in
50 % withdrawal thresholds from 1 to 16 weeks compared
to sham animals in the lateral paw (Fig. 1d). Changes in
innervation were studied in the same regions of the paw
where behaviour was assessed.

Changes in NF200-IR fibre innervation in the upper dermis
of the paw skin of cuff and SNI rats

The changes in myelinated fibres, visualized using
NF200-immunoreactivity, were examined in the upper
dermis of the paw skin at various times after cuff or SNI
(Fig. 2). NF200-IR fibres, abundant in the upper dermis
of the plantar skin of sham animals, were significantly
reduced at 2 and 4 weeks after cuff, and returned to sham
levels at the later time points (Fig. 2a—e). SNI produced a
more extreme and longer lasting reduction in NF200-IR
fibres in the plantar paw skin, with significant decreases
in fibre density observed from 2 to 6 weeks, and a
recovery to near sham levels at 8 weeks (Fig. 2f-j). No
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Fig. 1 Cuff and SNI rats develop mechanical allodynia and cold hyperalgesia. a lllustration of the cuff and SNI models of neuropathic pain and the
regions of the paw targeted for behaviour and innervation changes. Animals received either a cuff or a SNI surgery. (1) The cuff model involves the
application of a polyethylene cuff around the sciatic nerve before it branches. (2) SNI involves the transection of the tibial and peroneal branches of
the sciatic nerve, leaving the sural nerve intact. Squares indicate the region of the paw where behaviour was tested and innervation changes meas-
ured. Only the plantar paw (p) was tested in cuff animals, whereas the lateral paw (/), innervated by the spared sural nerve, was also targeted in SNI
animals. b Responses to cold plate set to 5 °C in cuff, SNI and sham rats. Values represent the paw lift ratio between ipsilateral/contralateral paws.

¢ 50 % withdrawal threshold to von Frey fibres in the plantar paw of cuff, SNI and sham rats. d 50 % withdrawal threshold to von Frey fibres in the
lateral paw of SNI and sham rats. Each point represents the mean =+ SEM. *p < 0.05, **p < 0.01, ***p < 0.001 compared to sham by two way ANOVA
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significant changes in NF200 fibre density were observed
in the lateral paw after SNI (Fig. 2k-o).

Changes in CGRP-IR fibre innervation in the upper dermis
of the paw skin of cuff and SNI rats

The changes in peptidergic fibres, visualized using
CGRP-immunoreactivity, were examined in the upper
dermis of the paw skin at various times after cuff or SNI
(Fig. 3). CGRP-IR fibres were abundant in the plantar
skin of sham animals and were significantly reduced at
all time points studied after cuff. Gradual recovery was
seen over time and fibre density approached sham levels
by 16 weeks (Fig. 3a—e). While the initial loss of CGRP-IR

fibres was more extreme after SNI, fibre density quickly
returned to sham levels by 6 weeks (Fig. 3f—j). No signifi-
cant changes in CGRP fibre density were observed in the
lateral paw after SNI (Fig. 3k-o).

Changes in DBH-IR sympathetic fibre innervation in the
upper dermis of the plantar paw skin of cuff and SNI rats
The changes in sympathetic fibres, visualized using DBH-
immunoreactivity, were examined in the upper dermis
of the paw skin at various times after cuff or SNI (Fig. 4).
DBH-IR fibres were almost never observed in the upper
dermis of the plantar skin in sham animals, however at 4
and 6 weeks after cuff, they sprouted into this territory and
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Fig. 2 Changes in NF200-IR fibre innervation in the upper dermis of the paw skin of cuff and SNI rats. Photomicrographs show representative
examples of NF200-IR fibre innervation (red) in the plantar paw skin of sham animals (@), and 2 (b), 6 () and 16 weeks (d) after cuff. Representa-

tive images of NF200-IR innervation in the plantar paw skin of sham animals (f) and 2 (g), 6 (h) and 16 (i) weeks after SNI. Representative images of
NF200-IR innervation in the lateral paw skin of sham animals (k) and 2 (I), 6 (m) and 16 (n) weeks after SNI. Bar graphs show average NF200-IR fibre
length (um) per unit area of upper dermis (um?) in the plantar paw skin at various times after cuff () and SNI (j) and in the lateral paw skin after SNI
(0). Each point represents the mean £ SEM (n = 4-6 per group); *p < 0.05, ***p < 0.001 by one way ANOVA with Dunnett’s post hoc; scale bar 50 um
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Fig. 3 Changes in CGRP-IR fibre innervation in the upper dermis of the paw skin of cuff and SNI rats. Photomicrographs show representative
examples of CGRP-IR fibre innervation (green) in the plantar paw skin of sham animals (a), and 2 (b), 6 (c) and 16 weeks (d) after cuff. Representative
images of CGPR-IR innervation in the plantar paw skin of sham animals (f) and 2 (g), 6 (h) and 16 (i) weeks after SNI. Representative images of CGRP-
IR innervation in the lateral paw skin of sham animals (k) and 2 (I), 6 (m) and 16 (n) weeks after SNI. Bar graphs show average CGRP-IR fibre length
(um) per unit area of upper dermis (um?) in the plantar paw skin at various times after cuff (), SNI (j) and in the lateral paw skin after SNI (o). Fach
point represents the mean & SEM (n = 4-6 per group); *p < 0.05, ***p < 0.001 by one way ANOVA with Dunnett’s post hoc; scale bar 50 um
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were significantly more abundant (Fig. 4a—c, g). A similar
sprouting of sympathetic fibres was observed in SNI ani-
mals in the plantar skin, as the mean number of DBH-IR
fibres was significantly increased in the upper dermis at 4
and 6 weeks (Fig. 4d—f, h). In both models, the sprouting
was only temporary, and while some DBH-IR fibres could
still be found in the upper dermis at 8 and 16 weeks, their
number was not significantly increased compared to sham.
No sympathetic fibres were observed in the upper dermis
of the lateral paw skin after SNI (Fig. 4i).
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The effect of chemical sympathectomy with guanethidine
on behavioural signs of pain

To assess the contribution of ectopic sympathetic fibres
to pain-like behaviours, a chemical sympathectomy was
performed using guanethidine (30 mg/kg) at 2 weeks,
when sympathetic fibres were absent from the upper der-
mis, and at 6 weeks, when they were most abundant in
cuff and SNI animals. Two weeks after cuff surgery, ani-
mals showed a significant reduction in 50 % withdrawal
thresholds in the plantar paw compared with baseline,
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Fig.4 Changes in DBH-IR sympathetic fibre innervation in the upper dermis of the paw skin of cuff and SNI rats. Photomicrographs show repre-
sentative examples of DBH-IR fibre innervation (red) in the plantar paw skin of sham animals and 2, 6 weeks after cuff (@a-c) or SNI (d-f). Bar graphs
show average number of ectopic DBH-IR fibres in the upper dermis of the plantar paw skin of cuff (g) and SNI rats (h) and in the lateral paw skin of
SNI animals (i) at various times after injury. The values reported are per 1 mm? of upper dermis. £ach point represents the mean =4 SEM (n = 4-6 per
group); *p < 0.05, ***p < 0.001 by one way ANOVA with Dunnett’s post hoc; scale bar 50 um
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and these thresholds were unaltered by guanethidine
(Fig. 5a). In contrast, 6 weeks after cuff, the significant
reduction in 50 % withdrawal threshold observed in
cuff animals was completely restored to baseline lev-
els after guanethidine (Fig. 5b). In the lateral paw, 50 %
withdrawal thresholds were significantly reduced 2 and
6 weeks after SNI, and guanethidine restored thresholds
to baseline values at both time points (Fig. 5c, d). Cold
hyperalgesia was present 2 weeks after cuff and was unal-
tered by guanethidine treatment (Fig. 5e). In SNI ani-
mals, cold hyperalgesia was only present at 6 weeks after
surgery, and was completely eliminated by guanethidine
(Fig. 5f). In all cases, withdrawal thresholds were unal-
tered in sham animals and guanethidine had no effect.
Guanethidine treatment at 6 weeks significantly reduced
the number of DBH-IR fibres in the upper dermis of SNI
and cuff animals (Fig. 5g).

Sympathetic fibres do not sprout in the DRG of cuff and SNI
animals

Sympathetic fibres have been shown to sprout into the
DRG and form baskets around cell bodies in many mod-
els of neuropathic pain [12-14, 20-25]. To determine if
this occurs in the cuff and SNI models, the percentage of
cells in close proximity to DBH-IR fibres was quantified
at 2 and 6 weeks after cuff and SNI. The limits of neu-
ronal cell bodies and their nuclei could be easily identi-
fied in the sections, in spite of the lack of a specific label
for neurons, because of the weak unspecific staining,
which was easy to distinguish from the specific fibre
labelling (Fig. 6). Sympathetic sprouting in the DRG was
not observed either 2 or 6 weeks after cuff or SNI sur-
gery (Fig. 6a). While some sympathetic fibres were seen
in the DRG, these were almost never close to cell bod-
ies (Fig. 6b). The pattern of DBH staining in the DRG of
cuff and SNI animals was identical to that of sham ani-
mals. These findings were confirmed when TH was used
as a marker of sympathetic fibres, and sensory neurons
were never labeled in the DRG or skin (data not shown).
Figure 6¢c shows an example of one of the very few DBH-
IR and TH-IR sympathetic fibres in close proximity to a
cell body within the DRG of a 6 week cuff rat.

Discussion

In the present study, we characterized the time-depend-
ent changes in the innervation of the hind paw and
related these to behavioural changes in two commonly
used models of neuropathic pain, cuff and SNI. Despite
markedly different behavioural responses to evoked
stimuli, both models produced a similar early loss and
later re-innervation of NF200-IR and CGRP-IR fibres in
the upper dermis of the skin. Our primary focus how-
ever was on the sympathetic changes in these models
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and their contribution to pain-related behaviour. We
made three observations: (1) ectopic sympathetic fibres
sprouted into the upper dermis of the plantar paw skin 4
and 6 weeks after cuff and SNI; (2) these fibres seemed to
contribute to cold hyperalgesia in SNI animals, and to the
maintenance of mechanical allodynia in cuff animals; (3)
sympathetic fibres did not sprout into the DRG in either
model.

We focused in the upper dermis of the skin for various
reasons. While sensory fibre density is often measured
in the epidermis, and is a reliable marker of small fibre
neuropathy [26-28], epidermal fibre density does not
seem to correlate with neuropathic symptoms [26, 29,
30]. Instead heat and cold pain thresholds correlated best
with dermal innervation density [31]. Additionally, sym-
pathetic fibres, not normally present in the upper dermis,
sprout into this region in neuropathic models [4, 18, 32].

Changes in skin innervation could not alone explain
pain-related behaviours. First, although SNI and cuff pro-
duced similar early losses of NF200 and CGRP-IR fibres
in the plantar paw, at 2 weeks SNI animals were almost
significantly hyposensitive to mechanical stimuli and did
not have cold hyperalgesia while cuff animals were hyper-
sensitive to both mechanical and cold stimuli. Secondly,
despite fibre density being largely unchanged in the lat-
eral paw of SNI animals, prolonged mechanical allodynia
was present in this region [2]. After cuff, remaining sen-
sory fibres in the plantar skin may represent intact pri-
mary afferents whose sensitization results in altered
physiology and nociceptive transmission to the CNS, a
finding that has been clearly demonstrated after spinal
nerve ligation (SNL) [33-35]. In contrast, in SNI, the
few remaining plantar fibres likely originate from spared
nerves and do not seem sensitized. Finally, spared A8 and
C fibres from the lateral paw after SNI have been shown
to exhibit enhanced activity in response to suprathresh-
old mechanical stimulation which may account for the
prolonged mechanical allodynia present here [36].

In spite of similarities in the time course of re-inner-
vation of CGRP and NF200 fibres, different mechanisms
are likely at play in each model. Collateral sprouting from
the spared sural and saphenous nerves, which inner-
vate the medial and lateral paw, respectively, probably
accounts for re-innervation of the plantar paw in SNI
animals [8, 10, 37]. It might be these abnormal fibres that
mediate the late onset cold hyperalgesia. Consistent with
previous reports [11], we did not see an increase in sen-
sory fibre density in the lateral paw, as fibres sprout from
this area to the adjacent denervated paw. Regeneration is
virtually impossible in the SNI model, as a 2 mm section
is removed from the tibial and peroneal nerves. In the
cuff model, considerable re-innervation is probably pro-
vided by regeneration of the injured nerves, in addition
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Fig. 5 The effect of chemical sympathectomy with guanethidine on behavioural signs of pain. a 50 % withdrawal threshold to von Frey fibres in the
plantar paw of cuff, SNI, and sham rats treated with guanethidine or vehicle 2 weeks after surgery. Cuff animals had significant mechanical allodynia,
and this was unaltered by guanethidine. b 50 % withdrawal threshold to von Frey fibres in the plantar paw of cuff, SNI, and sham rats treated with
guanethidine or vehicle 6 weeks after surgery. Cuff animals had significant mechanical allodynia which was completely alleviated by guanethidine.
¢ 50 % withdrawal thresholds to von Frey fibres in the lateral paw of SNI, and sham rats treated with guanethidine or vehicle 2 weeks after surgery.
SNI'animals had significant mechanical allodynia which was partially alleviated by guanethidine. d 50 % withdrawal thresholds to von Frey fibres in
the lateral paw of SNI, and sham rats treated with guanethidine or vehicle 6 weeks after surgery. SNI animals had significant mechanical allodynia
which was partially alleviated by guanethidine. e Responses to cold plate set to 5 °Cin cuff, SNI and sham rats treated with guanethidine or vehicle
2 weeks after surgery. Cuff animals had significant cold hyperalgesia which was unaltered by guanethidine. f Responses to cold plate set to 5 °Ciin
cuff, SNI and sham rats treated with guanethidine or vehicle 6 weeks after surgery. SNI animals had significant cold hyperalgesia which was reduced
by guanethidine. Each point represents the mean £ SEM (n = 6-8 per group). B baseline. *p < 0.05, **p < 0.01, ***p < 0.001 compared with baseline,
5 < 0.05, "p < 0.01 compared to vehicle treated rats, by a one way ANOVA with Bonferroni post hoc. g Bar graph showing the mean number of

DBH-IR fibres in the upper dermis per 1 mm? in 6 week cuff and SNI animals after guanethidine or vehicle. *p < 0.05 by t-test
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Fig. 6 Sympathetic fibres do not sprout in the DRG of cuff and SNI animals. a Bar graph showing the percentage of cells in close proximity to a
DBH-IR sympathetic fibre in the DRG at 2 and 6 weeks after cuff and SNI. b Photomicrograph showing representative DBH-IR fibres in the DRG of
a 6 week cuff rat. Note that while sympathetic fibres can be seen within the DRG, they are not in close contact with cell bodies and the pattern of
staining is no different in sham animals. ¢ TH and DBH immunoreactivities were fully colocalized in sympathetic fibres in the DRG; this micrograph
shows a rare TH-IR (green) 4+ DBH-IR (red) sympathetic fibre within the DRG in close proximity to a cell body in a 6 week cuff rat. For quantitative

fibres in the upper dermis of the plantar skin 4 and
6 weeks after injury. These fibres are assumed to originate
from sympathetic fibres innervating blood vessels in the
lower dermis, and it is hypothesized that increased tar-
get derived nerve growth factor in the denervated area
drives this phenomenon [38, 39]. While the time course
of sympathetic sprouting closely paralleled what is seen
after mental nerve CCI using silk ligatures [18, 32], CCI
of the sciatic nerve caused a more robust and prolonged
sprouting, persisting until 20 weeks [4]. This may be due
to the induction of a more severe inflammatory response
initiated by the chromic gut [40, 41]. Despite varying
degrees, sympathetic sprouting in the skin is common
across many models of neuropathic pain [4, 18, 42].

To better understand how ectopic sympathetic fibres
contributed to pain behaviour we performed a chemi-
cal sympathectomy at two time points after nerve injury,
at 6 weeks, when ectopic sympathetic fibres were pre-
sent, and at 2 weeks, when they were largely absent.

Guanethidine depletes norepinephrine stores in sym-
pathetic terminals [43], and in our hands even elimi-
nated the immunohistochemical detection of sprouted
DBH-IR fibres. After cuff, mechanical allodynia was only
eliminated by guanethidine when sympathetic fibres
were present in the upper dermis, suggesting their likely
involvement in the maintenance of allodynia. On the
other hand, these fibres seemed to have no importance
for cold hyperalgesia after cuff, as hyperalgesia appeared
early, and was absent by the time sympathetic sprouting
was observed.

Alterations in the sympathetic nervous system play a
significant role in pain-related behaviour after SNIL In
contrast to the cuff model, there seemed to be a clearer
relationship between these ectopic sympathetic fibres
and cold hyperalgesia. For example, cold hyperalge-
sia loosely followed the appearance and disappearance
of ectopic sympathetic fibres in the skin of SNI animals
and was alleviated by guanethidine at 6 weeks when



Nascimento et al. Mol Pain (2015) 11:59

peak sympathetic fibre sprouting was observed. Because
mechanical allodynia was present only in the lateral paw,
where ectopic sympathetic fibres were never found, it
is suggested that allodynia is driven by other sympa-
thetic changes after SNI. Furthermore, guanethidine sig-
nificantly alleviated mechanical allodynia at both 2 and
6 weeks, independent of the presence of sprouted sym-
pathetic fibres in the adjacent plantar paw. In SNI, gua-
nethidine’s anti-allodynic effects could alternatively be
explained by its ability to reduce plasma norepinephrine
[44], whose levels are known to be elevated in some neu-
ropathic pain conditions [45-47]. The results from these
experiments point to a complicated relationship between
ectopic sympathetic fibres in the skin and pain-related
behaviours, and future studies will be required to further
unravel their specific contribution to sympathetically
maintained neuropathic pain.

Nerve injury has also been shown to provoke a sprout-
ing of sympathetic fibres into the DRG where they formed
baskets around sensory neurons [12, 13] and influenced
their excitability [24, 25, 48]. Because guanethidine was
able to reduce mechanical allodynia 2 weeks after SNI,
even in the absence of ectopic sympathetic fibres in the
skin, we looked for the presence of sprouted sympathetic
fibres in the DRG. DBH fibres were almost never seen
in close proximity to cell bodies 2 or 6 weeks after cuff
and SNI. Despite its inferiority to DBH, TH, found also
in dopaminergic neurons [49] and in a subpopulation of
sensory neurons in mice [50], has been extensively used
to characterize sympathetic sprouting into the DRG [12,
15, 20, 23, 25, 51]. We were able to confirm that sprout-
ing was equally absent when TH was used to label sym-
pathetic fibres in the DRG. Thus while these fibres may
sprout early enough to contribute to SNL induced neu-
ropathic pain, their delayed appearance or even failure
to appear in almost all other nerve injury models suggest
their relative unimportance to neuropathic pain [17-19,
51, 52]. This is a very interesting finding as sympathetic
sprouting into the DRG following nerve injury has been
considered one of the major contributors to sympatheti-
cally maintained pain [53].

Based on this work, the interaction between sensory
fibres and sympathetic fibres is likely more meaningful
in the skin, but how do these fibres contribute to pain?
We have previously shown a close physical proximity
between ectopic sympathetic and C fibres in the skin [4,
18, 32], and we hypothesize that their release of neuro-
active compounds sensitizes either the regenerated or
sprouted primary afferents. In support of this, adren-
ergic receptors are upregulated on primary afferents
after nerve injury [54, 55] and norepinephrine becomes
excitatory for a subset of C nociceptors, enhancing their
responsiveness to noxious stimuli [56, 57]. Furthermore,
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norepinephrine, normally innocuous, produces intense
pain when injected into human neuropathic skin [58—
60]. Sympathetic fibres also release neuropeptide Y and
adenosine triphosphate which could act through Y1, Y2
or P2X3 receptors on primary afferents to modulate their
activity [32, 61-66).

One of the most interesting and puzzling findings is
that while each model produced a similar sprouting of
sympathetic fibres in the skin, these fibres appeared to
contribute to different modalities of pain—facilitating
the maintenance of mechanical allodynia after cuff and
mediating the delayed development of cold hyperalgesia
after SNI. There is growing evidence, at least in mice, to
support the existence of labelled lines in the pain path-
way, such that distinct subsets of primary afferents medi-
ate certain types of pain [67-69]. It is therefore possible
that either ectopic sympathetic fibres form closer asso-
ciations with particular subtypes of primary afferents
or that afferent subtypes may differ in their ability to
develop adrenergic responsiveness after nerve injury
in each model. In each case, only certain fibres would
become sensitized by sympathetic mediators. Another
interesting observation is the lack of sympathetic nerv-
ous system involvement in cold hyperalgesia in cuff ani-
mals. This is surprising given its importance in mediating
cold hyperalgesia in SNI animals. Thus, the same sensory
modality can be caused by different underlying mecha-
nisms depending on the model being used. These find-
ings highlight the important differences between models
of neuropathic pain.

Conclusions

In conclusion, our morphological, behavioural and phar-
macological studies show that alterations in sympathetic
innervation in the skin represent an important mecha-
nism that contributes to sympathetically maintained pain
related behavior in constriction (cuff) and transection
(SNI) models of neuropathic pain. We provide evidence
for the first time that both models cause ectopic sympa-
thetic sprouting in the skin. Although sympathetic fibres
seem to play a role in the pain in both models, there
were significant differences suggesting that these models
should not be used interchangeably. Finally, we show that
the interaction between sensory and sympathetic fibres is
most meaningful in the skin, as neither model produced
any sympathetic fibre sprouting in the DRG.

Methods

Adult male Sprague-Dawley rats (200-250 g; Charles
River, Canada) were maintained on a 12-h light/dark
cycle and allowed access to food and water ad libitum. All
protocols were approved by the McGill University Ani-
mal Care Committee and followed the guidelines of the
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Canadian Council on Animal Care and the International
Association for the Study of Pain.

Peripheral nerve lesions

Animals were randomly assigned to receive either a SNI,
polyethylene cuff (cuff) or sham operation. All animals
were deeply anaesthetized with isoflurane, and were
shaved on the left side below the pelvis. The thigh was
incised through the skin and then muscle to expose the
sciatic nerve and its three terminals branches: the sural,
peroneal and tibial nerves. For cuff surgery, the sciatic
nerve, before its branching, was isolated from surround-
ing fascia using a glass probe and a segment of the nerve
was elevated to allow placement of a single cuft around
the nerve. The cuff consisted of a 2 mm piece of split
PE-60 polyethylene tubing with an inner diameter of
0.76 mm (Intramedic PE-60, Fisher Scientific, Canada).
For the SNI surgery, the peroneal and tibial nerves were
isolated from surrounding fascia and were tightly ligated
with 5.0 silk and transected distal to the ligation, remov-
ing approximately 2 mm of the distal nerve stump. Care
was taken not to manipulate the intact sural nerve. Sham
operated rats served as controls, and underwent the same
procedure but did not receive any nerve manipulation. In
all surgery groups, the muscle and skin layers were closed
separately using 4-0 Vicryl absorbable suture (Ethicon,
Johnson & Johnson, NJ, USA), and the animals were
allowed to recover.

Behaviour

Animals were tested between 9 AM and 4 PM by blinded
experimenters. Following 30 min of habituation to the
testing room in their home cages, animals were each
placed in a transparent Plexiglas cage atop a wire mesh
grid and were allowed to become accustomed to their
surroundings for another 30 min before mechanical
hypersensitivity was tested. Subsequently, animals were
tested for cold hyperalgesia, as described below. Base-
line measurements were taken 1 day before surgery, and
mechanical allodynia and cold hyperalgesia was assessed
1,2,4,6, 8, and 16 weeks after surgery.

Mechanical allodynia

Von Frey filaments (0.6, 1, 1.4, 2, 4, 6, 8, 10, 15, 26 g) were
applied serially in ascending order of strength to the
plantar surface of the hind paw, behind the tori, in cuff,
SNI and sham animals with enough force to elicit a slight
bend in the filament. Because SNI animals are known to
exhibit mechanical allodynia in the lateral paw [2], both
SNI and sham animals were tested for mechanical allo-
dynia in this region as well. Each filament was applied
for 5 s or until a flexion reflex occurred. An acute with-
drawal of the paw was considered a positive response,
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and signalled the application of the next weaker filament.
In the absence of a paw withdrawal response, the next
stronger stimulus was presented. After the first posi-
tive filament, four additional filaments were applied and
the 50 % withdrawal threshold was calculated using the
methods outlined by Chaplan et al. [70]. Mechanical allo-
dynia was considered as a significant reduction in with-
drawal threshold when compared to shams, as measured
by a two way analysis of variance (ANOVA) with Bonfer-
roni post hoc. Statistical significance was set at p < 0.05.

Cold hyperalgesia

To assess the presence of cold hyperalgesia after nerve
injury, animals were placed on a cold plate (Cold and Hot
Plate Test, Bioseb) for 5 min, in which the platform was
set to a temperature of 5 °C. The first minute was con-
sidered habituation, and the total number of paw lifts
(including steps, paw lifts and licks) were recorded for
each paw from 1 to 5 min, as adapted from Jasmin et al.
[71]. The ratio of ipsilateral (left) to contralateral (right)
paw lifts was calculated for each animal. Cold hyperal-
gesia was considered as a significant increase in the ratio
of paw lifts when compared to sham animals as meas-
ured by two-way ANOVA with Bonferroni post hoc with
p < 0.05 considered significant.

Drug administration to suppress sympathetic fibre
function

To assess the contribution of the sympathetic nervous
system to mechanical allodynia and cold hyperalgesia,
chemical sympathectomy was performed using guaneth-
idine. Following behaviour testing at 2 or 6 weeks after
surgery, two intraperitoneal injections of guanethidine
sulfate (30 mg/kg; Santa Cruz Biotechnology) or vehicle
(saline 1 ml/kg) were given 24 h apart [72]. Behaviour
was assessed 4 h after the second injection. The follow-
ing groups were used: sham + vehicle, sham + guanethi-
dine, SNI + vehicle, SNI + guanethidine, cuff + vehicle
and cuff 4+ guanethidine. Pre-drug values (SNI + vehicle,
SNI + guanethidine; cuft + vehicle, cuff + guanethidine)
were pooled together since no statistically significant
difference was observed. For each group of animals, pre
and post drug values were compared with baseline values
using a one way ANOVA with Bonferroni post hoc with
p < 0.05 considered significant.

Animal perfusion and histological processing

Cohorts of animals were sacrificed at 2, 4, 6 and 8 weeks
post-surgery. Animals from the behaviour time course
were used for the 16 week time point. Animals used for
the guanethidine experiment were perfused at 2 and
6 weeks, following the final behaviour testing to assess
the effect of guanethidine on sympathetic fibres. In
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all cases, rats were deeply anesthetized with Equith-
esin (0.3 mL/100 g) and transcardially perfused with
100 mL of perfusion buffer followed by 500 mL of 3 %
paraformaldehyde and 15 % saturated picric acid (v/v)
in 0.1 M phosphate buffer (PB), pH 7.4, for 30 min. The
glabrous skin from the left hind paw, specifically the
skin just behind the tori, and the lateral paw skin, both
regions which were targeted during the behaviour test-
ing, and the L4 ipsilateral DRG were removed, postfixed
by immersion for 1 h in the above fixative and cryopro-
tected in 30 % sucrose in PB for 24 h at 4 °C. Tissue was
embedded in an optimum cutting temperature medium
(Tissue Tek, OCT) and 50 and 14 pm thick sections of
skin and DRG, respectively, were cut on a cryostat (Leica,
Germany) at —20 °C. Skin sections were collected as free-
floating and DRG sections were slide mounted directly.

Immunohistochemistry

To determine the changes in innervation after SNI and
cuff, skin sections were processed for immunohisto-
chemistry using antibodies against NF200, CGRP and
DBH to label myelinated fibres, peptidergic sensory
fibres and sympathetic fibres, respectively. DRG sec-
tions were labelled with DBH and TH. Free-floating and
slide staining were performed using the same protocol.
All sections were washed for 30 min with PBS contain-
ing 0.2 % Triton-X (PBS-T), incubated in 50 % ethanol
for 30 min and washed in PBS-T. Depending on the spe-
cies in which the secondary antibody was raised in, the
tissue was either pre-incubated in 10 % normal donkey
or normal goat serum for 1 h to block unspecific stain-
ing. Primary antibodies were used at the following
concentrations—anti-NF200 (1:5, mouse monoclonal,
Abcam), anti-CGRP (1:2000, rabbit polyclonal, Sigma),
anti-DBH (1:50, mouse monoclonal, Medimabs) and
anti-TH (1:2000, rabbit polyclonal, Millipore) made
in PBS-T and incubated overnight on a shaker at 4 °C.
Following 30 min of washes with PBS-T, the tissue was
incubated with the appropriate secondary antibody
diluted in PBS-T for 2 h at room temperature—goat
anti-rabbit conjugated to Alexa Fluor 488 (1:800, Molec-
ular Probes), goat anti-mouse conjugated to Alexa Fluor
568 (1:800, Molecular Probes), or donkey anti-mouse
conjugated to Rhodamine Red X (1:200, Jackson Immu-
noresearch). Following 30 min of washes, free-floating
skin sections were mounted on gelatin-subbed slides
and all slides were coverslipped with Aqua Polymount
(Polysciences).

Representative images were taken using a Zeiss
LSM510 confocal microscope equipped with AR and
He—Ne lasers using a 40x water-immersion objective.
Z stacks of confocal optical sections were obtained,
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exported as TIFF files and adjusted using Adobe Photo-
shop for brightness and contrast only.

Quantification of fibre density

Images used for quantification were taken on a Zeiss Axi-
oplan 2e imaging fluorescence microscope (Carl Zeiss
Canada, Toronto), with a 40x objective. Images were
acquired with a high-resolution color digital camera with
Zeiss Axiovision 4.8 software. All of the quantification
was done by a blinded experimenter. Changes in NF200
and CGRP innervation in the paw skin were determined
by analyzing the density of fibres within the upper der-
mis, defined as the area 150 um from the dermal-epider-
mal junction [4]. Four randomly chosen fields per skin
section, measuring 312.4 pm x 250.6 pm each, from 6
sections were captured, totaling 24 images per animal;
4—6 animals were used for each time point. Quantifica-
tion was performed using an MCID Elite image analysis
system (Imaging Research Inc.) to determine the total
fibre length (um) per unit area of upper dermis (um?), as
described by us previously [5]. Briefly, we used a function
of the MCID software that was developed to specifically
and accurately measure fibres. After detection, fibres
were skeletonized to 1 pixel in width, and the total fibre
length per unit area was determined and compared using
an ANOVA with Dunnett’s post hoc, with p < 0.05 con-
sidered significant.

Quantification of DBH fibres

Sympathetic fibre density was determined by count-
ing the number of DBH-IR fibres in the upper dermis,
defined as the area spanning 150 pm below the dermal
epidermal junction. This region was chosen as sympa-
thetic fibres are normally absent from this area in sham
animals [4]. The value for the total area analyzed was
calculated by multiplying the total length of the section
by the thickness of the upper dermis (150 um). The total
number of DBH-IR fibres in the upper dermis across six
sections per animal was counted. The mean number of
fibres in the upper dermis per unit area (normalized to be
1 mm?) was compared using an ANOVA with Dunnett’s
post hoc, with p < 0.05 considered significant.

In the DRG, the percentage of cell bodies in close
proximity to a sympathetic fibre was quantified at 2 and
6 weeks after cuff, SNI and sham surgery. To do this, the
total number of cell bodies in close proximity (defined
as being directly adjacent) to a sympathetic fibre was
divided by the total number of cell bodies in each section,
using images taken with the fluorescence microscope.
In both instances, only cells with visible nuclei were
counted. Quantification was performed in 10 DRG sec-
tions per animal.
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