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Abstract

(DRGs) and spinal cord.

MAPK in the DRGs

target for treatment of neuropathic pain.

Background: Somatostatin (SST) and some of its receptor subtypes have been implicated in pain signaling at the
spinal level. In this study we have investigated the role of SST and its sst2A receptor (sst2A) in dorsal root ganglia

Results: SST and sst2A protein and sst2 transcript were found in both mouse and human DRGs, sst2A-immunoreactive (IR)
cell bodies and processes in lamina Il in mouse and human spinal dorsal horn, and sst2A-IR nerve terminals in mouse skin.
The receptor protein was associated with the cell membrane. Following peripheral nerve injury sst2A-like immunoreactivity
(L) was decreased, and SST-LI increased in DRGs. sst2A-LI accumulated on the proximal and, more strongly, on the distal
side of a sciatic nerve ligation. Fluorescence-labeled SST administered to a hind paw was internalized and retrogradely
transported, indicating that a SST-sst2A complex may represent a retrograde signal. Internalization of sst2A was seen in
DRG neurons after systemic treatment with the sst2 agonist octreotide (Oct), and in dorsal horn and DRG neurons after
intrathecal administration. Some DRG neurons co-expressed sst2A and the neuropeptide Y Y1 receptor on the cell
membrane, and systemic Oct caused co-internalization, hypothetically a sign of receptor heterodimerization. Oct treatment
attenuated the reduction of pain threshold in a neuropathic pain model, in parallel suppressing the activation of p38

Conclusions: The findings highlight a significant and complex role of the SST system in pain signaling. The fact that the
sst2A system is found also in human DRGs and spinal cord, suggests that sst2A may represent a potential pharmacologic

Keywords: Axonal transport, Nerve injury, Neuropeptide, NPY receptor, Receptor internalization, Retrograde signaling

Background

Somatostatin (SST) is a regulatory peptide produced by
neurons and many other cell types [1-3]. Originally dis-
covered as the hypothalamic growth hormone release-
inhibiting hormone [4], SST was rapidly found to have a
wide extrahypothalamic distribution, also in peripheral
neural and non-neural tissues [5,6]. An early study dem-
onstrated a depressant action of SST on brain neurons [7],
confirmed in many studies: SST always exerts inhibition.
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SST was found in small dorsal root ganglion (DRG) neu-
rons [8,9], many of which weakly express pre-protachykinin
A [10] and most of them calcitonin gene-related peptide
(CGRP) [10,11]. A dense SST—positive(+) fiber plexus in
the superficial dorsal horn mainly originates from small
local interneurons [12-14]. Electrophysiological studies have
shown that SST exerts an inhibitory effect on dorsal horn
neurons [15-19]. Moreover, SST and its analogues have
anti-nociceptive and anti-inflammatory effects in experi-
mental animals [15,20-31], and relieve pain in humans
[32-34].

SST interacts with five receptor subtypes, sst1-5 [35-38].
Autoradiography demonstrated I'**-binding over the dor-
sal horn [39], a pattern also seen with a sst2-selective
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ligand [40]. Two variant forms, sst2A and sst2B generated
by alternative splicing, have been identified in DRG neu-
rons [24,41-44], sst2B having a different localization [43].
Other SSTR subtypes are also found in DRGs [24,41,45,46].
The inhibitory effects of SST on primary sensory neurons
are at least partly exerted via sst2A [24,45,47-50].

Here we analyzed the expression of sst2A and SST at
the spinal level in mouse, and some aspects also in human
tissues. The axonal transport of sst2A and SST was stud-
ied after sciatic nerve ligation and after administration of
fluorescence-labeled SST into the paw. Two neuropeptide
Y (NPY) receptor subtypes were included for comparison.
Receptor trafficking was studied after systemic and intra-
thecal (ith) administration of the sst2 agonist octreotide
(Oct). In addition we monitored pain thresholds in the
spared nerve injury (SNI) model [51,52] in wild type (WT)
and sst2 knock-out (KO) mice.

Results

Expression of sst2A in mouse DRGs

The immunohistochemical analysis, in general, showed
that sst2A-like immunoreactivity (LI) was concentrated
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along the neuronal cell membrane, with only minor stain-
ing in the cytoplasm (Figure 1a). In control lumbar 5 (L5)
DRGs, around 12% of all neuron profiles (NPs) were
sst2A* with a size distribution ranging from 100 to 1,200
um?, the majority between 200 and 600 pm?, mainly repre-
senting small-sized NPs [53]. This is essentially in agree-
ment with the situation in mouse [24], and similar to rat
[43,44,46]. No sst2A" NPs expressed SST (Figure 1b), as
previously reported for rat [44], that is sst2 does not repre-
sent an autoreceptor. Almost no sst2A* NPs were isolectin
B4 (IB4)" (~1%; Figure 1c), a marker for non-peptidergic
neurons. In contrast, most sst2A* NPs (98.6 + 1.0%)
expressed CGRP (Figure 1d), that is they belong to the
peptidergic population [54]. About one fifth (17.9 + 4.6%)
of the sst2A" NPs was neuronal nitric oxide synthase
(nNOS)" (Figure le). Some sst2A™ neurons contained
neuropeptide Y receptor subtype 1 (Y1R) (Figure 1f-f”), but
not subtype 2 (Y2R) (Figure 1g). sst2A- LI was completely
absent in the DRGs (Figure 1h vs. i) of sst2-KO mice. Both
sst2 and SST mRNA" neurons were seen in DRGs with in
situ hybridization, providing confirmation at the transcript
level (sst2, Figure 1j; SST, Figure 11).

Figure 1 sst2A-Ll in mouse DRGs. (a) Several sst2A* neurons are seen, and receptor protein is mainly located along the somatic plasmalemma
(arrowheads). (b-e, f”,g) Color images show merged micrographs after double-staining (f-f” show the same section). (d-f”) Arrows indicate the
coexistence of sst2A with CGRP (d), nNOS (e) and Y1R (f-f"), respectively. (b, ¢, g) sst2A-LI cannot be detected in SST* (b), IB4™ () or Y2R" (g)
neurons. CGRP-and nNOS-LIs are mainly seen in the perinuclear region (d, e), while Y1R-LI is found both in the plasmalemma and in the
perinuclear region (f, ). (h, i) Lack of sst2A-LI in DRGs of sst2-KO mouse (h) but presence in WT mouse (i). (j, k) Expression of sst2 mRNA in
DRG neurons (j, arrows) and spinal dorsal horn neurons (k, arrows). (I, m) Expression of SST mRNA in DRG neurons (|, arrows) and spinal dorsal
horn (m, arrows). Scale bars indicate 10 um (a-g, k), 20 um (j), 50 um (i, I) and 100 um (m).
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Expression of sst2A in mouse dorsal horn

sst2A-LI was observed in a dense fiber plexus in the superfi-
cial layers in spinal dorsal horn of the L4-5 segments
(Figure 2a, b, ¢, d), with many intermingled sst2A-immuno-
reactive (IR) cell bodies (Figure 2a, c). A few of the sst2A*
local neurons, mainly in the inner layer of lamina II, were
galanin® (Figure 2a-a”). Many sst2A" neurons co-expressed
nNOS in outer layer of lamina II (Figure 2b-c”). Few sst2A*
neurons were YIR" both in superficial lamina I (Figure 2f-f”)
and in the deeper layers, such as lamina IV (Figure 2d-d”
and e-¢”). A small number of sstA2" neurons were SST* in
lamina II (Figure 2g-g”). Furthermore, in the spinal cord of
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GAD-67-GFP transgenic mice, the sst2A”" fibers were found
to overlap with GAD-67-GFP" fibers in the superficial layers,
mainly in lamina II (Figure 3a). Most sst2A”" interneurons
were GAD-67-GFP" (Figure 3b-b”), but none PKCgamma*
(Figure 3c-e), a marker for excitatory interneurons [55].
Some spinal dorsal horn neurons expressed transcript for
sst2 (Figure 1k) or SST (Figure 1m). sst2A-LI was not de-
tected in the spinal cord of sst2-KO mice (Figure 3f vs. g).

Expression of sst2A in human DRG and dorsal horn
sst2A-LI was observed in a few human DRG neurons, that
is only single NPs per section. The immunoreactivity was

Figure 2 sst2A-LI in mouse dorsal horn. (a, b, ¢, d) sst2A-L| is expressed in a dense plexus of processes in superficial layers in spinal dorsal
horn (L4-5 segments) and in cell bodies in lamina |, Il (many) and lamina IV (few). (a-a”) A few of the sst2A™ local neurons, mainly in the inner
layer of lamina II, are galanin™ (arrows). (b-b”, c-¢”) Many sst2A* neurons express nNOS-LI in outer layer of lamina Il (arrows). (d-f") sst2A™ neurons
are Y1R" both in deeper layers (lamina IV; d-d” and e-e”; arrows) and superficial layers (f-f”; arrows). A few sst2A-IR neurons in lamina Il are also
SST* (g-g”, arrows). Scale bars indicate 2 pm (g), 5 um (f), 10 um (a, €), 50 um (d) and 200 um (b).
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20 pm (b), 100 um (a) and 200 um (f).

Figure 3 sst2A-LI within dorsal horn of a GAD-67-GFP knock-in mouse. (a-e) sst2A" neurons are co-localized with GAD-67-GFP (b-b”,
arrowheads), but not with PKC gamma (d, e). (f, g) sst2A-LI cannot be detected in sst2-KO mouse (f) as in WT mouse (g). Scale bars indicate

associated with the cell surface membrane (Figure 4a). A
small population of neuronal cells expressed notable levels
of sst2 mRNA in human DRGs (Figure 4b). In human
spinal cord, sst2A staining was observed in all layers of
the grey substance (Figure 4d), that is more widely distrib-
uted than in mouse (Figure 4d vs. e). The highest density
was seen in lamina II (Figure 4d,f), where both processes
(Figure 4f’) and cell bodies (Figure 4f’) were stained. The
remaining layers had modest densities of fibers (Figure 4d).
In the ventral horns some motoneuron membranes were
distinctly labeled and often surrounded by many punctuate,
sometimes ring-formed structures (Figure 4g,g’). The latter
may represent dendrites ‘decorated’ by sst2A receptors.

Axonal transport of sst2A

A 14-day dorsal rhizotomy did apparently not eliminate
sst2A-LI in the ipsilateral dorsal horn, contrasting the
virtually complete depletion of CGRP-LI (Figure 5a).
However, it is likely that disappearance of a low number
of sst2A" sensory afferents cannot be detected in view of
the very dense network of local sst2A™ processes and cell
bodies. In the glabrous skin of the hind paw, sst2A-,
CGRP-LIs (Figure 5b-b”) and PGP9.5 (Figure 5¢c-c”) ap-
parently colocalize in fibers at the epidermal-dermal
junction.

Ten hours after a nerve crush, sst2A-LI had accumu-
lated around the lesion, but mainly on the distal side
(Figure 5d,d”ee”,g,j). In contrast, strong CGRP-LI was
seen on the proximal side (Figure 5d,d”). SST-LI was
present on both sides of the lesion (Figure 5eje”),
and apparently coexpressed sst2A-LI on the distal side
(Figure 5e-€”, g vs. f).

sst2A/CGRP coexistence in axonal swellings appeared
limited at the crush site, perhaps surprising in view of
the almost total sst2A/CGRP coexistence in DRG cell
bodies. This may, however, be due to the fact that CGRP
is expressed in a large proportion of the DRG neurons
(>50%) [56], versus presence of sst2A in just 12%. Thus,
the weak sst2A accumulation, together with the CGRP

abundance in non-sst2A™ axons made it difficult to es-
tablish sst2A and CGRP coexistence in axons proximal
to the crush. In agreement with the immunohistochemi-
cal findings, western blot results showed a higher sst2A
protein level distally than proximally (Figure 5j).

Both sst2A and SST-RFP-LIs were detected on the
distal side of the sciatic nerve 10 hrs after ligation
combined with unilateral injection of the SST-RFP con-
jugate into the hind paw (Figure 5h-h”), the SST-RFP
apparently being co-localized with sst2A (Figure 5i-i").
A few SST-RFP" neurons were also seen in the ipsilateral
DRGs 3 days after injection (Figure 5k), and most of
them were CGRP" (Figure 51-17). As seen in the WT
mouse, CGRP-LI accumulated on the proximal side of
the ligation in the sst2-KO mouse (Figure 5m’). How-
ever, in the sst2A-KO mouse SST-LI was mostly seen on
the proximal side with much lower levels on the distal
side of the ligation (Figure 5m), that is distinctly differ-
ent from the control mouse.

sst2A trafficking

We analyzed the effect of Oct, a well-known SST agonist
with high affinity for sst2 [57,58] and of Cyn154806,
potent and selective sst2 antagonist [50,59,60]. Systemic
(i.v) administration of Oct (1 pg/10 ul) induced sst2A
translocation in DRG neurons. Thus, after 1 hr a strong
sst2A-LI was present in the perinuclear region (Figure 6b),
whereas sst2A-LI was predominantly associated with the
somatic plasmalemma in both saline (Figure 6a) and
antagonist (Cyn154806; 0.2 pg/10 pl) (Figure 6c¢)-treated
groups. Double-staining showed that almost all sst2A*
NPs contained CGRP-LI before (Figure 6d) and after Oct
treatment (Figure 6f), the sst2A-LI mainly located on the
plasma membrane, and the CGRP-LI in the perinuclear
region (Figure 6e-e”). After Oct treatment, sst2A-LI was
strongly expressed in the perinuclear region overlapping
with CGRP (Figure 6g-g”). The internalized receptor was
partly back to the membrane after 6 hrs and virtually fully
back after 24 hrs (Figure 6h-h").
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Figure 4 sst2A in human DRG and spinal cord. (a) DRG section from human. sst2A-LI is detected in very few neurons. The immunoreactivity is
associated with the cell membrane (arrowheads). (b-c). sst2 mRNA is expressed in human DRG incubated with antisense probe (b; white star,
sst2*; black asterisks, sst2) but not with cold probe (c; black asterisks, sst2). (d-g’) sst2A-LI is seen throughout the gray matter in human spinal
cord with a gradient from dorsal to ventral horn (d), whereas in mouse the sst2A-LI is mainly present in lamina | and II, with some staining in
lamina X and the ventral horn (e). (f-g’) Strong sst2A-LI is observed mainly in superficial layers with a modest density in deeper laminae (f). High
magnifications show a dense plexus of sst2A* processes (f; box in f) and some sst2A" interneurons in the dorsal horn (f”; arrowheads; box in ).
sst2A™ terminals and motor neurons are also observed in the ventral hom (g, g°). Arrowhead indicates a motoneuron with strong membrane and
relatively weak cytoplasmic sst2A-LI (g; box in g). Scale bars indicate 20 um (a, b, f*), 50 um (f', g, g’), 250 pm (e, f) and 500 um (d).

Internalization of sst2A-LI was also observed in dorsal
horn neurons, mainly in laminae I-II, 1 hr after ith injec-
tion of Oct (1 pg/10 pl; Figure 6m,n,0), neither seen
after saline (Figure 6ij) nor Cynl154806 (0.2 pug/10 ul;
Figure 6k). Furthermore, central administration of Oct
also induced internalization of sst2A-LI in the DRG neu-
rons (Figure 6p), not seen after saline (data not shown)
or Cyn154806 (Figure 6l).

Are sst2A and Y1R heterodimerized in mouse DRG
neurons?

Double-labeling of sst2A and Y1R was observed in some
DRG neurons (Figures 1f-f”, 7a-a”). It is known that the
Y1R is in rat DRGs is present in a high percentage of
the CGRP" NPs, also this receptor mostly membrane-
associated [61,62]. After Oct application (1 pg/10 ul) not
only sst2A was internalized but also the Y1R. Thus, the
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Figure 5 Axonal transport of sst2A-Ll. (a) Double-staining shows strong expression of sst2A-LI in the superficial dorsal horn, partially overlapping
with the CGRP-LI (arrows in a). Fourteen days after unilateral dorsal rhizotomy, there is a dramatic reduction of CGRP-LI ipsilaterally (double-arrow in a)
but not contralaterally (arrows in a). sst2A-LI seems unaffected. (b-c”) Skin of control mouse hindpaw. A few peripheral terminals of sciatic nerve
contain sst2A-LI that co-localizes with CGRP (arrows in b-b”, same section) or PGP9.5 (arrows in ¢-c”, same section). (d-d”) A 10-hr ligation
causes a modest accumulation of sst2A-LI on the proximal side, but a much stronger one distally (right), versus the mainly proximal CGRP
pile-up (left) (cf. d” with d; d”). (e-e”) SST-LI is present on both sides of the lesion (e’), and highly coexpressed with sst2A on the distal, but not
on the proximal side (right) (cf. e’ with e; e"). Double-staining for sst2A and SST indicates possible coexistence on the distal (g; arrowheads) but
not proximal side (f; an arrow points to an sst2A™ fiber lacking SST-LI). (j) Western blot showing higher sst2A protein levels on the distal than
on the proximal side 10 hrs after ligation. (h-h”) Accumulation of sst2A and SST-RFP on the distal side after SST-RFP injection into the hind
paw. (i-i”) The SST-RFP conjugate in distal axons is co-localized with sst2A (arrowheads). (k-1") A few SST-RFP* neurons are seen in ipsilateral
DRGs 3 days after injection (k), most being CGRP (I-1”). (m, m’) In sst2 KO mouse SST-LI only accumulates on the proximal side (contrasting
the WT mouse, e'). CGRP-LI accumulates on the proximal side as see in WT mice (m’). Scale bars indicate 10 um (f), 20 um (i), 50 um (k),

100 um (a, b, d) and 200 um (h).
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(j, k), 15 um (e), 25 um (i) and 50 um (a, d, h, 1).

Figure 6 Trafficking of sst2A-LI induced by Oct treatment. (a-g”) One hr after Oct treatment a strong sst2A-Ll is observed in the perinuclear
region of the DRG neurons (b), versus plasmalemma localization after saline (a) or Cyn154806 (c). (d-g”) sst2A™ and CGRP™ neurons before

and after Oct treatment (arrows in d and f, respectively). In controls sst2A-LI is mainly located on the plasma membrane and CGRP-LI in the
perinuclear region (e-e”). After Oct treatment, both CGRP-and sst2A-LI are detected in the perinuclear region (g-g”). (h-h™) Internalization of
sst2A-LI in DRG neurons before (h) or 1 hr (h’), 6 hrs (h”) or 24 hrs (h™) after Oct administration. (i-p) Internalization of sst2A-LI in the dorsal
horn neurons (lamina I-ll) 1 hr after ith injection of Oct (m, n, 0), not seen after saline (i, j) or Cyn154806 (k). Ith Oct (p), but not Cyn154806 (l),
induces internalization of sst2A-LI in DRG neurons. Arrowheads in n, o and p indicate neurons with internalized sst2A. Scale bars indicate 10 um

Oct/6h

distribution of both receptors decreased at the cell-
surface, with a parallel increase in intracellular levels
and with partly overlapping localization (Figure 7b-b”
and c-¢”). This process, and the overlap in the plasma
membrane, suggests a possible heterodimerization.

sst2A expression after nerve injury

Fourteen days after SNI a significant downregulation of
sst2A-LI was observed in the ipsilateral DRGs, both with
regard to percentage of NPs (Figure 8a; 4.0 + 1.0% vs.
10.0 + 1.0%; p < 0.05; n = 6/group) and fluorescence in-
tensity (Figure 8b; 18.7 + 3.9 vs. 43.7 + 10.3; p < 0.05;
n = 4/group). However, no difference in size distribution

of sst2A" NPs was found between ipsi- and contralateral
DRGs (data not shown). A slight, but statistically signifi-
cant increase of SST was seen in the ipsilateral DRGs
(Figure 8c; 5.83 £ 0.6% vs. 4.1 + 0.4%; p < 0.05; n = 6/
group). Moreover, in contrast to the upregulation of sstl
(2.0 £ 0.3 vs. 1.0 £ 04; p < 0.01; n = 5/group), sst2
mRNA levels were significantly reduced in the ipsilateral
DRGs, when compared with controls after a 2-week
axotomy (0.6 + 0.1 vs. 1.0 £ 0.2; p < 0.05; n = 4/group).
Neither sst2 (1.0 £ 0.1 vs. 1.0 = 0.1; p > 0.05; n = 5/
group) nor sstl (1.0 £ 0.1 vs. 1.0 + 0.1; p > 0.05; n = 4/
group) mRNA levels in the spinal cord were affected by
nerve injury, respectively.
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Figure 7 Systemic administration of Oct induces internalization
of both sst2A and Y1R. (a-a”) sst2A and Y1R co-localized at the cell
surface in control DRGs. (b-b” and c-c”; show two examples). One hr
after Oct treatment sst2A (b, b”, ¢, ¢”) and Y1R (b’, b”, ¢’ ,c”)-LIs are
mainly seen in the cytoplasm, partly overlapping. Note that Y1R still
can be seen on the membrane (c”). Arrowheads indicate membrane
and arrows cytoplasmic staining. Scale bar indicates 10 um (a).

Oct attenuates SNI-induced hyperalgesia

Fourteen days after SNI, mice developed mechanical
allodynia-like behavior as shown by the decrease in with-
drawal threshold of the hindpaw ipsilateral to the nerve
injury, also seen contralaterally, but less pronounced
(Figure 9a; Con vs. Ipsi, 1.7+ 0.3 vs. 0.1 £ 0.03, p < 0.001;
Contra vs. Ipsi, 1.0 £ 0.1 vs. 0.1 £0.03, p<0.01; n=10 or
12/group). Latencies after both acetone (cold stimula-
tion) and Pin-prick (noxious mechanical stimulation)
tests were significantly increased (Figure 9b, Con vs. Ipsi,
1.3+0.2 vs. 34%0.3, p<0.01; ¢, Con vs. Ipsi, 1.3 £0.2
vs. 2.9+ 0.2, p<0.01; n =8 or 10/group).

-

OContra mIpsi

12 « 60 12
S 3 2
- 8 . 5 40 » 8 *
g = |||- £
N 4 2 20 = 4
D Q (%))
7] c w
0 =~ 0 0
a b c

Figure 8 sst2A-LI after SNI. (a, b) Percentage of sst2A*NPs (a) and
sst2A protein levels (fluorescence intensity) (b) are significantly
decreased 14 days after SNI. (c) A slight but statistically significant
increase in percentage of SST *NPs is seen in the ipsilateral DRGs
compared to the contralateral ones. *P < 0.05, compared with

contralateral DRGs; n = 4 or 6 in each group.
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Gross examination revealed that neither Oct (40 pg/
kg, i.p.) nor Cyn154806 (Cyn; 6 mg/kg, i.p.) induces any
obvious sedation or impaired motor function as com-
pared with saline-treated (vehicle) animals. When given
at day 14 after SNI, Oct significantly increased ipsilateral
withdrawal threshold already after 30 min (0.4 + 0.1 vs.
0.1 + 0.01; p < 0.05, compared with vehicle), as moni-
tored with mechanical stimulation with von Frey hairs,
an effect still observed after 6 hrs (0.5 + 0.1 vs. 0.1 + 0;
p < 0.01, compared with vehicle; n = 11 or 12/group),
but returning to vehicle levels at 24 hrs (0.1 + 0.01 vs.
0.1 £ 0.01; p > 0.05, compared with vehicle; n = 11 or
12/group) (Figure 9d). A trend, but not statistically
significant effect, was seen contralaterally from 30 min
to 24 hrs (Figure 9e). A significant reduction of the
withdrawal response duration induced by acetone or
Pin-prick was seen between 2 and 6 hrs in Oct-treated
animals in both tests (Figure 9f,g). Treatment with the
antagonist alone did not influence the pain threshold
(Figure 9d-g; n = 11 or 12/group).

Deletion of sst2A did not affect the mechanical or cold
threshold in mutant mice when compared with WT
mice (Figure 9h-j). SNI induced mechanical allodynia in
both KO and WT mice in the ipsilateral hindpaw post-
operation days 7 and 14 (Figure 9h; n = 4/group). An in-
creased withdrawal response duration was observed in
both KO and WT mice in cold (Figure 9i) and Pin-prick
(Figure 9j) tests at day 7 and 14 after operation, but it
was more pronounced in the KO mice than in the WT
mice (Figure 9i, p < 0.05; n = 4/group; Figure 9j; 4.3 +
0.3 vs. 2.5 + 0.3, p < 0.01; n = 4/group), suggesting that
the sst2A exerts a weak protection against these two
types of pain.

Oct attenuates nerve injury-induced p-p38 upregulation
after nerve injury

p-p38 [63,64], is an important downstream substrate of
the SST/sst2 signaling pathway [65-68]. Fourteen days
after SNI p-p38 levels were analyzed in DRG neurons after
1 hr treatment (i.p. injection) with Oct, Cyn154806 or sa-
line. SNI induced a significant upregulation of p-p38" NPs
in the ipsilateral DRGs, both in saline- and Cyn154806-
treated groups (Figure 10b vs. a, 21.6 + 4.4% vs. 2.9 +
4.2%, p < 0.01; d vs. ¢, 25.8 + 6.1% vs. 2.1 + 3.5%, p < 0.01;
g; compared with contralateral, respectively; n = 5/group).
However, this increase was much less pronounced in
Oct-treated animals (Figure 10f vs. €; g; 11.3 + 2.0% vs 3.6 +
1.5%, p < 0.05; compared with contralateral; p < 0.05,
compared with saline or Cyn154806-treated animals in the
ipsilateral DRGs, respectively; n = 5/group). The strong ipsi-
lateral p-p38 upregulation, paralleling the decrease in pain
threshold, is in agreement with previous reports [69-71],
further supporting involvement the sst2/p-p38 pathway in
control of nociceptive thresholds.
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Figure 9 Oct increases pain threshold 14 days after SNI. (a) The mechanical threshold is reduced mainly in the ipsilateral hindpaw (n = 12),
as compared with controls (n = 10). (b, ¢) The withdrawal response duration after cold stimulation (b) or nociceptive mechanical stimulation (c) is
significantly increased ipsilaterally. Data are expressed as mean + SEM. **P < 0.01 or **P < 0.001 compared with the control group, respectively
(n=8or 10 in each group). (d) Oct causes an ipsilateral increase in mechanical threshold as compared with saline- or Cyn154806 treatment (n = 11
or 12 in each group). (e) A transient effect of Oct on mechanical threshold is also found contralaterally, but does not reach significance. (f, g) Cold and
Pin-prick tests in ipsilateral paws. A transient but pronounced effect is detected in Oct-treated group compared to saline- or Cyn154806-treated groups,
most pronounced between 2 and 6 hrs. Data are expressed as mean + SEM. *P < 0.05; **P < 0.01 compared with the saline- or Cyn154806-treated
groups, respectively (n = 11 or 12 in each group). (h) After SNI injury, both sst2-KO mice and WT mice develop a significant ipsilateral reduction in the
mechanical threshold as compared with baseline values. (i, j) Withdrawal response duration for both cold allodynia (i) and Pin-prick hyperalgesia (j) is
significantly increased in both KO and WT mice on day 7 and 14. The effects are more pronounced in KO mice than in WT mice (n = 4 in each group).
Data are expressed as mean + SEM. *P < 0.05; **P < 0.01 compared with WT mice; n = 4 in each group.

Discussion

Our understanding of pain signaling at the spinal level
has been greatly advanced during the last decade, both
with regard to anatomy, neurochemistry, circuitry and
physiology [72-77]. Here we focus on the SST system.
Our results provide further evidence that in mouse
sst2A is a membrane-bound receptor expressed in a sub-
population of nociceptive DRG neurons and in local
dorsal horn neurons. We show that a systematically
administrated sst2 agonist, Oct, causes a rapid, transient
receptor internalization in DRG neurons as well as
counteracts nerve injury-induced pain behaviors in
the SNI model, in parallel with attenuation of p-p38

upregulation. sst2A is also internalized in dorsal horn
neurons by Oct after ith administration. In some
DRG neurons sst2A and the Y1R are co-internalized
after Oct stimulation in vivo, hypothetically forming a
heterodimer. The sst2A is anterogradely transported
and, in fact much more pronounced, also retro-
gradely, but in this case as a complex with SST, pos-
sibly carrying information to the soma. Our findings
of sst2A in human DRGs and, abundantly, in spinal
cord, suggest that similar mechanisms may operate in
rodents and humans, and that targeting sst2A recep-
tors may lead to novel treatment strategies for neuro-
pathic pain.
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Figure 10 Effect of Oct on p-p38 expression DRGs after SNI.
(a-f) Micrographs of contralateral (a, ¢, e) or ipsilateral DRGs (b, d,
f), in saline (Sal; a, b), Cyn154806 (Cyn; ¢, d) or Oct (e, f) -treated
animals 14 days after SNI. (g) Quantitative evaluation of percentage of
p-p38" NPs. Oct, but not Cyn154806 or saline significantly reduces the
SNI-induced ipsilateral upregulation of p-p38-LI. *P < 0.05; **P < 0.01
compared with contralateral DRGs; *P < 0.05 compared with saline or
Cyn154805 groups in the ipsilateral DRGs, respectively. Scale bar
indicates 100 um (a).

sst2A in the dorsal horn

Presence of sst2A* cell bodies and a dense plexus of pro-
cesses has been reported in the dorsal horn of mouse
[24] and rat [43,44,78]. In rat sst2A is present in 13-15%
of all neurons in laminae I and II, all are GABA™ and
>80% are glycine”, i.e. inhibitory, and they are different
from the NK1* [47,78] and MOR" [43,44] neurons. We
here report that many sst2A" neurons co-express nNOS,
a few galanin, SST or NPYY1R, but none PKCgamma.
The SST neurons are, on the other hand, glutamatergic,
that is excitatory [79].

Here we show that sst2A is present both in cell bodies
in the dorsal horn and in motoneurons in the human
spinal cord. In both locations the receptor is mainly
membrane-bound. In addition there is a dense plexus of
processes in the superficial dorsal horn with a lower
density in other layers. The distribution of SST in
human DRGs and spinal cord has previously been de-
scribed [80-83].
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Trafficking of sst2A

Trafficking of SST receptors has been studied [84-87].
Here we confirm that i.v. administration of Oct induce
internalization of sst2A in DRG neurons [24]. Interest-
ingly, in the latter study sst2A internalization was not
observed after treatment with the pan-sst agonist pasir-
eotide, which binds with high affinity to all SSTRs
[88,89].

The sst2A is an endosomally recycled receptor [90,91].
In the DRG neurons the internalization was almost
complete 1 hr after systemic Oct injection, partly back at
the plasma membrane after 6 hours, and virtually com-
pletely after 24 hrs. Also Oct applied intrathecally in-
duced distinct internalization in the superficial dorsal
horn neurons, as well as in DRG neurons. Whether the
latter is due to spread to the DRG cell bodies, or repre-
sents an Oct action on the central afferents in the dorsal
horn, remains to be studied.

Here we show that the Y1R is co-localized with sst2A
on the membrane of some DRG neurons. The sst2 agon-
ist Oct induced a parallel internalization of sst2A and
Y1R, supporting existence of a heterodimeric complex, a
view that however at this point is hypothetical. In previ-
ous studies NPY or NPY agonists did not cause internal-
ization of Y1IR in rat DRGs (X. Zhang, Z.Q. Xu and T.
Hokfelt unpublished observations). Previously, constitu-
tive heterodimerization of sst2A/sst3 has been reported,
the heteromers behaving like sst2A dimers, the sst3 being
functionally inactivated [92]. Moreover, heterodimeriza-
tion of sst2A and the p-opioid receptor did not distinctly
change ligand binding or coupling properties [93].

Axonal transport of sst2A

sst2A is axonally transported in the sciatic nerve, accu-
mulating around the lesion 10 hrs after a crush, the dis-
tal pile up, surprisingly, being much more pronounced,
and sharply contrasting the strong proximal/modest dis-
tal CGRP accumulation. Interestingly, whereas on the
proximal side SST" and sst2A" fibers were clearly sepa-
rated from one another, as is expected in view of lack of
coexistence in the DRG neuron cell bodies, the two
markers appeared to coexist on the distal side. Thus,
SST of peripheral origin may bind to sst2A, internalize
and travel retrogradely as a SST/sst2A complex. This is
supported by presence of sst2A" nerve fibers in the skin,
the distal pile up of exogenously infused SST-RFP and
by the preferential, proximal SST accumulation in sst2-
KO mice. The marked reduction of distal SST accumula-
tion in the KO mice strongly suggests that the sst2A
receptor is required for this pile up in control mice. This
is similar to, e.g. nerve growth factor (NGF), and raises
the possibility that the SST/sst2A complex represents
a retrograde signal, the role of which has still to be
defined. The origin of peripheral SST is potentially
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manifold: ‘endocrine’ SST in the blood, adjacent SST*
sensory branches and/or blood/immune cells [26].

SST, its receptors and pain

There is now good evidence for a role of SST in pain
signaling at the spinal level (see Introduction), involving
DRG and local dorsal horn neurons. Both systems pro-
duce SST and certain SSTRs. In DRGs, and almost al-
ways in spinal cord, SST and sst2A are expressed in
separate neuronal populations, excluding autoreceptor
mechanisms.

Using unilateral SNI, a neuropathic pain model, the
analgesic, sst2A-selective agonist Oct [33] significantly
increased ipsilateral withdrawal threshold in the von
Frey test, and decreased the withdrawal response-
duration in the Pin-prick (noxious stimulus) and acetone
(cold stimulus) tests for several hours. This is a periph-
eral action on DRG neurons, since Oct does not pene-
trate the blood-brain-barrier [20,48]. Moreover, Oct
attenuates swelling and mechanical hyperalgesia in a
mouse model of immune-mediated arthritis, an effect
not seen in sst2A-KO mice [24], as well as capsaicin-
induced nociceptor activity and nociceptive behavior
in vitro and in vivo [94,95].

SST released from peripheral small diameter fibers can
inhibit cross-excitation exerted by release of excitatory
transmitters, such as glutamate and substance P, from
adjacent primary afferent terminals [96,97], supported by
our demonstration of sst2A expression in peripheral
nerve terminals in the skin.

Ith SST has been reported to be pro-nociceptive
[98-101], like substance P, even if high, probably toxic
SST doses are anti-nociceptive [102,103]. SST causes
outwards currents in lamina II sst2A* neurons [69,104].
Yasaka et al. [19] have further clarified the molecular
basis for the mainly pro-nociceptive effects exerted by
SST in the spinal cord. They showed that SST produces
outward currents in inhibitory GABA*/sst2” interneu-
rons, causing dis-inhibition. Thus, the SNI-induced up-
regulation of SST in DRG neurons shown here, and a
hypothetical increased SST release, could contribute to
increased pain signaling in the dorsal horn. However, we
also show that ith Oct causes internalization of sst2A,
and this may occur after endogenous SST release in the
dorsal horn. This internalization should attenuate dis-
inhibition and thus offer protection against pain. Finally,
it is likely that sst2A is transported into sensory spinal
afferents and here represent presynaptic inhibitory re-
ceptors, attenuating release of sensory, excitatory trans-
mitters in the dorsal horn, like substance P, CGRP and
glutamate, that is a further hypothetical mechanism in-
volved in defense against pain.

It should be mentioned that the sst4 receptor is of inter-
est in relation to pain, a view advanced in particularly by
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Szolcsdnyi and colleagues, based on transgenic mice and
the use of an sstd-selective agonist, J-2156. Thus, this
compound has analgesic effects in several pain models
[31]. Moreover, sst4 KO mice exhibit an impaired defense
against inflammation and hyperalgesia [30]. However, it is
assumed that these sst4 not necessarily are located on
neurons in DRGs or spinal cord [30]. Finally, as men-
tioned above, sstl may also play a role in nociception
based on its high proportion and significant changes in
DRGs in response to nerve injury.

NPY, Y1R and pain

The spinal NPY system has been implicated in pain trans-
mission [105,106]. NPY is abundantly expressed in local
dorsal horn neurons but under normal circumstances not
in DRG neurons [107]. The Y1R is located both in rodent
DRG and dorsal horn neurons [56,61,62]. The localization
of both YIR and sst2A on the cell membrane of DRG
neurons may confer increased analgesia, since both sst2A
and Y1R are anti-nociceptive [20,21,24,42,56,108-110]. To
what extent co-internalization influences pain signaling re-
mains to be analyzed. This said, it should be emphasized
that the YIR is expressed in a much larger DRG neuron
population than sst2A.

Signal transduction pathways

With regard to mechanism of action, we analyzed ex-
pression of p38 MAPK [63,64], a downstream molecule
in the sst2 cascade [67,68]. Its phosphorylated form,
p-p38, was strongly upregulated in the ipsilateral DRG
after unilateral SNI, paralleling the decrease in pain
threshold, in agreement with previous reports [69-71].
Oct, but not saline or Cyn154806, significantly reduced
this upregulation, indicating that the sst2/p-p38 pathway
may be involved in control of nociceptive thresholds.

Conclusions

The present study reports presence of sst2A on the
membrane of neurons in mouse and human DRGs and
spinal dorsal horn. The sst2A agonist Oct causes intern-
alization of the receptor both in mouse DRG and local
dorsal horn neurons and has an anti-allodynic effect in a
mouse model for neuropathic pain. Our findings suggest
that peripheral sst2A may represent an attractive thera-
peutic target for treatment of neuropathic pain.

Methods

Animals

The experiments were performed on male C57BL/6
] Bommince mice (A/S Bombholtgaard, Ry, Denmark)
weighing 25-28 g. Adult sst2 KO male mice (n =10) with
the C57BL/6 ] background [111,112], and age- and sex-
matched wild-type (WT) mice (n = 10) were also included,
as well as three GAD-67-GFP knock-in mice [113]. Human
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ganglia and spinal cord were collected from a 48-year-old
woman who died from stroke. The studies have been
approved by the local Ethical Committee for animal experi-
ments (Norra Stockholms djursforsoksetiska ndmnd), and
experiments on human DRGs were approved by a local Eth-
ical Committee with written consent from the next of kin.

Surgeries

Surgical procedures were performed under anesthesia
with isoflurane (2%). Unilateral axotomy [114] and SNI
[51,52] was made as described. Dorsal rhizotomy and
sciatic nerve ligation were performed as previously de-
scribed [115]. Survival times were 14 or 15 days. For
analysis of intra-axonal transport, the sciatic nerve was
ligated at mid-thigh level and animals exsanguinated
after 10 hrs. Conjugated SST-Red fluorescent protein
(RFP) was produced in bacteria as described (see below).
The SST-RFP sample was concentrated and desalted
by using Nanosep™ 3 K omega centrifugal device (Pall
Corporation, Port Washington, NY). A single dose of
desalted SST-RFP (48.9 mg/ml; 5 pl) was injected into
the left hind paw with a Hamilton syringe, and the mice
were exsanguinated 10 hrs or 3 days after injection.

To study sst2A trafficking, a single dose of each drug,
ie. Oct (1 pg/10 pl, iv. or ith injection; dissolved in sa-
line), Cyn154806 (0.2 pg/10 pl, iv. or ith injection; dis-
solved in saline) or saline was administered to normal
animals, and the tissues (DRGs and spinal cord) were
collected 1 hr, 6 hrs or 24 hrs after injection. To study
the effects of drugs on nociception, a single dose of each
drug, i.e. Oct (40 pg/kg), Cyn154806 (6 mg/kg) or saline,
was given ip. 14 days after SNI. The behavioral tests
were performed on SNI-treated animals 30 min after in-
jection. The selection of dosage of Oct and Cyn154806
was based on previous studies [20,21,24,116-118].

Production and characterisation of recombinant
SST-mRFP protein

The genetic engineering procedure, microbial culturing
and cell lysis were carried out as per the standard proto-
cols. Briefly, his-tagged SST-mRFP, the DNA fragment
encoding SST (AGCKNFFWKTFTSC) was reconstituted
using a pair of primers 5'-TCATGGGTACCGGAGG
TGGAGGTTCCGGAGGTGGAGGAT AAGAACTTC-3
and 5'-ATGACAAGCTTATCAGCAGGATGTAAAGG
TCTTCCAGAAGAAGTTCTTGCATCCAGCAG-3" fol
lowed by fusing to mRFP [119] using a flexible peptide
(Gly,Ser), linker. The DNA fragment was cloned into
pQE-30 vector (QIAGEN, Hilden, Germany) [120],
transfected into E. coli Origami™ B strains (Novagen®,
Billerica, MA, USA) and cultured in Terrific Broth (TB),
followed by lysis and Ni-NTA Superflow Cartridge puri-
fication assay. Sodium Dodecyl Sulfate Polyacrylamide
Gel Electrophoresis was carried out to confirm that a
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well-defined band with a molecular weight of approxi-
mately 30 kDa, consistent with individual molecular
masses of SST (1.63 kDa) and SST-mRFP (29.73 kDa).
The activity and potency of the produced SST-mRFP
was evaluated by using the membrane potential assay
and mouse AtT-20 neuroblastoma cell line (ATCC, VA,
USA), as detailed [120]. The activity of as produced
SST-mRFP was estimated in terms of pEC50 value and
found to be 5.5. SST-mRFP appeared to be 100 times
less potent than SST.

Behavioral tests

von Frey filament, Pin-prick and acetone stimuli were
applied to the lateral and medial plantar surface of mice
hind paws as previously described [115].

Immunohistochemistry

Mice were perfused with 4% paraformaldehyde and 0.4%
picric acid in 0.16 M phosphate buffer (pH 7.2; 37°C) as
described in [121]. The human DRGs and spinal cord
were immersion-fixed for 4 hrs in ice-cold fixative.
Tissues were cut in a cryostat (Microm, Heidelberg,
Germany) at 14 pm (mouse and human DRGs) or 20
pum (spinal cord) thickness. Immunostaing procedures
with tyramide signal amplification system were performed
as previously described [122]. Primary antisera/antibodies
used were monoclonal anti-sst2 antibody (clone UMB-1)
[24,123], rabbit anti-CGRP [124], NPYY1R [61], NPYY2R
[125], rabbit anti-galanin (gift from late Drs J. Walsh and
H. Wong), SST (gift from Dr. A. Benoit, Montreal General
Hospital, Montreal, Canada), PKCgamma (Santa Cruz Bio-
technologies, Dallas, TX) and ATF3 (Santa Cruz Biotech-
nologies), sheep anti-nNOS [126] and chicken anti-B-gal
(1:1,000) (Abcam, Cambridge, UK), In addition, a group of
sst2A-labeled sections was incubated with the IB4 from
Griffonia simplicifolia I (GSA [; IB4; 2.5 pg/ml; Vector
Laboratories, Burlingame, CA) [127].

Image analysis and quantification

Specimens were analyzed in a Bio-Rad Radiance Plus con-
focal scanning microscope (Bio-Rad, Hemel, Hempstead,
UK) installed on a Nikon Eclipse E 600 fluorescence micro-
scope (Nikon, Tokyo, Japan) and, in some experiments,
an LSM 700 confocal microscope (Zeiss, Oberkochen,
Germany) as in previous work [122]. The percentage
of *NPs in DRGs was obtained as described [115]. Four to
8 sections of each DRG from 5 animals in each group were
included in the analysis. The size distribution of "NPs with
a visible nucleus was measured using the Nikon Eclipse E
600 fluorescence microscope with Wasabi Image Software.
The "NPs were divided into small, medium-sized and large
according to earlier studies [53]. The relative fluorescence
levels (intensity) of sst2A-like immunoreactivity (LI) in
DRGs before and after nerve injury were measured as
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described [115] using a Sarastro 1000 confocal laser-scanning
system (Molecular Dynamics, Sunnyvale, Calif., USA).

Real-time quantitative PCR

Quantitative PCR (qPCR) reactions were performed with
iQ SYBR green Supermix on a Bio-Rad MyIQ thermal cy-
cler (BioRad). Preparation of samples and calculations
were performed as described [122]. Each sample was run
in triplicate to avoid processing-related deviations. Ana-
lysis was performed in Prism 6 software. The following
primers were used: (1) sstl forward primer 5-TGG TGG
GCT TCG TCT TAT-3"; (2) reverse primer 5'-GAT GAC
AGA CAA CTG GCT CA-3’; (3) sst2 forward primer 5'-
GGC GTG GTA CAC AGG TTT C-3’; (4) reverse primer
5-GAA GAC AGC CAC TAC GAT GG-3' [128].

Western blot analysis

Sciatic nerve samples from operated animals for western blot
were processed as described [122]. Laemmeli buffer contain-
ing sample protein was separated on 10% SDS-PAGE
gel and transferred to polyvinylidene fluoride membranes
(Millipore, Hemel, Hempstead, UK), which were incubated
with the antibody against sst2A (1:400). After incubation
with secondary antibody, the membranes were developed by
ECL solution (Amersham Biosciences, Piscataway, NJ) and
exposed to X-ray film (NEN PerkinElmer, Waltham, MA).
GAPDH (anti-rabbit, 1:5,000 in 5% BSA; Cell Signaling,
Beverly, MA) was chosen as the loading control.

In situ hybridization

Experiment was carried out essentially as described previ-
ously [129], using oligonucleotide probes for sst2 [130] and
SST [131]. A mixture of two oligonucleotide probes
complementary to nucleotide sequences of the human sst2
was purchased from CyberGene (Stockholm, Sweden) or
MWG Biotech (Ebersberg, Germany): (1) 5'ATT TGT
CCT GCT TGT CAC TCC GCT C3’ and (2) 5° TAT
TGG CTT CAC GGT AAG TCC ATT TCT GCG 3'. The
33P-dATP-labeled sections were exposed for 6 weeks after
dipping with emulsion solution. Some developed sections
were counterstained with cresyl violet and mounted with
Entellan (Merck, Darmstadt, Germany). Photographs were
taken with a Nikon Coolpix 5000 digital camera (Nikon).

Statistical analyses

Data are expressed as mean + SEM. Differences between
groups were compared using unpaired or paired Student’s
t test (two groups). Some data (n = 4 samples) were also
tested by the non-parametric Kruskal-Wallis test and
Mann—Whitney test (STATISTICA, Version 10). A P
value less than 0.05 was regarded as being significant.

Abbreviations
B-gal: B-galactosidase; CGRP: Calcitonin gene-related peptide; DRG: Dorsal
root ganglion; GAD-67: Glutamic acid decarboxylase 67; 1B4: Isolectin ib4;
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IR: Immunoreactive; L: Lumbar; LI: Like immunoreactivity; NP: Neuron profile;
NPY: Neuropeptide tyrosine (Y); NPYYTR and -2R: Neuropeptide tyrosine (Y)
receptor 1 and 2; nNOS: Neuronal nitric oxide synthase; Oct: Octreotide;
p38 MAPK: The mitogen-activated protein kinase p38; PGP 9.5: Protein gene
product 9.5; PKC gamma: Protein kinase C gamma; RFP: Red fluorescent
protein; SST: Somatostatin; sst1 and -2: Somatostatin receptor 1 and 2.
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