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Abstract

neuropathic pain model.

Background: The molecular mechanisms underlying neuropathic pain are constantly being studied to create new
opportunities to prevent or alleviate neuropathic pain. The aim of our study was to determine the gene expression
changes induced by sciatic nerve chronic constriction injury (CCl) that are modulated by minocycline, which

can effectively diminish neuropathic pain in animal studies. The genes associated with minocycline efficacy in
neuropathic pain should provide insight into the etiology of neuropathic pain and identify novel therapeutic targets.

Results: We screened the ipsilateral dorsal part of the lumbar spinal cord of the rat CCl model for differentially
expressed genes. Out of 22,500 studied transcripts, the abundance levels of 93 transcripts were altered following sciatic
nerve ligation. Percentage analysis revealed that 54 transcripts were not affected by the repeated administration of
minocycline (30 mg/kg, ip), but the levels of 39 transcripts were modulated following minocycline treatment. We then
selected two gene expression patterns, B1 and B2. The first transcription pattern, B1, consisted of 10 mRNA transcripts that
increased in abundance after injury, and minocycline treatment reversed or inhibited the effect of the injury; the B2
transcription pattern consisted of 7 mRNA transcripts whose abundance decreased following sciatic nerve ligation, and
minocycline treatment reversed the effect of the injury. Based on the literature, we selected seven genes for further
analysis: Cd40, Clec/a, Apobec3b, Slc7a7, and Fam22f from pattern B1 and Rwdd3 and Gimap5 from pattern B2. Additionally,
these genes were analyzed using quantitative PCR to determine the transcriptional changes strongly related to the
development of neuropathic pain; the ipsilateral DRGs (L4-L6) were also collected and analyzed in these rats using gPCR.
Conclusion: In this work, we confirmed gene expression alterations previously identified by microarray analysis in the
spinal cord and analyzed the expression of selected genes in the DRG. Moreover, we reviewed the literature to illustrate
the relevance of these findings for neuropathic pain development and therapy. Further studies are needed to elucidate
the roles of the individual genes in neuropathic pain and to determine the therapeutic role of minocycline in the rat
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Background

Studies conducted in recent years have shown that mul-
tiple endogenous factors initiate and regulate neuropathic
pain, and neuroimmune interactions play important roles
in this process, which may be one reason for the loss of
efficacy for many analgesics [1-5]. Recent reports suggest
that inhibitors of microglial activation and cytokine
synthesis, including minocycline, pentoxyfylline and
propentofylline, may significantly inhibit the develop-
ment of neuropathic pain in animal models [6-10]. The
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effects of these substances are a result of the decreased
secretion of numerous cytokines due to the reduced
activation of the microglia or other cells [6,7,9,11].
Administration of these inhibitors also enhances the
effect of analgesic drugs, such as morphine [7,12-14].

Our previous data highlighted the importance of im-
mune response- and microglia activation-related genes
in the development of neuropathic pain in the spinal
dorsal horn and their involvement in the persistence of its
symptoms [4,7,14,15]. Therefore, the aim of the present
study was to determine which of the genes that are altered
after sciatic nerve injury are modulated by minocycline.
Minocycline is a strong modulator of the neuroimmune
response and readily permeates the blood—brain barrier
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[12,16-21]. Minocycline is effective at reducing allodynia
in animal models, and therefore, it appears to be a promis-
ing substance that could be used in analgesia, as confirmed
by experimental studies [7,15,22]. This drug is also effective
in the treatment of neurodegenerative diseases in a clinical
setting [23]; however, it has not been used in the treatment
of neuropathic pain. The neuroprotective properties of
minocycline have been observed in spinal cord injury
models [24], hypoxia models [25,26] and in Huntington’s
and Parkinson’s diseases in the clinical setting [20,21,25,26].
Minocycline was shown to alleviate neuropathic pain
symptoms by inhibiting the activation of the microglia
within the spinal cord, leading to the reduced release of
pro-inflammatory agents, which often exhibit pronocicep-
tive properties [9,27]. Additionally, minocycline is believed
to promote the maintenance of the blood—brain barrier
integrity by reducing the expression of chemokine recep-
tors and metalloproteinases, as well as by reducing the
production of reactive oxygen species [28]. By affecting
the degree of activation of the microglia, minocycline
enhances the analgesic effects of morphine, which has
been shown to be less effective in neuropathic pain
models [7,12-14,29].

Microarray analysis for global gene expression indicated
that both neuropathic and inflammatory pain are associ-
ated with a dramatic shift in the regulation of many genes
in the spinal cord and dorsal root ganglia DRG [30,31].

Therefore, the aim of the present study was to deter-
mine which of the genes that were altered after sciatic
nerve injury are modulated by minocycline. As DNA
microarray experiments allowed us to identify numerous
transcripts that are important for the development of
neuropathy and are possible targets for drug therapy, we
planned the experiments to study the molecular basis of
the inhibitory effects of minocycline on the development
of neuropathic pain. We performed behavioral studies
and microarray screening for genes in the lumbar section
of the rat spinal cord in the rat model of neuropathic
pain (chronic conmstriction injury to the sciatic nerve,
CCI), and we identified genes that are associated with
minocycline efficacy in neuropathic pain. The changes in
the abundance of some transcripts in the ipsilateral dorsal
part of the lumbar spinal cord after sciatic nerve ligation
and the modulatory role of minocycline were confirmed
by quantitative PCR analysis of samples independent from
those used for the microarray analysis, as well as DRG
samples from the same group of rats subjected to CCI.

Results

The effect of minocycline i.p. administration on the
development of mechanical allodynia and thermal
hyperalgesia in CCl-exposed rats

Unilateral, loose ligation of the sciatic nerve led to the
development of symptoms typical of neuropathic pain,
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such as allodynia (Figure 1A) and hyperalgesia (Figure 1B).
In the von Frey test, strong tactile allodynia on the paw
ipsilateral to the injury was observed on day seven after
CCI; at this time, the ipsilateral paw responded to a
stimulation of 14.8 + 0.7 g (Figure 1A), compared to the
reactions of the hind paws of naive rats to 26.0 £ 0.7 g.
The strongest hyperalgesia was observed on the seventh
day in the cold plate test (Figure 1B). At this time, the
ipsilateral paw reacted after 6.2+0.7 s (Figure 1B),
compared to reaction after 27.3 £ 2.4 s in the naive rats.

Administration of minocycline led to a significant re-
duction in the above described symptoms. Preemptive
and repeated treatment with minocycline (twice daily;
30 mg/kg ip.) significantly attenuated the allodynia to
184+ 1.5 g (Figure 1A) and the hyperalgesia to 19.3+£2.9 s
(Figure 1B) on day seven after CCL

Profiling the gene expression alterations following

minocycline i.p. administration to CCl-exposed rats

The microarray method was used to study the effect of
minocycline on the expression changes caused by injury
to the sciatic nerve (Figure 2). The analysis involved
three groups of animals: N — naive, control animals;
V-CCI - animals that received water for injection seven
days after sciatic nerve ligation; and MC-CCI — animals
that received repeated intraperitoneal administration of
minocycline (30 mg/kgip.; 16 h and 1 h before nerve
damage and then twice daily for seven days after CCI
(Figure 2). The DNA microarray method (Illumina
RatRef-12 V1) was used to analyze the changes in
mRNA levels in the lumbar segment of the spinal cord.
The results of the microarray analysis are presented in
the form of a heat map. Statistical analysis (ANOVA)
revealed that, out of 22,500 tested mRNA transcripts, 93
transcripts displayed changes in their relative abundance
following CCI, at an ANOVA threshold value of p < 0.001.
Of these, 54 transcripts were not affected by minocycline
administration, while the levels of the other 39 transcripts
were modulated following minocycline administration.
The results are presented as two main gene transcription
patterns: A and B (N vs. V-CCI vs. MC-CCI) (Figure 2A, B).

Transcripts not modulated by minocycline administration
Statistical analysis (ANOVA) revealed that 58% (54 tran-
scripts) of the 93 examined transcripts (RGD1560961,
Ltc4s, LOC308350, Btk, Ms4a6a, LOC681932, Ptprc,
RGDI1566043, Irfl, Angpt4, Psmb4, Ifi47, RGD1359108,
Ccr5, Tifa, RGD1562655, Ifngrl, Cdl14, Jak3, Lgals3bp,
Hia-dma, RGD1564553, Fam105a, Irf5, Plek, Rac2, C4-2,
St14, Myolf, Adap2, Mefv, Apobecl, LOC497841, Pik3apl,
Lyll, Lgmn, Clga, Clgb, Clec4a3, Gliprl, Corola, Clqc,
Plac8, Tspo, LaptmS5, Arhgap9, Thxasl, Fcgr2b, LOC498276,
Ncfl, Tlr7, Hhex, Tlr2, and Sart2) were characterized by
an increase in abundance following CCI, and minocycline
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Behavioral analysis

Figure 1 The effect of minocycline on the development of allodynia and hyperalgesia 7 days after CCI. Influence of preemptive and
repeated administration of minocycline (30 mg/kg; i.p.; 16 h and 1 h before CCl and then for 7 days twice daily) on the development of
allodynia (A; von Frey test) and hyperalgesia (B; cold plate test) seven days after CCl in rats. The data are presented as the mean + S.EM
(10-12 rat per group). Allodynia and hyperalgesia were assessed 60 min after drug administration. The inter-group differences were analyzed
using an ANOVA and Bonferroni’s multiple comparison test; **p < 0.01 and ***p < 0.001 indicate a significant difference when compared to
the control (naive rats), and Wp <0.001 indicates a significant difference when compared to the V-CCl rats (ANOVA, Bonferroni’s test). Naive
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administrations did not affect these changes (Figure 2A
i C -pattern A). These tests were conducted at an
ANOVA statistical threshold of p <0.001 (N vs. V-CCI
vs. MC-CCI).

Transcripts modulated by minocycline administration
Statistical analysis (ANOVA) revealed that 93 transcripts
showed changes in their relative abundance following
sciatic nerve ligation. Of these, the levels of 39 (42%)
transcripts were modulated following repeated injections
of minocycline, and these transcripts were described as
having transcription pattern B (Figure 2B, C).

Transcription pattern B

Transcription pattern B1 — 10.75% of 93 transcripts

Ten transcripts (Kmo, Pcdha3, Clec7a, Lep, Apobec3b,
Fam?22f, Cardll, Slc7a7, Cd40, and Etaal) were charac-
terized by an increase in mRNA abundance after CCI, and
minocycline administrations reduced the level of these
changes.

Transcription pattern B2 - 7.53% of 93 transcripts

Seven transcripts (Rwdd3, LOC364991, Gimap5, RGDI
305604, Gpr110, LOC287028, and Heyl) were characte-
rized by a decrease in mRNA abundance following
CCI, and minocycline administrations reduced the
level of these changes.

Transcription pattern B3 — 8.60% of 93 transcripts

Eight transcripts (RGD1559604, Ms4a6a, Btg2, LOC498606,
Wdrd5, Fnl, Abtl, and Plala) were characterized by
an increase in mRNA abundance following CCI, and
minocycline administrations enhanced the level of these
changes.

Transcription pattern B4 — 15.05% of 93 transcripts
Fourteen transcripts (Ldhb, LOC501111, LOC688240,
Ebp, LOC499941, Nkx2-2, Dhcr7, Cnp, Rtn4, Tnnc2,
Slc22a8, LOC290549, Car4, and Idil) were characte-
rized by high baseline mRNA levels, which decreased
following CCI and continued to decrease as a result of
minocycline administrations.

qPCR validation of the mRNA transcript changes
in the spinal cord and DRG following minocycline
i.p. administration seven days after CCI

Genes from the B1 transcription pattern

Genes similarly regulated by minocycline in the spinal cord
and DRG

Cd40 In the dorsal lumbar spinal cord, we observed
compared to naive rats the upregulation of monocyte
marker Cd40 mRNA (1.0+0.02 vs. 1.3 +0.009) using
microarray analysis (Figure 3A). Microarray analysis of
gene expression for T-cell (Cd3g, Cd3e, Cd3d, CD4, and
CD8), B-cells (CD19) and NK-cells (CD335) markers
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Figure 2 Profiling the gene expression alterations following minocycline i.p. administration to CCl-exposed rats. Gene expression
changes 7 days after nerve injury and administration of minocycline (30 mg/kg; ip.; 16 h and 1 h before CCl and then for 7 days twice daily).
The statistical analysis was performed at an ANOVA threshold value of p <0.001 (N vs. V-CCl vs. MC-CCl). The results of the cDNA microarray analysis

N V-CCl MC-CCI

are presented in the form of a heat map. The individual columns represent the respective microarrays, while the individual rows represent the regulated
genes. The intensity of the color reflects the relative abundance of the transcript and is proportional to the standard deviation from the in-row average,

as indicated in the legend below the heat map. (A) The gene pattern represents changes in the abundance levels of 54 mRNA transcripts induced in the
lumbar spinal segment on day 7 of neuropathic pain; these abundance levels of these genes were not affected by the addition of minocycline (30 mg/kg;
16 h and 1 h before sciatic nerve damage and then twice daily for 7 days). (B) Gene pattern B represents changes in the abundance levels of 39 mRNA
transcripts induced in the lumbar spinal segment on day 7 of neuropathic pain; the abundance levels of these genes were modulated by repeated
intraperitoneal administration of minocycline (30 mg/kg; 16 h and 1 h before sciatic nerve damage and then twice daily for 7 days). (C) The percentage
analysis of the alterations in the CCl-induced gene expression profile in the spinal cord.

suggest that there is no activation or infiltration of those = upregulation of Cd40 mRNA (1.0 +0.04 vs. 1.4 + 0.04)

cells into the spinal cord (Table 1). Minocycline signifi-
cantly diminished the spinal level of Cd40 mRNA (from
1.3 £0.009 to 1.1 £ 0.02).

qPCR analysis (Figure 3B) confirmed the changes de-
tected by microarray. In the spinal cord, the upregulation
of Cd40 mRNA (1.0 +0.05 vs. 3.4 +0.2) was observed
compared to the naive rats. Minocycline significantly
diminished the spinal level of Cd40 mRNA (from 3.4 +
0.2 to 25%0.3). In the DRG (Figure 3C), the

was observed compared to the naive rats and mino-
cycline significantly diminished the level of Cd40 (from
14 +0.04 to 1.17 £ 0.05).

Clec7a Using microarray analysis, in the dorsal lumbar
spinal cord, we observed compared to naive rats the up-
regulation of Clec7a mRNA (1.0 £0.009 vs. 1.9 + 0.06)
(Figure 3D) and minocycline significantly diminished the
level of Clec7a mRNA (from 1.9 +0.06 to 1.5 + 0.04).
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Figure 3 Genes from the B1 transcription pattern - similarly spinally and DRG regulated by minocycline. Comparison of the CCl-induced
changes in transcript levels of genes with expression pattern B1 (Cd40, Clec7a and Apobec3b) in the lumbar spinal cord using microarray (A, D, G)
and gPCR (B, E, H) analysis; transcript levels in the DRG (C, F, 1) and the modulation by repeated intraperitoneal administration of minocycline
(30 mg/kg; ip. 16 h and 1 h before sciatic nerve damage and then twice daily for 7 days) were also examined. The statistical analysis was
performed using an ANOVA and Bonferroni's test. **p < 0.01 and ***p < 0.001 indicate a significant difference when compared to the control
(naiive rats); p < 0.05, *p <001 and "*p < 0.001 indicate a significant difference when compared to the V-CCl rats. Naive (N), vehicle (V; water
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qPCR analysis (Figure 3E) confirmed the changes de-
tected by microarray. In the spinal cord, the upregulation
of Clec7a mRNA (1.0 + 0.009 vs. 13.4 + 2.00) was observed
compared to the naive rats, and treatment with mino-
cycline significantly diminished the level of Clec7a mRNA
(from 13.4+2.00 to 7.2 + 1.1). In the DRG (Figure 3F), the
upregulation of Clec7a mRNA (1.0+0.13 vs. 1.8+0.12)
was observed compared to the naive rats, and repeated
treatment with minocycline significantly diminished the
level of Clec7a mRNA (from 1.8 +0.12 to 1.14 + 0.17).

Apobec3b In the dorsal lumbar spinal cord, we
observed compared to naive rats the upregulation of

Apobec3b mRNA (1.0+0.008 vs. 1.3+0.03) using
microarray analysis (Figure 3G) and repeated treat-
ment with minocycline significantly diminished the
level of Apobec3b mRNA (from 1.35+0.03 to 1.17 +
0.007).

qPCR analysis (Figure 3H) confirmed the changes
detected by microarray. In the spinal cord, the upregula-
tion of Apobec3b mRNA (1.0+0.2 vs. 2.8+0.4) was
observed compared to the naive rats, and repeated treat-
ment with minocycline significantly diminished the level
of Apobec3b mRNA (from 2.8 + 0.4 to 1.8 + 0.002). In the
DRG (Figure 3I), Apobec3b mRNA (1.0 £+ 0.2 vs. 4.5+ 0.3)
was upregulated compared to the naive rats, and
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Table 1 The influence of minocycline on lymphocyte and monocyte cell markers 7 days after CCl

Cell Types CDs NAIVE V-CCl McC-CCl
Lymphocytes

T-cells CD3 gamma 1.00+0.03 0.90+0.02 0.96 +0.02
T-cells CD3 eppsilon 1.00 + 0.06 0.92+0.02 1.00+0.01
T-cells CD3 delta 1.00£0.02 1.00£0.01 1.09+0.02
T-cells CD4 1.00£0.01 1.04 +£0.01 1.15+0,04
T-cells CcD8 1.00 £ 0.05 0.94+0,01 1.03+£0.01
B-cells CcD19 1.00£0.04 1.06 +£0.02 0.96 +0.00
NK -cells CD335 1.00 + 0.04 1.06 £0.02 0.96 + 0.00
Monocytes CD40 1.00 +0.02 1.3+0.01" 1.14+0.02"#

Microarray analysis of gene expression in neuropathic pain and its modulation by repeated intraperitoneal administration of minocycline (30 mg/kg; 16 h and 1 h
before sciatic nerve damage and then twice daily for 7 days) in the lumbar spinal cord. The results of the cDNA microarray analysis are presented as the mean +
SEM. The statistical analysis was performed using an ANOVA and Bonferroni’s test. ***p <0.001 indicates a significant difference when compared to the control

(naive rats); **¥

repeated treatment with minocycline significantly dimi-
nished the level of Apobec3b in the DRG (from 4.5+
0.3 to 2.3+ 04).

Genes differentially regulated by minocycline in the spinal
cord and DRG
Slc7a7 Using microarray analysis (Figure 4A), we observed
compared to naive rats the spinal upregulation of Slc7a7
mRNA (1.0+0.01 vs. 1.7+0.03) and repeated treatment
with minocycline diminished the level of Slc7a7 mRNA
(from 1.7 + 0.03 to 1.5 + 0.07).

qPCR analysis (Figure 4B) confirmed the changes
detected by microarray, but only in the spinal cord
samples. In the spinal cord, Slc7a7 mRNA was upregu-
lated (1.0 £0.04 vs. 3.3 +0.2) compared to the naive rats
and repeated treatment with minocycline significantly
diminished the level of Slc7a7 mRNA (from 3.3 + 0.2 to
2.1+0.2). In the DRG (Figure 4C), the downregulation
of Slc7a7 mRNA was observed (1.0 £ 0.1 vs. 0.6 +0.02),
compared to naive rats, and repeated treatment with
minocycline increased the level of Slc7a7 (from 0.6 + 0.02
to 0.8 + 0.04).

Fam22f In the dorsal lumbar spinal cord, we observed
compared to naive rats the upregulation of Fam22f mRNA
(1.0£0.01 vs. 1.9+0.06) using microarray analysis
(Figure 4D) and repeated treatment with minocycline
diminished the level of Fam22f mRNA (from 1.9 + 0.06
to 1.5 + 0.04).

qPCR analysis (Figure 4E) confirmed the changes de-
tected by microarray, but only in the spinal cord. In the
spinal cord, Fam22f mRNA (1.0 £ 0.02 vs. 2.5+ 0.3) was
upregulated compared to the naive rats, and repeated
treatment with minocycline significantly diminished the
spinal level of Fam22f mRNA (from 2.4 +0.3 to 1.4 £0.2).

p<0.001 indicates a significant difference when compared to the V-CCl rats. Naive (N), vehicle (V; water for injection), minocycline (MC).

In contrast, in the DRG (Figure 4F), the downregulation
of Fam22f mRNA (1.0+0.1 vs. 0.7+ 0.03) was observed
compared to the naive rats, and repeated treatment with
minocycline increased (from 0.7 £0.03 to 0.8 +0.03) the
level of Fam22f.

Genes from the B2 transcription pattern
Genes similarly regulated by minocycline in the spinal cord
and DRG
Rwdd3 In the dorsal lumbar spinal cord, we observed
compared to naive rats a slight downregulation of Rwdd3
mRNA (1.0+0.004 vs. 0.8+0.006) using microarray
analysis (Figure 5A), and repeated treatment with mino-
cycline resulted in an increase (from 0.8 + 0.006 to 0.9 +
0.008) in the level of Rwdd3 mRNA.

qPCR analysis (Figure 5B) confirmed the changes
detected by microarray. In the spinal cord, Rwdd3
mRNA (1.0+£0.006 vs. 0.8 +0.05) was downregulated
compared to the naive rats, and repeated treatment with
minocycline significantly increased the level of Rwdd3
mRNA (from 0.8+0.05 to 1.0+0.08). In the DRG
(Figure 5C), Rwdd3 mRNA (1.0 +0.006 vs. 0.75+0.02)
was downregulated compared to the naive rats, and
repeated treatment with minocycline did not influence the
level of Rwdd3 (0.75 +0.02 vs. 0.72 + 0.01).

Gimap5 In the dorsal lumbar spinal cord, we observed
compared to naive rats the downregulation of Gimap5
mRNA (1.0 + 0.01 vs. 0.7 £ 0.003) using microarray analysis
(Figure 5D). Chronic treatment with minocycline decreased
(from 0.7 £ 0.003 to 0.8 + 0.02) the level of Gimap5 mRNA.

qPCR analysis (Figure 5E) confirmed the changes
detected by microarray. In the spinal cord, the down-
regulation of Gimap5 mRNA (1.0 £ 0.06 vs. 0.7 + 0.04)
was observed compared to the naive rats, and repeated
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Figure 4 Genes from the B1 transcription pattern - differentially spinally and DRG regulated by minocycline. Comparison of the changes
in the transcripts levels of genes with expression pattern B1 (Slc7a7 and Fam22f) in the lumbar spinal cord using microarray (A, D) and gPCR

(B, E) analysis; transcript levels in the DRG (C, F) under neuropathic pain and the modulation by repeated intraperitoneal administration of
minocycline (30 mg/kg; ip. 16 h and 1 h before sciatic nerve damage and then twice daily for 7 days) were also examined using gPCR analysis.
The statistical analysis was performed using an ANOVA and Bonferroni’s test. ***p < 0.001 indicates a significant difference when compared to
the control (naive rats); *p < 0.05, *p < 0.01 and *p < 0.001 indicate a significant difference when compared to the V-CCl rats. Naive (N), vehicle
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treatment with minocycline significantly increased the
level of Gimap5 mRNA (from 0.7 + 0.04 to 0.9 + 0.08).
In the DRG (Figure 5F), Gimap5 mRNA was downreg-
ulated (1.0 £ 0.06 vs. 0.5 £ 0.04) compared to the naive
rats, and treatment with minocycline increased (from
0.5+ 0.04 to 0.7 £ 0.04) the level of Gimaps5.

Discussion

The widely accepted definition of neuropathic pain is
“pain arising as a direct consequence of a lesion or
disease affecting the somatosensory system” [32]. Neuro-
pathic pain is very challenging to manage because of the
heterogeneity of its etiologies, symptoms and underlying
mechanisms, as well as our limited understanding of its
development and progression [33]. Hypersensitivity to
thermal and mechanical nociceptive stimuli in animals
was observed on day 7 following sciatic nerve injury in
our experiments, and this result is in agreement with
our previous studies, as well as others [7,15,34-38].
Recently, accumulating evidence has suggested that glial
cell activation and neuroinflammation are critical for

the development and maintenance of persistent pain
[1,4,5,14,39]. The results obtained after administration
of minocycline in neuropathic pain models suggest that
it has a therapeutic potential; however, it is well known
that the its mechanism of action is not selective. In our
previously published studies, we demonstrated an increase
in the activation of monocytes on day 7 after sciatic nerve
injury in the lumbar spinal cord and/or in the DRG [7,15].
Other studies revealed microglia activation on day 2
following sciatic nerve injury, with its highest activation
being observed between days 7 and 10 [1,7,15,40,41];
therefore, we choose day 7 for our microarray analysis.
Although it is evident that the main cause of the atte-
nuation of neuropathy is the inhibition of microglial
activation, minocycline also acts through many other
targets. Our studies allowed us to isolate a series of genes
whose expression profiles followed several patterns after
CCI and minocycline treatment. As shown by our studies,
93 out of 22,500 studied transcripts undergo abundance
level changes following sciatic nerve injury; of these, 54
transcripts were not affected by the repeated administration
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Figure 5 Genes from the B2 transcription pattern - similarly spinally and DRG regulated by minocycline. Comparison of the changes in
the transcript levels of genes with expression pattern B2 (Rwdd3 and Gimap5) in the lumbar spinal cord using microarray (A, D) and gPCR (B, E)
analysis; transcript levels in the DRG (C, F) under neuropathic pain and the modulation by repeated intraperitoneal administration of minocycline
(30 mg/kg; ip. 16 h and 1 h before sciatic nerve damage and then twice daily for 7 days) were also examined using gPCR. The statistical analysis
was performed using an ANOVA and Bonferroni’s test. **p <0.01 and ***p <0.001 indicate a significant difference when compared to the control
(naive rats); #p <0.05, ”#p <001 and #”#p < 0.001 indicate a significant difference when compared to the V-CCl rats. Naive (N), vehicle (V; water for
injection), minocycline (MC).

of minocycline, while strong modulation was observed in
39 transcripts. These 39 genes are potential targets for
minocycline and could be interesting from a therapeutic
viewpoint.

The results obtained from microarray analysis revealed
that the abundance levels of 54 transcripts increased fol-
lowing sciatic nerve ligation, but these genes were not
affected by the repeated administration of minocycline;
these genes are shown in Figure 2A in the results section.
The roles that many of these genes play in neuropathy are
not known; therefore, these genes will be the subjects of
our future research. In the present study, we validated the
expression changes of seven of the most interesting genes
from the 39 genes whose abundance levels increased after
sciatic nerve injury and were modulated by repeated ad-
ministration of minocycline using qPCR analysis of spinal
cord samples, and we further studied the mRNA levels of
these genes in DRG samples from the same experimental
scheme. Furthermore, we selected two gene expression
patterns to study in detail: B1 and B2. The Bl transcrip-
tion pattern contained 10 transcripts; the mRNA abun-
dance levels of these genes increased following injury, and

minocycline administration reversed or inhibited the effect
of the injury. The B2 transcription pattern contained 7
transcripts; the mRNA abundance levels of these genes
decreased after sciatic nerve ligation, and minocycline
administration reversed the effect of the injury. According
to the literature, we selected the following genes for qPCR
analysis: Cd40, Clec7a, Apobec3b, Slc7a7, and Fam22f
from pattern B1 and Rwdd3 and GimapS5 from pattern B2.

Cd40, Clec7a and Apobec3b are genes from the B1
transcription pattern that are upregulated by sciatic
nerve injury in the spinal cord and DRG and are
diminished by minocycline

CD40, a 48 kDa cell surface tumor necrosis factor (TNF)
family receptor, has been shown to be upregulated in
microglia upon activation in both in vitro and in vivo
studies. CD40 is also expressed by a wide variety of cells,
such as neurons, dendritic cells, microglia, B cells, macro-
phages, keratinocytes, endothelial cells, thymic epithelial
cells, fibroblasts and various tumor cells [42]. It is known
that CD40-mediated microglia activation contributes
to disease progression in a variety of neuroinflammatory
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diseases, such as multiple sclerosis, Alzheimer’s disease,
and cerebral ischemia, leading to the production of a wide
array of cytokines, chemokines, matrix metalloproteinases
and neurotoxins [43,44]. After CD40 is bound, numerous
signaling pathways are activated, leading to changes in
gene expression and function. The interaction between
CD40 and CD154 appears to be critical for a productive
immune response, the upregulation of various costimula-
tory molecules (ICAM-1, VCAM-1, E-selectin, LFA-3,
B7.1, B7.2, and class II MHC) and the production of
numerous cytokines/chemokines (IL-1, IL-6, IL-8, IL-10,
IL-12, TNF-a, MIP-1a, and MCP-1). Thus, signaling
through CD40 in macrophages/microglia induces a num-
ber of soluble mediators that have important functional
roles in the CNS (central nervous system). Macrophages/
microglia have been shown to express CD40 in patients
with multiple sclerosis [45], and CD40-deficient mice fail
to develop these diseases [46,47]. The strategies used to
attenuate inflammatory responses within the CNS by
inhibiting the activation of macrophages and microglia
(by suppressing CD40 expression) may be beneficial for
a growing number of neuroinflammatory diseases. Others
have shown that TGF-B and IL-4 inhibit the IFN-y-
induced CD40 expression in microglia [48,49]. In 2012,
Cao et al. [50] showed that CD40 plays an important role
in leukocyte infiltration into the lumbar spinal cord after
L5 spinal nerve transection. Studies using a CD40 neutral-
izing Ab suggest that CD40 is required early on in order
to promote the maintenance of injury-induced mechanical
hypersensitivity. These data are consistent with our data,
which showed that intraperitoneal administration of min-
ocycline inhibited the development of mechanical allody-
nia and thermal hyperalgesia in parallel with the observed
downregulation of CD40.

Clec7a, also called Dectin-1, was recently identified as
the most important receptor for beta-glucan; Clec7a is a
type II transmembrane protein that binds beta-1,3 and
beta-1,6 glucans. Clec7a is primarily expressed by cells
of myeloid origin, including monocytes, macrophages,
microglia, neutrophils, most subsets of dendritic cells
and a subset of T cells, B cells, mast cells, and eosinophils.
Our studies using qPCR demonstrated that mRNA for
Clec7a is expressed in rat primary microglial cells cultures
(date not shown). Clec7a can recognize an unidentified en-
dogenous ligand on T cells and may act as a costimulatory
molecule; it can also induce a variety of cellular responses,
including phagocytosis, respiratory burst and cytokine
production [51]. Recently, Salazar-Aldrete et al. [52]
showed that monocytes from patients with systemic
lupus erythematosus and rheumatoid arthritis exhibited
decreased expression of Clec7a in parallel with the en-
hanced synthesis of proinflammatory cytokines. Recent
studies have highlighted the importance of Clec7a in
anti-fungal immunity in both mice and humans and
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have suggested the possible involvement of this receptor
in the control of mycobacterial infections [53]. Using
microarray and qPCR analyses, we have shown that
Clec7a mRNA is upregulated in the spinal cord and DRG
at seven days after CCl-induced neuropathic pain and is
downregulated after intraperitoneal administration of
minocycline in the spinal cord and DRG.

Apobec3b is overexpressed in many tumors, including
tumors found in the breast, cervix, bladder, lung, head
and neck [54-57]. The overexpression of Apobec3b in
animal models confirmed its tumor-type specificity [58].
It is not known which cells expressed Apobec3b, but after
observing that minocycline downregulates the injury-
increased level of Apobec3b mRNA, we hypothesize that
microglia cells may be one type of cell that can express
Apobec3b. Further studies are needed to clarify the role
of this gene in the development of neuropathy. We ob-
served a very similar pattern of Apobec3b transcription,
as well as its regulation by minocycline, in the spinal cord
and dorsal root ganglia, which suggest that microglia as
well as other cell types, such as macrophages and leuko-
cytes, can be the source of Apobec3b [58].

Slc7a7 and Fam22f are genes from the B1 transcription
pattern that are upregulated by sciatic nerve injury in the
spinal cord, are downregulated in the DRG and are
modulated by minocycline in both structures

Slc7a7 (solute carrier family 7, amino acid transporter
light chain, y + L system, member 7) is an important
amino acid transporter responsible for the sodium-
independent influx/efflux of cationic and large neutral
amino acids across the membrane [59]. Deregulation of
the amino acid transporter Slc7a7 is involved in multiple
types of cancer, including gliobastoma, non-small cell lung
cancer and multiple myeloma [60-62]. Studies conducted
in recent years have demonstrated that diseases associated
with Slc7a7 also include lysinuric protein intolerance and
cystinuria [63]. There are no reports detailing the roles
Slc7a7 plays during neuropathic pain, inflammation or
neurodegenerative disorders. Our study suggested that
Slc7a7 may play a role after nerve injury. In the present
study, using microarray and qPCR analyses, we showed
that the level of Slc7a7 mRNA is upregulated in the
spinal cord seven days after CCI-induced neuropathic
pain but is downregulated in the DRG. Repeated ad-
ministration of minocycline reversed both of these
changes. The regulation of this gene by minocycline in
the spinal cord suggests it is present in microglia/macro-
phages. However, the involvement of the mononuclear
phagocyte system appears to play a crucial role in the
development of immunological complications, as was
previously suggested by Barilli et al. [64]. The clinical
significance of Slc7a7 expression in pain therapy needs
to be clarified.
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Fam22f’s role in neuropathic pain and/or neurodegen-
erative disorders needs to be described, as there is no
information on this gene in the literature. Until now, it
was only known that Fam22f belongs to the Fam22 family
of transmembrane proteins, which span from one side of
the membrane to the other side of the membrane. We
tested this gene in the present study, and we demon-
strated that Fam22f mRNA is upregulated in the spinal
cord seven days after CCI-induced neuropathic pain
but is downregulated in the DRG. Repeated adminis-
tration of minocycline reversed both of these changes.
The contrasting expression changes in the spinal cord
and DRG suggest the participation of various cell types
that express the gene in the tested structures after
injury, but the role of minocycline in the expression of
this gene remains to be explained.

Rwdd3 and Gimap5 are genes from the B2 transcription
pattern that are downregulated by sciatic nerve injury
but are increased after minocycline treatment in the
spinal cord and DRG

Rwdd3 belongs to the RWD domain family and was first
described in 1996 by Bonaldo [65]. Recently, in 2013,
Chi-Cheng Huang et al. [66] identified Rwdd3 as a gene
associated with breast cancer risk. Some authors have
suggested a role for Rwdd3 in neurosensory hearing loss
and cellular stress [67]. Recently, Bergmann et al. [68]
examined the association between the single nucleotide
polymorphism rs2296308 in Rwdd3 and the development
of neuropathy in paclitaxel-treated cancer patients, as was
suggested by Schneider et al. [69]; however, this study was
unable to confirm such a correlation. Our studies suggest
the importance of Rwdd3 in the development of neuro-
pathic pain, as we observed the CCI-induced upregulation
of this gene, as well as its downregulation by chronic min-
ocycline treatment.

Gimap5 refers to GTPase of immunity-associated
nucleotide binding protein 5. Gimap5 is one of seven
members of the Gimap family, which has been shown
to be integral to T cell survival and development. These
small GTPases regulate proapoptotic and antiapoptotic T
cell pathways [70-73], as well as thymocyte maturation
and differentiation [72,74]. There is a lack of information
concerning the role or even regulation of Gimap5 during
neuropathic pain; however, its important role in the func-
tion of the immune system suggests its importance. Our
microarray and qPCR data strongly suggest it plays a sig-
nificant role in the development of neuropathic pain. Our
study using qPCR revealed the absence of Gimap5 mRNA
in rat primary microglial cell culture (data not shown).
Until now, it has been known that a loss of Gimap5
function causes T cell lymphopenia in rats due to the
near complete loss of post-thymic peripheral CD8 T
cells, which triggers a lethal autoimmune disease [75].
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It has also been shown that Gimap5 knockout mice
lack peripheral NK cells and CD8+ T cells and exhibit
dynamic changes in immune homeostasis, as demon-
strated by the progressive loss of CD4+ T cells and B cells
and the development of neutrophilia [76,77]. A frameshift
mutation in Gimap5 is a prerequisite for the development
of spontaneous type 1 diabetes in rats [72,73]. In 2011,
Moralejo et al. [78] suggested that further elucidating the
role of the Gimap5 in T cell survival, development and/or
activation would aid in our understanding of the pathways
involved in the onset of spontaneous diabetes mellitus
type 1 and may ultimately uncover the pathways leading to
development of this disease in humans. The mechanisms
underlying the pro-survival function of Gimap5 in T cells
have not been elucidated. Recently, some authors have
shown that Gimap5-deficiency in T cells impairs Ca>* entry
via the plasma membrane channels [77]. Gimap5®"*P"
mice, an ENU germline mutant with a missense mutation
in Gimap5, showed a progressive loss of the peripheral
lymphocyte populations and developed spontaneous colitis,
resulting in early mortality [79]. Genetic aberrations in
Gimap5 have been linked to lymphopenia and the loss of
immunological tolerance. Gimap5 is essential for maintain-
ing lymphocyte quiescence and immunological tolerance.
Its role during neuropathy needs further explanation and
will be studied in our laboratory in the near future. In the
present study, we have shown that Gimap5 mRNA is
downregulated in the spinal cord and DRG seven days after
CClI-induced neuropathic pain. We also showed that in-
traperitoneal administration of minocycline inhibited
the development of neuropathic pain symptoms and in
parallel we observed that the level of Gimap5 mRNA
back to the level measured in naive rats on the spinal
cord level and DRG.

Conclusions

To summarize, the DNA microarray method allowed us
to choose 93 transcripts from 22,500 studied transcripts
due to their abundance level changes after sciatic nerve
injury, as well as 39 (42%) transcripts that were addition-
ally modulated by repeated administration of minocycline.
Further studies are needed to elucidate the roles of the
individual genes in the development of neuropathic pain
and to determine which genes altered by minocycline may
be relevant to its analgesic action in neuropathic pain. The
gene analysis in the present study offers the first step
towards future research into genes that can be modulated
and may be good targets for effective and safe therapies
for the treatment of neuropathic pain.

Materials and methods

Animals

Male Wistar rats (300-350 g) from Charles River
(Hamburg, Germany) were housed in cages lined with
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sawdust under a standard 12/12 h light/dark cycle
(lights on at 08:00 h), with ad libitum access to food
and water. All efforts were made to minimize animal
suffering and to reduce the number of animals used in
this study. All experiments were performed according
to the recommendations of the International Association
for the Study of Pain (IASP) [80] and the National Insti-
tutes of Health Guide for the Care and Use of Laboratory
Animals, and these experiments were approved by the
local Bioethics Committee (Krakow, Poland).

Surgical preparations

Chronic constriction injury (CCI) was performed according
to Bennett and Xie [81]. The right sciatic nerve was ex-
posed under sodium pentobarbital anesthesia (60 mg/kg;
i.p.). Four ligatures (4/0 silk) were made around the
nerve, distal to the sciatic notch with 1 mm spacing,
until a brief twitch in the respective hind limb was ob-
served. After surgery, all rats developed symptoms of
long-lasting neuropathic pain, such as allodynia and
hyperalgesia.

Drug administration and experimental scheme
Minocycline hydrochloride (30 mg/kg; Sigma, Schnelldorf,
Germany) was dissolved in water for injection and
administered preemptively by i.p. injection 16 and 1 h
before CCI, then twice daily for seven days, as previ-
ously described [7,9]. This administration schedule was
used because systemic microglia inhibitors attenuate
the activation of microglia more efficiently when the
inhibitor is injected before injury [9,27,82]. The con-
trol groups received the vehicle (water for injection)
on the same schedule (Scheme 1).

According to the scheme, naive animals were subjected
to all procedures (behavioral tests and tissue collection)
parallel to the V-CCI and MC-CCI groups, with exception
of CCI surgery procedure including anaesthesia. The
influence of minocycline administration on gene expres-
sion in the ipsilateral dorsal part of the lumbar spinal cord
(L4-L6) was studied using DNA microarray analysis.
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Injury-induced changes and the influence of minocy-
cline were verified using the qPCR method, and the
gene expression patterns in the ipsilateral DRG (L4-L6)
were also examined.

Behavioral tests

Tactile allodynia (von Frey test)

Allodynia was measured using an automatic von Frey
apparatus (Dynamic Plantar Aesthesiometer Cat. No.
37400, Ugo Basile, Italy). The animals were placed in
plastic cages with wire net floors 5 min before the ex-
periment. The strengths of the von Frey stimuli used in
our experiments ranged from 0.5 to 26 g. The von Frey
test began with the lowest filament and increased in
order; the filament was applied to the midplantar surface
of the hind paw, and measurements were taken automat-
ically, as described previously [7,15]. The ipsilateral paw
was tested, and the mean value was calculated. There was
almost no response to the highest strength (26 g) in the
naive animals. Therefore, a line was drawn at this value.
For the CCl-exposed rats, the significantly different reac-
tions of the paws between the CCI-exposed and naive rats
were recorded.

Cold hyperalgesia (cold plate test)

Hyperalgesia was assessed using the cold plate test
(Cold/Hot Plate Analgesia Meter No. 05044, Columbus
Instruments, USA) as previously described [7,15]. The
temperature of the cold plate was kept at 5°C, and the
cut-off latency was 30 s. The animals were placed on the
cold plate, and the time until the hind paw was lifted
was recorded. In the naive rat group, the reaction of the
first hind paw to be lifted was measured. In the rats sub-
jected to nerve injury, the ipsilateral paw reacted first.

Biochemical tests

Tissue collection and RNA isolation

Ipsilateral and contralateral fragments of the dorsal part
of the lumbar (L5-L6) spinal cord and the ipsi- and
contralateral DRG (L5-L6) were removed immediately

Minocycline (MC) 30 mg/kgi.p.
or water for injection
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after decapitation on day 7 after CCI. The tissue samples
were placed in individual tubes containing the tissue
storage reagent RNAlater (Qiagen Inc.) and were stored
at -70°C for RNA isolation. Total RNA was extracted
using the TRIzol reagent (Invitrogen), as previously
described [83]. The RNA concentration was measured
using a NanoDrop ND-1000 Spectrometer (NanoDrop
Technologies), and RNA quality was determined by chip-
based capillary electrophoresis using an RNA 6000 Nano
LabChip Kit and an Agilent Bioanalyzer 2100 (Agilent) ac-
cording to the manufacturer’s instructions.

Quantitative reverse transcriptase polymerase chain
reaction (qPCR)

Reverse transcription was performed on 2 pg of total
RNA using Omniscript reverse transcriptase (Qiagen
Inc.) at 37°C for 60 min. RT reactions were carried out in
the presence of an RNAse inhibitor (rRNAsin, Promega)
and an oligo (dT16) primer (Qiagen Inc.). cDNA was
diluted 1:10 with H,O, and for each reaction, ~ 50 ng of
c¢DNA synthesized from the total RNA of an individual
animal was used for the quantitative real-time PCR (qPCR)
reaction. qPCR was performed using Assay-On-Demand
TagMan probes according to the manufacturer’s protocol
(Applied Biosystems), and the reactions were run on an
iCycler device (BioRad, Hercules). The following Taq-
Man primers and probes were used: Rn01527838_g1
(Hprt, hypoxanthine guanine rat hypoxanthine guanine
phosphoribosyl transferase); Rn01522736_m1 (Rwdd3);
Rn01772952_m1 (Fam22f); Rn00580189_m1 (Slc7a7);
Rn01423590_m1 (Cd40); Rn00595553_m1l (Gimap5);
Rn01505455_m1 (Apobec3b); and Rn01459401_m1 (Clec7a).
The amplification efficiency for each assay (between 1.7
and 2) was determined by running a standard dilution
curve. The cycle threshold values were calculated auto-
matically by the iCycler IQ 3.0 software using the
default parameters. RNA abundance was calculated as
o (threshold cycle) HPRT transcript levels do not significantly
change in rats exposed to CCI [15] and, therefore, served
as an adequate housekeeping gene.

Microarray analysis

A starting amount of 200 ng of high quality total RNA
was used to generate cDNA and cRNA using the Illumina
TotalPrep RNA Amplification Kit (Illumina Inc., San
Diego, CA, USA) according to the our previous studies
[84,85]. The obtained ¢cDNA served as a template for
in vitro transcription with T7 RNA polymerase and
biotin UTP to generate multiple copies of biotinylated
cRNA. Each cRNA sample (1.5 pg) was hybridized
overnight to a RatRef-12 V1 BeadChip array (Illumina);
subsequently, the chips were washed, dried and scanned
using the BeadArray Reader (Illumina). Raw microarray
data were generated using BeadStudio v3.0 (Illumina).
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Samples from 2 rats were pooled for each microarray, and
3 biological replicates were used for each experimental
point. Microarray quality control was performed using the
BeadArray R package v1.10.0. The following parameters
were checked: number of outliers, number of beads and
percentage of detected probes. After background subtrac-
tion, the data were normalized using quantile normalization
and were then log2-transformed. The obtained signal was
taken as the measure of mRNA abundance derived from
the level of its gene expression. All statistical analyses were
performed using the R software version 2.11.1.

Data analysis

The mean + SEM of the behavioral data are presented in
grams and seconds, and each group contained 6-15 rats.
The results of the experiments were evaluated using one-
way analysis of variance (ANOVA). The data are presented
as the mean + SEM. *p < 0.05, **p < 0.01 and ***p < 0.001
indicate a significant difference when compared to the con-
trol group (naive rats); “p < 0.05 and “**p < 0.001 indicate a
significant difference when compared to the vehicle-treated
CCl-exposed rats.

The results of the qPCR analyses are presented as the
fold change compared to the control group (naive rats)
and were calculated for the ipsilateral sides of the spinal
cords, as well as for the DRGs of the CCI-exposed rats.
The quantitative qPCR analysis data are presented as the
mean + SEM and represent the normalized averages
derived from the threshold cycle in the qPCR analysis
of 4 to 10 samples for each group. The inter-group differ-
ences were analyzed using an ANOVA, followed by
Bonferroni’s multiple comparison test. *p < 0.05, **p < 0.01
and ***p < 0.001 indicate a significant difference when
compared to the control group (naive rats); “p <0.05
and **p <0.001 indicate a significant difference when
compared to the vehicle-treated CCI-exposed rats.

Microarray analyses were performed in three groups:
naive, CCI-exposed and minocycline-treated CCI-exposed
rats. The data are presented as fold changes compared to
the naive rats in the ipsilateral dorsal lumbar spinal cord
and DRG. The inter-group differences were analyzed
using ANOVAs, followed by the calculation of the false
discovery rate (FDR). **p <0.01 and ***p < 0.001 indicate
significant differences when compared to the naive rats.
"p<0.05, p<0.01 and **p<0.001 indicate significant
differences when compared to the CCl-treated group.
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