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HYPOTHESIS

Novel cytogenic and neurovascular 
niches due to blood–brain barrier compromise 
in the chronic pain brain
Maral Tajerian1,2,3*  and J. David Clark1,2,3

Abstract 

Background: The mechanisms by which painful injuries are linked to the multitude of pain-related comorbidities 
and neuroplastic changes in the brain remain poorly understood. Here we propose a model that relies on epi-neu-
ronal communication through the vascular system to effect various brain structures. Specifically, we hypothesize that 
the differential vulnerability of the blood–brain barrier (BBB) in different brain regions is associated with region-spe-
cific neuroplastic and neurovascular changes that are in turn associated with particular pain-related comorbidities.

Presentation of the hypothesis: We will present our hypothesis by focusing on two main points: (A) chronic pain 
(CP) is associated with differential BBB compromise. (B) Circulating mediators leaking through the BBB create cyto-
genic and neovascular niches associated with pain-related co-morbidities.

Testing the hypothesis: Pre-clinically, our hypothesis can be tested by observing, in parallel, BBB compromise, (neo)
vascularization, neurogenesis, and their co-localization in animal pain models using imaging, microscopy, biochemi-
cal and other tools. Furthermore, the BBB can be experimentally damaged in specific brain regions, and the conse-
quences of those lesions studied on nociception and associated comorbidities. Recently developed imaging tech-
niques allow the analysis of blood brain barrier integrity in patients providing a route for translation of the laboratory 
findings. Though perhaps more limited, post-mortem examination of brains with available pain histories constitutes a 
second approach to addressing this hypothesis.

Implications of the hypothesis: Understanding changes in BBB permeability in chronic pain conditions has clear 
implications both for understanding the pathogenesis of chronic pain and for the design of novel treatments to 
prevent chronic pain and its consequences. More broadly, this hypothesis may help us to understand how peripheral 
injuries impact the brain via mechanisms other than commonly studied efferent sensory pathways.
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Background
Chronic pain (CP) is associated with a multitude of 
comorbidities, including cognitive impairment, mem-
ory deficits, depression, and anxiety [1], which fur-
ther exacerbate disability and declining quality of life in 
CP patients. This implies the presence of neuroplastic 
changes in the brain. Indeed, such evidence is available 

from patients [2] and preclinical models [3, 4]. What 
remains less clear is the mechanism by which painful 
injuries result in changes that are separated in time and 
space from the initial injury, namely delayed changes 
in the brain. One attractive candidate set of mecha-
nisms are the ascending and descending neuronal path-
ways connecting the periphery and the brain [5], but it 
is unclear whether these pathways can account for the 
host of central changes observed in CP patients [6]. Here 
we propose a complimentary mechanism that relies on 
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epi-neuronal communication through the vascular sys-
tem and its effect on various brain structures.

Although the blood–brain barrier (BBB) exists 
throughout the arborized levels of the vascular system 
in the central nervous system (CNS), there is scant basis 
for concluding that the brain is uniformly protected 
from BBB compromise. We therefore hypothesize that 
the differential vulnerability of the BBB in different brain 
regions is associated with region-specific neuroplastic 
and neurovascular changes in the brain that parallel par-
ticular pain-related comorbidities.

Presentation of the hypothesis
We will present our hypothesis in the following main 
points:

(a) CP is associated with differential BBB compromise.

BBB integrity is altered in various painful clinical con-
ditions [7–9] and in pre-clinical models of pain [10–13]. 
Most of the preclinical studies involve models of inflam-
matory pain, and the breakdown of tight junctions (TJ) 
has been implicated in the observed BBB compromise. 
This possibility is exemplified by a recent study show-
ing that substance P, a pro-inflammatory mediator with 
well-established roles in nociception [14], activates brain 
microvascular endothelial cells. This leads to secretion 
of tumor necrosis factor alpha (TNFα) and angiopoi-
etin-2 thus changing the localization and distribution of 
TJ protein zonula occludins-1 and claudin-5 structures 
as well as increasing permeability of brain microvascu-
lar endothelial cells [15]. Moreover, it is well-established 
that glia play a pivotal role in BBB maintenance [16]. 
Glial activation and the production of pro-inflammatory 
cytokines including interleukin-1 beta and TNFα has 
been demonstrated in many CP models, and these medi-
ators may enhance BBB permeability [17] (Fig. 1).

Besides local immune response in the form of glial acti-
vation that might parallel CP in various brain regions 
[18], the pathological consequences of BBB compromise 
may result from the disruption of relative “immune qui-
escence.” The brain is normally accessible only to small, 
lipid-soluble molecules [19], but in pain states, additional 
circulating mediators can access it. For instance, in mod-
els of surgical trauma, hippocampal BBB disruption and 
increased levels of systemic cytokines accompany sig-
nificant neurocognitive impairment [20, 21], potentially 
through an interleukin-1-beta-dependent mechanism 
[22]. Circulating autoantibodies could also be involved 
since they are elevated in various pain conditions includ-
ing complex regional pain syndrome [23] and back pain 
[24]. While there is little specific evidence of pain-related 
brain autoantibody infiltration, this may be a reasonable 

hypothesis based on observations of such infiltration in 
conditions such as systemic lupus erythematosus [25] 
and stroke [26].

(b) Circulating mediators leaking through the BBB cre-
ate cytogenic and neovascular niches associated with 
pain-related co-morbidities.

Cytogenic changes may occur in CP in the form of hip-
pocampal neurogenesis in neonates [27] and adults [28]; 
furthermore CP is associated with reversible anatomi-
cal and epigenetic changes in the prefrontal cortex in 
humans [2] and mice [4]. Based on previous publications 
[7–13], we hypothesize that this is partially due to BBB 
compromise throughout some of the brain vasculature, 
thereby resulting in the aberrant distribution of media-
tors that are responsible for cytogenesis.

The bidirectional regulation of neuronal and vascular 
growth and barrier formation has been investigated in 
greatest detail during development [29]. Less is known 
about these processes in the adult brain where plastic-
ity is observed, though our knowledge base is expanding 
rapidly. For example, local vasculature with a leaky BBB 
can regulate adult neurogenesis [30] and experience-
dependent angiogenesis and changes in neurovascular 
structure occur in the somatosensory cortex [31] (though 
pain as an experience was not carefully evaluated). Neu-
rovascular changes were also found to regulate learning 
and memory in the Morris water maze [32]. These obser-
vations are significant as angiogenesis is a localized pro-
cess during which BBB integrity may be compromised 
due to the existence of an incomplete epithelium [33] 
(Fig. 2). We hypothesize that, similar to the observations 

Fig. 1 Summary of the hypothesis. AutoAB autoantibody, ICAM 
intercellular adhesion molecule, IL interleukin, SP substance P, TJ tight 
junction, TNFα tumor necrosis factor alpha
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related to CNS formation, memory formation and expe-
rience-related neuroplasticity, CP alters regional vascu-
lar structure [34] and BBB permeability. This provides a 
pathway for the direct communication between the sys-
temic circulation and the brain.

Testing the hypothesis
Our hypothesis can be tested in both preclinical and 
clinical settings. In animal models of pain, the existence 
of BBB compromise, (neo)vascularization and neurogen-
esis (and their localization relative to one another) can 
be accomplished by using Evan’s blue/TJ protein quan-
tification/IgG and IgM quantification, India ink-gelatin 
perfusion, and BrdU staining, respectively. Additionally, 
undertaking longitudinal studies would be crucial in dis-
tinguishing between transient changes after injury and 
the chronic ones that parallel the timecourse of devel-
opment of comorbidities in addition to teasing apart 
cellular proliferation from cellular survival. The advent 
of sophisticated next-generation microscopy tools [35] 
could potentially help visualize the connection of astro-
cytic podocytes to blood vessels in in vitro preparations, 
and could even be employed to test the effect of differ-
ent mediators (including those elevated in CP) in the 
astrocyte-blood vessel preparations. Besides studying 
the physical integrity of the BBB, its biochemical barrier 
functionality can be studied in vitro, including the exami-
nation of metabolizing enzymes and ATP-driven efflux 
pumps [36]. Furthermore, the BBB can be experimentally 
damaged in different brain structures and its long-term 
effects studied on pain-associated comorbidities follow-
ing the induction of CP. Such studies could tease apart 
the effects of BBB compromise and those of circulating 

mediators in the intact BBB. For instance, pre-existing 
circulating autoantibodies were shown to exert either 
beneficial or detrimental effects in ischemic brain injury, 
depending on the integrity of the BBB [26].

The postmortem study of CP brains could yield equally 
important information: In suicide completers, for exam-
ple, a dysfunction in astrocyte connexins is observed in 
the dorsolateral prefrontal cortex [37], potentially due to 
a weakened BBB [38]. Similarly, in vivo imaging of BBB 
disruption in CP patients would be crucial [39], particu-
larly if the association between BBB compromise and 
cerebral blood flow, pain score, and observed comorbidi-
ties is examined in longitudinal timecourse studies.

Implications of the hypothesis
Understanding changes in BBB permeability in CP condi-
tions has clear implications both in the imaging (delivery 
of contrast agents) and treatment (delivery of therapeu-
tic agents) of painful conditions. For instance, changes 
observed by brain imaging could be confounded by BBB 
compromise and anti-angiogenic agents could be con-
sidered potential therapeutic targets in instances where 
regional leak of the BBB due to neurovascular changes is 
observed.

It should be recognized that the current hypothesis 
does not exclude any alternative paths through which 
immune cells traffic through the CNS that might also 
modulate chronic pain. For instance, a recent publica-
tion showed the existence of a functional CNS lymphatic 
system, further challenging the long-held assumptions in 
CNS neuro-immunology [40].
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Fig. 2 Vicious cycle of BBB compromise and cytogenesis/neovascu-
larization contributes to pain-associated neuroplasticity. BBB blood–
brain barrier
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