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Abstract

Introduction: Neuropathic pain is believed to be influenced in part by inflammatory processes. In this study we
examined the effect of variability in the C-type lectin gene cluster (Aplec) on the development of neuropathic
pain-like behavior after ligation of the L5 spinal nerve in the inbred DA and the congenic Aplec strains, which
carries seven C-type lectin genes originating from the PVG strain.

Results: While both strains displayed neuropathic pain behavior early after injury, the Aplec strain remained
sensitive throughout the whole study period. Analyses of several mRNA transcripts revealed that the expression of
Interleukin-1β, Substance P and Cathepsin S were more up-regulated in the dorsal part of the spinal cord of Aplec
rats compared to DA, indicating a stronger inflammatory response. This notion was supported by flow cytometric
analysis revealing increased infiltration of activated macrophages into the spinal cord. In addition, macrophages
from the Aplec strain stimulated in vitro displayed higher expression of inflammatory cytokines compared to DA
cells. Finally, we bred a recombinant congenic strain (R11R6) comprising only four of the seven Aplec genes, which
displayed similar clinical and immune phenotypes as the Aplec strain.

Conclusion: We here for the first time demonstrate that C-type lectins, a family of innate immune receptors with
largely unknown functions in the nervous system, are involved in regulation of inflammation and development of
neuropathic pain behavior after nerve injury. Further experimental and clinical studies are needed to dissect the
underlying mechanisms more in detail as well as any possible relevance for human conditions.
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regulate neuropathic pain by increased immune response in the spinal cord
Introduction
Injuries to either the peripheral or central nervous sys-
tems (CNS) often lead to chronic neuropathic pain con-
ditions. The underlying mechanisms are not clarified in
detail, hence therapeutic options are limited. However
immune related reactions in the nervous system are sug-
gested to be of importance both for the maintenance
and development of neuropathic pain [1,2]. One such
feature is the recruitment of leukocytes into the CNS
after a peripheral nerve injury, which may amplify or
modify the inflammatory activation of CNS resident glial
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cells, in turn leading to exaggerated pain [3-6]. Thus, in-
filtration of blood monocyte-derived macrophages, is an
early phenomenon upon nerve injury. Although involved
in the clearance of debris due to their phagocytic pro-
perties, activated macrophages also release a range of
cytokines and chemokines, which have been linked to
pain-related behavior [7-9]. In previous studies the che-
mokine ligand 2 (Ccl2)- chemokine receptor 2 (Ccr2)
signaling has been shown to be critically important for
the attraction of monocytes to the CNS, which is in
turn of relevance for development of neuropathic pain
[6]. Also, other types of leukocytes, including T-cells have
been suggested to be involved in neuropathic pain-like
behavior [5,10].
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Previous studies on inbred rat and mice strains suggest
a considerable genetic contribution to various experi-
mental pain phenotypes [11-14]. However, knowledge of
exactly defined molecular pathways involved in, or if
genetic influence acts on regulation of inflammatory pro-
cesses of relevance for neuropathic pain, is limited. In an
earlier study we could demonstrate that the MHC locus, a
region of about 200 genes, exerts a significant effect on
pain susceptibility in inbred rat strains after a peripheral
nerve injury [15]. Interestingly, we recently replicated this
finding in humans by showing that carriers of the HLA
DQB1*03:02 allele displayed an increased risk of develop-
ing a neuropathic pain condition after a peripheral nerve
lesion [16]. The mechanisms underlying this genetic effect
are still unclear, but effects on nerve injury-induced im-
mune reactions are likely given the role of the MHC in
these contexts.
To further examine the role of genetically regulated

immune reactions for pain susceptibility after nerve in-
jury we here investigated the effect of a small rat chromo-
some 4 gene fragment containing seven C-type lectin
receptors (CLRs). The gene cluster, denoted antigen-
presenting lectin-like receptor gene complex (Aplec),
has previously been studied primarily in models of auto-
immune and infectious disease, where it has been demon-
strated to regulate different aspects of the innate immune
response [17,18]. Also, we recently found the Aplec
cluster to regulate the immune phenotype after a mech-
anical ventral root injury, including effects on leukocyte
recruitment [19]. The aim here was to explore the im-
portance of variability in the Aplec cluster occurring
among inbred rat strains for neuropathic pain-like be-
havior and immune phenotype after a standardized spinal
nerve injury.

Results
The Aplec strain is susceptible to develop neuropathic-
pain like behavior.
Figure 1 Schematic map of the seven Aplec genes and the four gene
respectively 223.010-223.365 kb). The microsatellite markers are depicte
Ensembl version 73, Rnor 5.0).
DA and Aplec rats are genetically identical except that
the latter contains a small genetic fragment from the
PVG strain comprising seven genes, all of which are
CLRs (Figure 1) [18,20,21]. We here tested susceptibility
to develop neuropathic pain behavior in a SNL model.
Initially, both strains developed mechanical hypersen-
sitivity to a similar degree after SNL, however, DA rats
had started to recover after 14 days, whereas the Aplec
rats remained sensitive during the entire time of testing
(Figure 2). Statistical analysis demonstrated overall dif-
ferences between the strains, as well as statistically sig-
nificant differences specifically on day 21, 28 and 35, the
last three time points that were tested.

Expression of Aplec genes
In order to study any possible expression differences of
the seven CLRs in the Aplec fragment the three anato-
mical locations primarily affected by the injury, i.e. SC,
DRG and nerve, were analyzed by RT-PCR. In general,
the injury induced expression in the studied tissues was
most pronounced in the peripheral nerve, where Dcir1-4
all were increased on both strains (Figure 3A-D). Also in
the L5 DRG and the SC these four transcripts were up-
regulated after injury but to a lower degree. In contrast,
Mcl and Mincle were not significantly affected by injury
in any of the locations (Figure 3E-F). In the comparison
between strains, Dcir1 and 4 were higher in Aplec com-
pared to DA in peripheral nerve, while Dcir2 was higher
in L5 DRG and SC of DA rats. The expression of Dcar1
was below detection limit (data not shown).

Expression of neuropeptides, cytokines and chemokines
receptors
The cascade of events occurring after a peripheral nerve
lesion includes changes in the expression of neuropeptides,
cytokines and chemokines. We therefore measured the ex-
pression of Substance P (SP) and Calcitonin gene-related
peptide (CGRP), Interleukin-1β (IL1β), Ccr2, Fractalkine
s with in R11R6 strain on chromosome 4 (222.811-223.365 kb
d in the upper part. Clec4n is a pseudogene. (Modified figure from



Figure 2 Neuropathic pain-like behavior after peripheral nerve
injury in DA and Aplec strain. One-way ANOVA demonstrates
overall differences between the strains (***p < 0.001). Bonferroni
post-hoc testing reveals significant difference between DA and Aplec
on days 21, 28 and 35 (+++p < 0.001), Data are expressed as
means ± SEM. (12–20 rats per group).
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receptor (Cx3cr1) and Cathepsin S (CatS). As expected,
there was up-regulation of IL-1β expression in all studied
tissues (Figure 4A). SP and CGRP were down-regulated in
the lesioned L5 DRG, with a trend for higher expression
in the adjacent intact L4 DRG (Figure 4B-C). Ccr2, Ccl2,
Cx3cr1 and CatS were only studied in the SC, where the
latter two were up-regulated (Figure 4D). The expression
of IL1β and CatS were higher in SC of Aplec compared to
DA rats. Ccr2 and Ccl2 levels were not affected after in-
jury in either of the strains (Figure 4D).

Immune cell infiltration in the spinal cord
Flow cytometry analyses were performed in DA and
Aplec, 14 days post-injury to characterize immune cell
recruitment to the SC. Populations of microglia, mono-
cyte/macrophages, T-cells and NK cells were analyzed
(Figure 5A). As expected, the microglia population greatly
outnumbered the other two. There was a tendency for a
higher relative proportion of both microglia and T-cells in
Aplec compared to DA. In addition, the Aplec strain had
a significantly increased proportion of infiltrating acti-
vated macrophages (CD45+MHCII+) compared to DA
(Figure 5B-F).

In vitro stimulation of bone marrow derived macrophages
CLRs are expressed by antigen-presenting cells, like
macrophages. As we observed an increased infiltration
of macrophages to the SC after injury we performed
in vitro stimulations of macrophages from both stains to
determine possible phenotypic differences in the expres-
sion of pro-inflammatory cytokines. Accordingly, bone
marrow-derived macrophages (BMMφ) from DA and
Aplec rats were stimulated in vitro with TNFα for 24 h.
We could detect a significant difference in expression
levels of IL-1β, IL-6 and TNFα, where BMMφ cells de-
rived from the Aplec strain expressed higher levels
compared to DA (Figure 6A). Interestingly, Dcir1 and
Mincle levels were higher in DA strain after stimulation
compared to Aplec. Mcl levels were up-regulated after
stimulation in both strains but without strain differ-
ences (Figure 6B).

Neuropathic pain-like behavior in the R11R6 congenic
rat strain
In order to reproduce our findings, and genetically dis-
sect the Aplec cluster further, a smaller congenic con-
taining only four out of the seven CLRs from the Aplec
fragment; Dcir1, Dcar1, Mcl and Mincle, was created.
Following SNL the R11R6 developed mechanical hy-
persensitivity to a similar extent as the Aplec strain
and remained sensitive during the entire time of test-
ing (Figure 7). As for Aplec, statistical analysis demon-
strated overall differences between the strains, as well
as significant differences specifically on day 21, 28 and
35, i.e. the last three time points tested. To assess the
cellular phenotype in R11R6 flow cytometry analyse
were performed as for the Aplec, however, including
only the L4-L6 segment of the cord. As with the Aplec
strain the R11R6 had more infiltration of activated macro-
phages compared to DA. In addition, also the absolute
numbers of microglia and infiltrating macrophages were
greater in R11R6 compared to DA (Figure 8A-E).

Discussion
In the present study we demonstrate that the Aplec
congenic rat displays a nerve injury phenotype distinctly
different from DA rats, with continued neuropathic
pain-behavior extending well after the DA strain has
recovered. The phenotype is associated with increased
expression of IL-1β and CatS, as well as increased in-
filtration of activated macrophages to the SC and a grea-
ter response to an inflammatory stimulus of BMMφ
in vitro, well in line with the notion of an inflammatory
component in neuropathic pain development. The seven
CLRs comprised in the cluster are expressed by antigen-
presenting cells as well as neutrophils [22,23] and act
as pattern recognition receptors that upon binding of a
pathogen or endogenous ligand will shape T -cell re-
sponses and modulate the ensuing inflammatory reac-
tion [22,24,25]. The Aplec cluster was originally position
mapped by comparing the susceptibility of inbred DA rats
with that of DA rats carrying alleles derived from the oil-
induced arthritis-resistant PVG strain [18]. In a subse-
quent study the Aplec cluster was found to affect the
in vivo and in vitro phenotypes with regard to infectious
and inflammatory challenges, further strengthening the
notion of effects mediated through the regulation of
general macrophage activation status [17]. Interestingly,



Figure 3 Expression levels of Dcir1-4, Mcl and Mincle detected in spinal cord, L4 DRG, L5 DRG and nerve. mRNA levels were analyzed by
RT-PCR in Aplec and DA strain 7 days after injury (+) and in healthy controls (−) from each strain. Dcir1 (A), Dcir2 (B), Dcir3 (C), Dcir4 (D), Mcl (E),
Mincle (F). One-way ANOVA was done followed by Step-down Bonferroni correction for multiple comparisons (*p < 0.05; **p < 0.01).
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genetic variability in the corresponding human genes
has been associated with susceptibility to anti-citrulline
antibody negative rheumatoid arthritis, indicating rele-
vance also for human disease [21].
The role of CLRs has mostly been studied in the con-

text of antigen-presenting cells, in particular dendri-
tic cells, where they have been shown to important for
shaping adaptive immune responses [26,27]. However,
detailed knowledge of the molecular function of many
CLRs is still lacking and any possible involvement of
CLRs in traumatic nerve injuries is entirely unknown.
However, in a recent expression quantitative trait loci
mapping study we found Dcir3 to be significantly re-
gulated in the SC between DA and PVG after ventral
nerve root injury [19]. Interestingly, further testing of
the Aplec strain in this injury model revealed an effect
on the inflammatory response with more lymphocyte
infiltration as well as increased survival of avulsed mo-
toneurons. Here we find a different pattern of regulated
genes in the Aplec cluster, with higher expression of
Dcir 2 in both SC and L5 DRG of the Aplec strain. In
contrast, in the nerve, Dcir 1 and 4 levels were higher
in the DA strain. Mincle was not induced by injury, but
expression was in general higher in the DA strain. Taken
together this suggests that there are complex regulatory
differences affecting the expression pattern of several
of the CLRs in the fragment underlying the observed
phenotypes.



Figure 4 Expression levels of pain molecules in spinal cord,
L4 DRG, L5 DRG and nerve 7 days after injury (+) and health
controls (−) in Aplec and DA rats. IL-1β (A), CGRP L4 and L5 DRG
(B), SP L4 and L5 DRG (C), Ccr2, Ccl2, Cx3cr1 and CatS in SC (D).
Statistical analysis were done with one-way ANOVA and by
Step-down Bonferroni correction for multiple comparison
(*p < 0.05; **p < 0.01).
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By a large scale breeding effort we were able to identify a
sub-congenic with a recombination within the Aplec clus-
ter, isolating four of the seven CLRs in a new fragment;
R11R6, containing Dcir1, Dcar1, Mcl and Mincle. Testing
of this strain in the SNL model revealed a phenotype al-
most identical to Aplec, suggesting the underlying genetic
variability or variabilities conferring the clinical effect to be
localized to this fragment. Of the four genes in the R11R6
fragment Dcar1 could be viewed as a potential candidate
since it is nonsense mutated in DA strain [21]. However,
the mRNA levels of Dcar1 were barely detectable in all
studied tissue arguing against a role for Dcar1. Mcl and
Mincle were not induced by injury, but expression of
Mincle was higher in the DA strain compared to the
Aplec. The last gene, Dcir1, was expressed more highly in
the nerve of DA rats and is known to contain an immu-
noreceptor tyrosine-based inhibitory motif, hence involved
in inhibitory signaling [22,28]. This may imply that DA
up-regulate Dcir1 to inhibit activation/secretion of proin-
flammatory cytokines. In vitro stimulation of BMMφ with
TNF-α resulted in higher levels of Dcir1 in DA cells.
Given the genetic complexity with possible mutual cross-
regulation between the genes in the fragment and differ-
ences between different anatomical locations, formal proof
of the underlying causative genetic variation or variations
may require continued recombinant inbred breeding, an
undertaking that could take several years.
We further explored downstream molecular events

segregating between the two studied strains. The finding
that IL-1β levels were significantly higher in the pain
sensitive strain in the SC compared to DA after injury in
L5 DRG are in concordance with several studies demon-
strating that IL-1β increases neuron excitability and ac-
celerate central sensitization [10,29]. Expression of IL-1β
was also greater in in vitro stimulated BMMφ, suggestin
that the Aplec cluster affects expression of this cytokine.
As expecte, expression of SP and CGRP was down regu-
lated in both strains after injury, in accordance with per-
vious knowledge [30-32]. On the contrary we observed
an up-regulation of SP and CGRP levels in both strains
in the intact L4 DRG, with significantly higher ex-
pression of SP in the Aplec strain. Fukuoka et al. ob-
served a similar finding with increased CGRP levels in
the contralateral L4 DRG after same type of injury,
which may reflect increased activity or sensitivity in in-
tact sensory pain transmission systems, possibly includ-
ing also inflammatory cytokines [33-36].
Ccl2/Ccr2 and Fractalkine/Cxcr1 are two signaling

pathways known to be involved in mediating interaction
between injured sensory neurons and microglia [6,37], in
addition Ccl2/Ccr2 signaling has been shown to be im-
portant for both monocyte recruitment and pain sensi-
tivity [5,6]. We could not observe any differences in the
expression of Ccl2/Ccr2 in the SC, which could indicate
either that the number of recruited macrophages is too
low to be detected with this approach or that signaling
through this ligand-receptor pair is of less importance in



Figure 5 (See legend on next page.)
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(See figure on previous page.)
Figure 5 Immune cell infiltration to the spinal cord. Flow cytometry analyses performed 14 days after injury in Aplec and DA strains.
Representative flow cytometry plots (A). Gated areas represent different cell populations, lymphocytes (a), macrophages (b), microglia (c) T-cells
(d) activated infiltrating macrophages (e) and activated microglia (f). Strain differences are presented as percent of total cells and absolute
numbers for T-cells (B), infiltrating macrophages (C), activated infiltrating macrophages (D), microglia (E) and activated microglia (F). Statistical
analysis were done by Mann–Whitney test (*p < 0.05).
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the context studied here. In contrast, we could record
an up-regulation of Cx3cr1 in both strains after injury.
Interestingly, CatS was up-regulated preferentially in the
cord of the pain sensitive Aplec strain. CatS, a proteo-
lytic lysosomal cysteine proteinase, is released by acti-
vated microglia in SC and macrophages in the periphery
and is responsible for the cleavage of Fractalkine which
gives rise to a soluble cleavage product that binds to
Cx3cr1 expressing microglia leading to an enhancement
of pro-nociceptive mediators [38,39].
The role of T-cells for the development of neuropathic-

pain like behavior is complex, with contrasting effects in-
cluding both pain-driving and analgesic effects [3,40-42].
In a previous study of a motor nerve avulsion model we
found a greater T -cell infiltration to the SC in Aplec com-
pared to DA [19]. Here we found a tendency for both
Aplec and R11R6 rats to have higher numbers of T-cells
compared to DA. In contrast, strain differences were evi-
dent for infiltration of activated macrophages in Aplec
and subsequently confirmed in the R11R6 strain, display-
ing also increased numbers of microglia as well as macro-
phages in general.
Previous reports have demonstrated that infiltration of

BMMφ to the CNS play a role in the development of
neuropathic pain [6]. Hence, the production of cytokines
by activated BMMφ cells was examined in vitro using a
standard inflammatory stimulus. We could detect that
cells derived from the pain sensitive Aplec strain dis-
played higher expression of TNF-α, IL-1β and IL-6, all
Figure 6 Expression levels of pro-inflammatory cytokines, Dcir1, Minc
with TNF- α. The Aplec strain display higher expression of TNF -α , IL-6 an
stimulation, Mcl levels are up-regulated in both strains after stimulation bu
Bonferroni post-hoc (*p < 0.05; **p < 0.01; ***p < 0.001).
of which are known to increase both pain sensitivity and
induces the production of each other, which amplifies
the inflammatory response [7,43]. This is in line with a
previous study suggesting the Aplec cluster to regulate
the general activation status of macrophages [17].

Conclusion
All together our findings support the conclusion that
variability in CLRs occurring among inbred rat strains
affects inflammatory activation of antigen-presenting cells,
with subsequent effects on pain transmitting systems.
Importantly, our results, derived from large scale ge-
netic dissection, identified that variability in the four
CLR’s in the R11R6 sub-congenic (Dcir1, Dcar1, Mcl
and Mincle) is sufficient to cause a significant differ-
ence in the clinical effect. Further studies are needed to
elucidate the mechanisms more in detail. The fact that
this gene cluster was identified by unbiased forward
genetics and that genetic variability in human ortholo-
guos have been associated with disease risk encourage
studies also in humans.

Materials and methods
Ethics statement
All animal experiments were performed in accordance
with the Guidelines of the International Association for
the Study of Pain and were approved by the Swedish
ethical committee (Stockholm’s North Ethical Committee-
Stockholms Norra Djurförsöksetiska nämnd).
le and Mcl in BMMφ from DA and Aplec following stimulation
d IL-1β (A). Dcir1 and Mincle levels are higher in DA strain after
t without strain differences (B). One-way ANOVA followed by



Figure 7 Neuropathic pain-like behavior after peripheral nerve
injury in DA and R11R6 strain. One-way ANOVA demonstrates
overall differences between the strains (***p < 0.001). Bonferroni
post-hoc indicates significant difference between DA and R11R6 on
day 21, 28 and 35 (++p < 0.01; +++p < 0.001) Data are expressed as
means ± SEM. (12–20 rats per group).
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Animals
Two congenic rat strains, one containing seven CLR
genes denoted antigen-presenting lectin-like receptor
complex (Aplec) and the other containing four CLR
genes denoted R11R6, as well as the inbred Dark agouti
(DA) male rats were used in this study. The congenic
Aplec and R11R6 were produced by transferring a gene
cluster from Piebald Virol Glaxo (PVG) rats onto Dark-
Agouti (DA) rats through repeated backcrossing as previ-
ously described [18]. The fragments are on chromosome 4
(222.811-223.365 kb respectively 223.010-223.365 kb) and
a schematic map with the gene positions (Gene ID) and
markers are depicted in Figure 1 (Ensembl version 73,
Rnor 5.0).
All animals were kept under specific pathogen-free

and climate-controlled conditions with 12 h light/dark
cycles, housed in polystyrene cages containing wood
shavings, and fed standard rodent chow and water ad
libitum.

Peripheral nerve injury
Rats were subjected to modified spinal nerve ligation
model (SNL) [44] under standardized conditions. The
animals were deeply anesthetized with 2% isoflurane and
lower back skin was shaved and cleaned with 70% etha-
nol. An incision was made through the skin and para-
spinal muscle were separated from the spinous processes
at the L5-L6 levels. The fifth lumbar spinal nerve was
transected distal to the ganglion. The skin was closed in
layers and sutured. 0,25 ml Eusaprim (16 mg/ml sul-
fametoxazol, 80 mg/ml trimethoprim) (Aspen Europé
Gmbh, Bad Oldesloe, Germany) was administrated post
surgery, subcutaneously. All rats were sacrificed with CO2
and perfused with PBS containing Heparin (LEO, Pharma
AB, Malmö, Sweden). Rats were sacrificed at day 7,14 and
35 after injury.

Behavioral testing
Rat were tested for mechanical hypersensitivity before
and on day 3,7,10 and 14 after injury, and then weekly at
week 3 and 4. Individual rats were placed in testing
chambers with metal mesh floor 10 min before experi-
ments for habituation. A set of calibrated nylon mono-
filament (Semmes-Weinstein monofilaments, Stoelting,
IL) was applied to the glabrous skin of the paws with
increasing force until the animal withdrew the limb.
Each monofilament was applied 5 times with a few sec-
onds interval and withdrawal threshold was determined
when the rat withdrew the paw from at least 3 out of 5
stimulations.

Quantitative real-time PCR (qPCR)
The ipsilateral L5 and adjacent unlesioned L4 dorsal
root ganglion (DRG) were identified using a dissection
microscope and taken for subsequent analysis. Also the
ipsilateral dorsal horn of the spinal cord (SC) (segment
L4-L5) and a few millimeter of the nerve proximal to
the injury were collected for mRNA quantification at
day 7 after SNL. Total RNA was extracted with RNeasy
Mini kit (Qiagen) and RNase-Free DNase Set (Qiagen)
according to manufacturer’s protocols. cDNA was pre-
pared with 5x iScript reaction mix (Bio-Rad) with 5 μl
total RNA. Amplifications were conducted using Bio-
Rad SYBR green according to manufacturer’s instruc-
tions and plates were run in Bio-Rad CFX optical system
(Bio-Rad). Primer specificity was assessed by determin-
ing amplicon size using gel electrophoresis and melt
curve analysis of each reaction indicating a single peak.
The targets analyzed and their primer sequences are
listed in Table 1. Normalized expressions were calculated
in Bio Rad CFX manager v2.0 (Bio-Rad) using hprt and
gapdh as house-keeping genes.

Flow cytometry
At day 14 after injury animals were scarified with CO2
and perfused through the ascending aorta with ice-cold
PBS supplemented with heparin (LEO Pharma AB, Malmö,
Sweden). The spinal cords (n = 5-7 rats/strain) were re-
moved and homogenized with a glass tissue grinder in a
50% Percoll solution (Sigma-Aldrich, Stockholm, Sweden).
A density gradient was made consisting of the following
layers: a top layer of 30% Percoll (20 ml), a middle layer
with the homogenized tissue in 50% Percoll (20 ml) and a
bottom layer of 63% Percoll (7 ml). All Percoll solutions
were made fresh by diluting Percoll in 10xHBSS (Hank’s
Balanced Salt Solution, Gibco), supplemented with 0.1%
BSA and 0.1% glucose. After centrifugation at 1000 g at



Figure 8 Immune cell regulation to the spinal cord in DA and R11R6 strain 14 days after injury. Flow cytometric analysis using gates as in
Figure 5A. Strain differences are presented as percent of total cells and absolute numbers for T-cells (A), infiltrating macrophages (B), activated
infiltrating macrophages (C), microglia (D) and activated microglia (E). Statistical analysis were done by Mann–Whitney test (*p < 0.05).
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Table 1 Sequences of primers used for RT-PCR

Target name Forward sequence Reverse sequence

Gapdh TCA ACT ACA TGG TCT ACA TGT TCC AG TCC CAT TCT CAG CCT TGA CTG

Hprt CTC ATG GAC TGA TTA TGG ACA GCA GGT CAG CAA AGA ACT TAT

SP TGG CGG TCT TTT TTC TCG TT GCA TTG CCT CCT TGA TTT GG

CGRP GTG TCA CTG CCC AGA AGA GAT C CAA AGT TGT CCT TCA CCA CAC C

IL-1β GAAAGACGGCACACCCACC AAACCGCTTTTCCATCTTCTTCT

Dcir1 CCATAGCAAGGAAGAACAGGACTT TGAATCCCAGAGCCCTATAAAATAA

Dcir2 CCATCATCCAAGTAAGCCAGGTTC GAGTCAGTTGAAGTAAAGTAGCAGTAG

Dcir3 TGCCACAAGTTCTCCAAG TCCAATTCAGTATAGTTCAGTTCC

Dcir4 CATTCGTCCGTGGAAGACAAA TGCAGAGTCCCTGGAAGTGAA

Dcar1 TGCTCATCTGTTGGTGATCCA TGTAAAATAACCCCAACGAGTGTCTA

Mcl CACAAGGCTAACATGCATCCTAGA GCAAAGTAACAGTTAGACTGGAATGCT

Mincle TTTCACAGAGTCCCTGAGCTTCT TCCCTCATGGTGGCACAGT

TNF-α GACCCTCACACTCAGATCCAGATCATCTTCT ACGCTGGCTCAGCCACTC

Ccr-2 AGAAGTATCCAAGAGCTTGATGAGG ATAGTGAGCCCAGAATGGGAG

Ccl-2 AACTCTCACTGAAGCCAGAT GGTGACAAATACTACAGCTTC

Cx3cr1 CTGCTCAGGACCTCACCAT CAGACCGAACGTGAAGACAA

Cathepsin S TGT TCT CGT GGT TGG CTA T AAC GGT TTA GAT TTC TGG GT

IL-6 AGAAAAGAGTTGTGCAATGG ACAAACTCCAGGTAGAAACG
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7°C for 30 min, cells below the myelin layer were col-
lected, washed with PBS containing 0.5% FBS and 2 mM
EDTA and stained with the following antibodies: CD3-
FITC, MHCII-PerCP, CD45-APC and CD11b-APC-Cy7
(eBioscience). Samples were run in Gallios flow cytometer
(Beckman Coulter, Brea, USA) and analysis of acquired
cells was performed with Kaluza v1.1 (Beckman Coulter).
In the first experiment done on Aplec and DA rats the
whole spinal cord was taken for analysis whereas for the
R11R6 and DA experiment only the lumbar segment of
interest, L4-L6 was taken for analysis.

Bone marrow-derived macrophages culture
Bone marrow-derived macrophages were cultured as
described previously [45] from naive DA and Aplec
rats. In brief, femurs were dissected and femoral bone-
marrow cells were collected by flushing through me-
dium with a 21-gauge needle. Single-cell suspensions
were prepared and re-suspended in Dulbecco’s modi-
fied Eagle’s medium (DMEM) (Gibco) supplemented
with 20% heat-inactivated FBS, 100 U/ml penicillin,
100 μg/ml streptomycin, 2 mM L-glutamine and 20%
M-CSF conditioned L929 cell line supernatant. Bone
marrow cells were cultured in 175 cm2 cell culture
flasks and incubated at 37°C and 5% C02 in a humidi-
fied incubator for 10 days; medium was changed after 4
and 6 days with M-CSF conditioned medium, and after
10 days with complete medium (DMEM + FBS) without
M-CSF conditioning. Cells were harvested using EDTA
(Sigma) at a concentration of 0.5 mM and seeded in
24-well plates (4 × 105 cells/well).
The cells were then left un-stimulated, or stimulated

with TNF-α (20 ng/ml) for 24 h and then taken for ana-
lysis with RT-PCR.

Statistical analysis
Statistical analyses were conducted using Graphpad Prism
(5.0). For behavioral analysis one-way ANOVA data ana-
lysis were performed for overall differences (***p < 0.001)
followed by Bonferroni post-hoc for individual time points
(++p < 0.01; +++p < 0.001). Data are expressed as means ±
standard error of the mean. For in vivo RT-PCR analy-
sis one-way ANOVA was done followed by Step-down
Bonferroni correction for multiple comparisons. The
in vitro RT-PCR analysis were done by one way ANOVA
followed by Bonferroni post-hoc (*p < 0.05; **p < 0.01;
***p < 0.001). The flow cytometry studies were analysed
with Mann–Whitney test (*p < 0.05).
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