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Abstract

Background: The past decade has seen an abundance of transcriptional profiling studies of preclinical models of
persistent pain, predominantly employing microarray technology. In this study we directly compare exon
microarrays to RNA-seq and investigate the ability of both platforms to detect differentially expressed genes
following nerve injury using the L5 spinal nerve transection model of neuropathic pain. We also investigate the
effects of increasing RNA-seq sequencing depth. Finally we take advantage of the “agnostic” approach of RNA-seq
to discover areas of expression outside of annotated exons that show marked changes in expression following
nerve injury.

Results: RNA-seq and microarrays largely agree in terms of the genes called as differentially expressed. However,
RNA-seq is able to interrogate a much larger proportion of the genome. It can also detect a greater number of
differentially expressed genes than microarrays, across a wider range of fold changes and is able to assign a larger
range of expression values to the genes it measures. The number of differentially expressed genes detected
increases with sequencing depth. RNA-seq also allows the discovery of a number of genes displaying unusual and
interesting patterns of non-exonic expression following nerve injury, an effect that cannot be detected using
microarrays.

Conclusion: We recommend the use of RNA-seq for future high-throughput transcriptomic experiments in pain
studies. RNA-seq allowed the identification of a larger number of putative candidate pain genes than microarrays
and can also detect a wider range of expression values in a neuropathic pain model. In addition, RNA-seq can
interrogate the whole genome regardless of prior annotations, being able to detect transcription from areas of the
genome not currently annotated as exons. Some of these areas are differentially expressed following nerve injury,
and may represent novel genes or isoforms. We also recommend the use of a high sequencing depth in order to
detect differential expression for genes with low levels of expression.
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Background
Gene expression studies can be used to provide insights
into the molecular mechanisms underlying the onset
and maintenance of pain [1-5]. Such approaches can be
hypothesis-driven, assessing the expression of prese-
lected candidate molecules, or hypothesis-independent,
interrogating gene expression at the genome-wide level.
Microarrays have been used extensively to investigate

transcriptional changes that occur in different parts of
the central and peripheral nervous systems [4]. Such
studies have led to the discovery of novel pain-related
genes, such as the Potassium voltage-gated channel sub-
family S member 1, KCNS1 [2], GTP cyclohydrolase 1,
GCH1 [6] and the neuropeptide VGF nerve growth fac-
tor inducible [7]. In recent years RNA-sequencing
(RNA-seq) has emerged as an alternative platform for
high-throughput transcriptional profiling [8]. The plat-
form has been used in a variety of studies, but so far
only one report has described the use of RNA-seq to
measure gene expression changes in the peripheral ner-
vous system in an experimental model of pain [9]. It has
also been used to perform microRNA profiling following
sciatic nerve injury [10] and to study gene expression
changes in the pre-frontal cortex following spared nerve
injury [11].
Microarray chips measure the expression of thou-

sands of genes in a sample by quantifying the hybridisa-
tion of fragmented cDNA derived from gene-transcripts
to a set of complementary probes specifically designed
to detect a set of genes or transcripts. They have been
used to study a variety of biological systems [12].
However, the use of probes leads to a number of
drawbacks, including non-specific binding and signal
saturation [13], which can negatively affect the meas-
urement of expression for both lowly and highly
expressed genes. Furthermore, microarray design is
based on prior knowledge of the transcriptome and
therefore microarrays can only interrogate a subset of
known (or predicted) transcripts.
RNA-seq represents an alternative to microarrays [8].

It uses high throughput sequencing technology to inves-
tigate RNA expression [14] and allows the quantification
of thousands of transcripts within a cell line or tissue
without the need for a priori knowledge of the transcrip-
tome. This “agnostic” approach represents a major ad-
vantage over microarrays, allowing the discovery of new
transcript variants, novel genes and the annotation of
less well characterized genomes [15,16].
RNA-seq technology also suffers from drawbacks. The

output of an RNA-seq experiment consists of millions of
reads, short sequences of cDNA derived from RNA mol-
ecules. These reads must be mapped to a reference gen-
ome in order to identify the genomic location of the
originating transcript and thus quantify expression [17].
Thus, analysis can be computationally expensive and
time consuming. A common challenge arises due to the
presence of reads that cannot be mapped to the genome.
This can be due to genomic differences (such as poly-
morphisms) between the sample and the reference gen-
ome or erroneous base calling by the sequencing
technology [17]. Conversely, RNA-seq reads may map to
more than one genomic location. Such ambiguous reads
can lead to imprecise gene quantification.
An important consideration when designing an RNA-

seq experiment is sequencing depth, the number of
reads generated per sample. In general it is expected that
the higher the sequencing depth the more accurately the
transcriptome of the tissue of interest is quantified
[18,19]. This is particularly important for the accurate
detection of lowly expressed genes, where problems re-
lated to sampling error can lead to an over or under-
estimation of transcript abundance. However, the cost
of the experiment will also increase with sampling
depth.
In addition to the technical pros and cons of both

platforms, price is an important factor. Although RNA-
seq costs are decreasing, microarrays remain more af-
fordable, and data analysis is more standardised and eas-
ily implemented [16]. RNA-seq, on the other hand,
demands more computational power and bioinformatics
expertise; therefore it is important to determine to what
extent the additional knowledge generated by RNA-seq
experiments outweighs the computational demands and
economic costs.
A large number of comparisons between RNA-seq and

gene expression microarrays have been reported, cover-
ing a wide variety of different experimental designs, plat-
forms, organisms, tissues, cell lines and experimental
interventions. Table 1 shows an overview of these previ-
ous studies. So far, no direct comparison has been made
using exon arrays for non-human, heterogeneous tissue
from different individuals.
In this study we investigate whether RNA-seq

offers an advantage over microarrays for the study of
differential gene expression within dorsal root ganglia
(DRG) following nerve injury using the L5 spinal
nerve transection (SNT) model of neuropathic pain in
the rat [33]. Expression changes induced by this injury
have been well characterised by microarrays [1,4,34],
proteomics [35] and reverse transcription quantitative
PCR (RT-qPCR) [1]. We have used technical replicates
of the same biological samples and subjected them
to exon expression array and RNA-seq analysis. This
circumvents confounding effects brought about by
comparing distinct technologies using historical data
from previous/independent studies. We demonstrate
the technical superiority of RNA-seq over microarrays
in terms of sensitivity (ability to measure transcripts)



Table 1 Previous studies comparing microarray and sequencing platforms for the measurement of gene expression

Study Array
platform

Sequencing
platform

Species Tissue/cell
line

Replication Experimental
intervention/design

Marioni
et al. 2008
[20]

Affymetrix HG-
U133 Plus 2.0

Illumina
Genome
Analyzer

Human Liver/kidney Technical replications (3 per
tissue for microarray, 7 different
flow cell lanes for RNA-seq).

All RNA was taken from a single
human male. Aliquots from each
sample were then used for RNA-
sequencing and microarray analysis.

Bradford
et al. 2010
[21]

Affymetrix
Human Exon
1.0 ST

Applied
Biosystems
SOLiD v3
platform

Human MCF-7 and
MCF-10a
breast cancer
lines

Technical replication (2 x MCF-7,
1 x MCF-10). Samples hybridised
in triplicate to microarrays.

RNA analysed on the SOLiD platform
and the same RNA samples
hybridised in triplicate to Affymetrix
Exon 1.0ST arrays.

Bottomly
et al. 2011
[22]

Affymetrix
MOE 430 2.0
and Illumina
MouseRef-8
v2.0

Illumina GA IIx Mouse Striatum Biological replication,
independent groups used for
different technologies.

B6 strain mice were compared to D2
strain. For RNA-seq, 10 B6 and 11 D2
were used; for Affymetrix arrays 7 D2,
10 B6; for Illumina arrays 12 D2 12
B6. A subset of this group of mice
were also used for RNA-seq.

Toung
et al. 2011
[23]

Affymetrix HG
Focus Array

Illumina 1G
Genome
Analyzer

Human B-cells Biological replicates (20
unrelated individuals).
Independent samples (from
same individuals) were used for
different technologies.

B-cell lines were taken for 20
different individuals (10 male, 10
female). Cells were grown and total
RNA extracted.

Su et al.
2011 [24]

Affymetrix Rat
Genome 230
2.0

Illumina GA II Rat Kidney Biological replication (4 rats per
condition).

Eight rats in total, 4 were
administered with aristolochic acid, 4
with control vehicle. RNA was
extracted from kidneys of each rat;
each RNA sample was assayed using
RNA-seq and miroarrays

Fu et al.
2009 [25]

Affymetrix
Human Exon
1.0 ST

Illumina
Solexa
Sequencer
(precise model
name not
given)

Human Brain Biological replication (two
groups of 5 pooled individuals).

Two independent samples were
used, each containing pooled mRNA
from 5 adult human individuals.
These samples were used as input
for RNA-seq, microarray and prote-
omic analysis.

Griffith
et al. 2010
[26]

Affymetrix
Human Exon
1.0 ST and
Nimblegen
custom array

Illumina GA II Human Colorectal
cancer cell-
lines

One sample per condition. 5-fluorouracil resistant cell lines
compared to non-resistant lines. The
same input was used for microarrays
and RNA-seq.

Bullard
et al. 2010
[27]

Affymetrix
U133 Plus 2.0

Illumina GA II Human Brain
reference
DNA and
universal
human
reference
DNA

Technical replication. Various experimental designs were
employed in order to teaste apart
the effects of flow cell and library
preparation on the results.

Kogenaru
et al. 2012
[28]

Agilent
custom array

Illumina GA IIx Xanthomonas
citri subsp.
citri.

Whole
organism

Biological replication (3
replicates per strain).

Comparison was made between
wild-type and hrpX mutant strains.
Biological replicates of each strain
were grown in culture and the RNA
was extracted.

Sîrbu
et al. 2012
[29]

Affymetrix and
dual-channel
microarrays

Illumina GA II Drosophila Embryo
development
(time-series)

Technical replicates were used
for RNA-seq, biological repli-
cates were used for microarray.

Datasets were analysed and
compared in terms of “reference”
genes, which were highly likely to be
expressed during embryogenesis.
Several other technical
measurements were also taken,
including clustering and differential
expression measurements.

Sekhon
et al. 2013
[30]

NimbleGen
custom array

Illumina GA II Maize 18 selected
tissues
representing 5
organs

Biological replicates, compared
to historical dataset.

Samples were assayed by both
technologies, and compared in
terms of expressed genes and
correlation.
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Table 1 Previous studies comparing microarray and sequencing platforms for the measurement of gene expression
(Continued)

Mooney
et al. 2013
[31]

Affymetrix
Canine
Genome 2.0

Illumina Hiseq
2000

Dog B-cell
lymphoma

Biological replication; same
samples used for both
technologies (10 case, 4 control
samples).

Investigation into the difference
between technologies in terms of
technical biases and pathways found.

Malone
and Oliver
2011 [32]

Nimblegen
custom array

Ilumina GA I Drosophila
pseudoobscura

Head Biological replicates (four for
microarray; one of these
replicates used for RNA-seq).

RNA from males was compared to
RNA from females. Four distinct RNA
libraries were produced, with each
library produced using 500–600
individual fly heads.
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and ability to detect differential gene expression. The
latter is particularly important in the context of pain
and nerve injury, as RNA-seq detects a large number
of highly dysregulated genes, which may represent
novel candidate pain genes. We also investigate the
effects of increased sequencing depth on the results of
an RNA-seq experiment, and the ability of RNA-seq to
detect expression originating from unannotated gen-
omic regions.

Results
Spinal nerve transection (SNT) is a widely used
experimental model of neuropathic pain, associated with
profound changes in gene expression in dorsal root gan-
glia (DRG) [1]. It therefore represents an excellent model
for assessing the relative merits of RNA-seq in compari-
son with microarrays in the context of pain. DRG tissue
was harvested at day 7 post transection, a time point at
which altered gene expression and associated pain-related
behaviour are well established [36].
We have performed RNA-seq and microarray analysis

in parallel on technical replicates of the same biological
samples. This design allowed us to avoid confounding
effects due to biological variability and other differences
in sample preparation. Poly(A) enriched RNA derived
from the L5 DRG 7 days following L5-SNT and from
naive L5 DRG tissue was subjected to microarray ana-
lysis and RNA-seq, as outlined in Figure 1. Therefore, in
total there were three biological replicates per condition;
each of these six replicates was subdivided to produce
technical replicates, one of which was used for micro-
array analysis, the other for RNA-seq. The aims of our
experiment were three-fold: Firstly, to compare the
ability of both methods to measure gene expression and
identify differentially expressed (DE) genes. Secondly, to
compare three distinct read depths for RNA-seq in order
to investigate its impact on the detection of transcrip-
tional changes across different levels of gene expression.
Thirdly, to investigate changes in gene expression influ-
enced by expression from areas outside of annotated
exons (areas within annotated 5’ and 3’ ends of genes
that are not annotated as exons in the reference gen-
ome) within the DRG following SNT.
Mapping sequenced reads to the genome
We performed RNA-seq using the Illumina GAIIx plat-
form. The protocol employed yielded 34 base-pair long
reads, at three different sequencing depths per sample
(~17, ~ 25 and ~50 M). Reads failing Illumina quality
control due to ambiguous base calling were filtered out
and the remaining reads were subsequently mapped to the
reference rat genome (Rn5), permitting up to one
mismatch when aligning reads to the genome (Figure 2A).
Filtered reads that did not map to the genome or that
could be mapped to more than one genomic location
(ambiguous reads) were removed from the analysis.
Mapped reads were categorised as exonic, intronic or

intergenic as described in the Methods section (Figure 2B).
An example of the read mapping procedure is giving in
Figure 3, which shows the reads mapping to the genomic
location of the gene Calcium Channel, Voltage-Dependent,
Alpha 2/Delta Subunit 1 (Cacna2d1) for a given sample
(Figure 3A-D) and for several samples (Figure 3E). The
stacked bar charts (Figure 2C) illustrate the proportion
of reads belonging to each category for naive and SNT
samples, sequenced to a depth of 50 M reads. A high
proportion of reads (~35%) map to intergenic regions,
reflecting transcription from previously unannotated
areas of the rat genome. In addition, when comparing
the proportion of exonic and intronic reads across
experimental groups, we observe a small but consistent
and significant increase in the proportion of reads
aligning to intronic regions following SNT (p < 0.001;
see Methods section). These finding are suggestive of
the increasingly recognised phenomenon of non-
exonic, “dark matter” transcription [37-42]. At the level
of individual genes, this observation may reflect an
effect of SNT on alternative splicing that leads to
inclusion of novel exons that have not yet been anno-
tated, or the expression of unannotated overlapping/
nested genes in the same genomic location. These puta-
tive nested genes may be protein coding or other polya-
denylated RNA species. Detection of such an increase
in non-exonic gene expression would not be possible
using exon arrays, since they do not thoroughly profile
the intronic regions of the genome (although for some
genes there are probes that map to intronic regions).



Figure 1 Experimental outline. L5-spinal nerve transection (SNT) was performed on twelve male Wistar rats. L5 DRG tissue was harvested 7 days
after surgery and tissue from 4 animals was pooled for RNA extraction; naive tissue was used as control. Total RNA samples (n = 3 SNT, n = 3
naive) were divided into technical replicates used in parallel for microarray analysis (Affymetrix Rat Exon 1.0 ST arrays) and RNA-seq in the Illumina
GAIIx platform, in both cases following poly(A) enrichment.
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This increase in reads aligning to regions of genes that
are not annotated as exonic was also found at read
depths of 17 M and 25 M. In terms of intergenic align-
ing reads, there was a slight decrease following SNT,
however this was not significant following Bonferroni
correction for multiple testing.
Proportions of the genome that can be measured by
exon arrays and RNA-seq
RNA-seq data was aligned to the latest rat genome assem-
bly, Rn5, whilst the microarray annotation available
from NetAffx was designed for the previous version, Rn4.
Rn5 contains annotation for 26405 Ensembl rat genes



Figure 2 RNA-seq procedure and RNA-seq analysis pipeline. cDNA libraries were produced for each sample from poly(A) enriched RNA.
These were sequenced to three distinct read depths (~17, ~25 and ~50 M reads/sample). Reads not passing the Illumina quality filter were
discarded. A) Filtered reads were mapped to the genome, allowing a maximum of one mismatch between the sequence and the reference
genome (Rn5); reads that could not be mapped to the reference genome or that could be mapped to more than one genomic location
(ambiguous reads) were discarded. B) The remaining reads were mapped onto the genome and classified as exonic, intronic or intergenic as
described in the Methods section. C) Stacked bar charts, showing the proportions of exonic, intronic and intergenic reads, at a 50 M read depth
(the same pattern was obtained at 17 M and 25 M read depths). The unstacked barcharts show there is a significantly higher proportion of reads
that align to intronic regions in SNT samples than in naive samples, and that the proportion of reads mapping to exonic regions is significantly
higher in naive samples than in SNT samples. P-values were calculated using the overdispersed logistic regression test described in the Methods
section. Evidence of a difference between SNT and naive was found for intergenic reads, however this did not retain significance following the
Bonferroni correction for multiple testing. Following alignment, gene expression was quantified by counting the number of reads mapping to
each gene. Read counts were normalised by, and differential gene expression analysis was performed using DESeq. The effect of reads mapping
to intronic regions on differential gene expression was assessed by comparing exonic expression to exonic and intronic expression.
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including protein-coding genes, miRNAs, ribosomal
RNAs and pseudo-genes [43]. Rn4 contains annotation for
29516 rat genes. The intersection between these genome
builds in terms of genes comprises 20914 Ensembl ids.
In order to compare gene expression between exon

arrays and RNA-seq we first established the maximum
number of genes that can theoretically be measured by
each of the platforms, and the overlap between plat-
forms. Microarrays contain a set of probes specifically
designed to detect the expression of transcripts that have
been previously characterised or computationally pre-
dicted. Affymetrix Rat Exon 1.0 ST arrays contain 17818
transcript-cluster mapping probesets, which have been
assigned a range of confidence levels: core (genes ob-
tained from RefSeq/Genbank records – representing
7947 Ensembl genes), extended (supported by EST or
partial mRNA evidence – an additional 6221 genes) and
full (bioinformatically predicted – another 3650 genes).
For this study we used the probes assigned with core
and extended confidence levels, since this led to the
detection of the largest number of DE genes between
SNT and naive samples after correcting for multiple
testing.
RNA-seq can, in theory, interrogate the transcription

of any of the 26405 Ensembl genes through the mapping
of the sequenced reads to their genomic location. It
should be mentioned that these annotated Ensembl genes
are not necessarily protein-coding genes; they include
miRNAs, ribosomal RNAs and pseudo-genes, and will not
necessarily be expressed in the DRG, nor selected for by
poly(A) enrichment. In addition, a number of genes can-
not be interrogated in practice because all of their exons
overlap exons from other genes in terms of genomic loca-
tion (either on the same strand, or opposite strands). Ex-
cluding genes for these reasons reduces the total number
of genes detectable by our sequencing protocol to 26172
genes. Table 2 shows the overlap between the different
platforms using the core, extended and full confidence Affy-
metrix probe annotations for the intersection of Ensembl
genes annotated in both Rn4 and Rn5 genome builds.



Figure 3 Example of a genome graph for the Cacna2d1 gene (Calcium channel, voltage-dependent, alpha2/delta subunit 1). A) The
genomic location of the Cacna2d1 gene on chromosome 4, highlighted in red. B) The exonic/intronic structure of the gene; brown squares
represent exons, the black links between them represent introns. C) A zoomed-in region of the gene, showing the positions where the
sequenced reads align to the exons and introns of the gene (grey bricks), for a given RNA-seq sample (in this example, an SNT sample is shown,
sequenced to a depth of 50 M reads). D) A further zoomed in region of the gene, showing the individual reads and the positions to which they
align in greater detail. E) The genome graphs for all of the samples (shown for sequencing depth 50 M). Each row represents a different sample.
When calculating fold change, the reads aligning to each exon are summed to produce the raw expression value for each sample, and then
DESeq is used to compare these values between SNT and naive samples. Some reads align outside of known exons, this is explored further in the
section “Intronic expression and its effect on fold change calculation”.
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To conclude, regardless of probe confidence levels, the
RNA-seq protocol is potentially able to quantify a much
larger number of genes than microarrays.

Comparison of exon arrays and RNA-seq for the
measurement of absolute gene expression
In order to compare the ability of the different platforms
to detect gene expression we considered the genes that
could be measured by both platforms (using core and
extended confidence probesets). This amounts to a total
of 13042, consisting of all the genes measurable by exon
arrays excluding only those that contain overlapping
exons and therefore cannot be measured by RNA-seq, and
that are annotated in both the Rn4 and Rn5 genomes.
Figure 4A depicts the correlation between the log2
normalised probe intensities for each transcript cluster
and its respective expression level as determined by RNA-
seq measured in reads per kilobase per million mapped
reads (RPKM) as proposed by Mortazavi et al. [44]. There
is a positive correlation between the hybridization inten-
sities and RPKM for genes detected by RNA-seq (red
points). However there are a number of genes not
detected by RNA-seq (0 reads aligned to the exons for that
gene; blue points). The two platforms show a large agree-
ment for genes with high levels of expression, however
there is less agreement for genes with low levels of expres-
sion. For example, for genes with a log normalised
hybridization intensity value below ~6 in the exon arrays,



Table 2 Total number of genes measurable by RNA-seq and exon arrays at the three probeset confidence levels
investigated, for Ensembl ids found in both Rn4 and Rn5 genome builds

Core confidence probesets RNA-seq: Totals

Detectable Not detectable

Microarray: Detectable 7153 5 7158

Not detectable 13638 118 13756

Totals 20791 123 20914

Core and extended confidence probesets RNA-seq: Totals

Detectable Not detectable

Microarray: Detectable 13042 13 13055

Not detectable 7749 110 7859

Totals 20791 123 20914

Core, extended and full confidence probesets RNA-seq: Totals

Detectable Not detectable

Microarray: Detectable 15492 26 15518

Not detectable 5299 97 5396

Totals 20791 123 20914

Overlap between genes measurable by either platform, for all core probesets only (top table), core + extended probesets (middle table-the set of probesets used
in this study), and core + extended + full probesets (bottom table).
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RNA-seq is able to assign a much wider range of expres-
sion values.
Possible causes for the reduced correlation for more

lowly expressed genes may be related to non-specific
binding to probes for the microarrays or sampling error
for RNA-seq, which would affect lowly expressed genes
to a greater extent. In support of the non-specific bind-
ing for microarrays cause, we notice that there is very
Figure 4 Comparison of RNA-seq and microarrays for the measureme
intensity and normalized read counts (RPKM) at a 50 M read depth for gen
for all three SNT samples. B) Average expression for all three naive samples
sured by both platforms, blue points show genes that are not detected by
the median (normalised) intensity for the antigenomic control probesets (s
Some noise has been added to the expression values of these genes for cl
little correlation for the genes below the horizontal
lines – these lines represent the median (solid line) and
median plus one median absolute deviation (dashed
line) values for the antigenomic control probes of the
exon array. These probesets comprise probes that have
been chosen to estimate background hybridisation; they
do not match any sequence in the rat, mouse or human
genome. Interestingly, there is a higher Spearman’s
nt of gene expression. Correlation between normalised hybridisation
es measureable using microarrays and RNA-Seq. A) Average expression
. The red points show genes for which some expression level is mea-
RNA-seq (i.e. 0 reads aligned to the exons for that gene). Lines show
olid line) and median + 1 median absolute deviation (dashed line).
earer visualization of the point density.
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correlation coefficient between platforms for gene ex-
pression measurements of naive tissue (Figure 4A) than
SNT (Figure 4B). The reasons for this are unclear, but
could be related to the abilities of the different plat-
forms to measure RNA expression in injured tissue. We
have depicted the correlation plot for the 50 M read
depth, as the results are qualitatively equivalent at lower
read depths (Additional file 1).

Comparison of exon arrays and RNA-seq for the detection
of differential gene expression
We compared the ability of both platforms to detect
differential gene expression. We compared log2 fold
change (FC SNT/naive) values as determined by RNA-seq
to exon arrays. We observed a general agreement in the
direction of FC for significantly DE genes detected by both
platforms (Figure 5A, red points), with some DE genes
being exclusively detected by RNA-seq (green points).
Figure 5 Comparison of RNA-seq and microarrays for the detection o
changes estimated by microarrays and RNA-seq (50 M read depth) for gen
direction of fold change for the genes deemed as significantly DE by both
detected exclusively by RNA-seq (green points) or microarrays (blue points
shown for the genes that are called as DE by both platforms (red lines, das
RNA-seq only (dashed green line) and microarrays only (solid blue line). Dis
implemented in R. Ci-iii) Venn diagrams showing the number of genes fou
(Ci- 17 M; Cii- 25 M; Ciii-50 M) and the overlap with microarray data.
Interestingly, a number of genes not detected by RNA-seq
in one of the experimental groups – giving rise to infinite
FCs (blue points) – are deemed significantly DE by exon
arrays. However the direction of FCs does not necessarily
agree between the two platforms and these genes usually
show a small fold-change value. This suggests that for
some genes, the apparently significant FC detected by
exon arrays may be due to the effects of non-specific
binding, or some general technical variability, although in
some cases this might be due to the RNA-seq protocol
not being able to align enough reads to classify the gene
as significantly DE. Further experimental validation of
these genes is necessary in order to confirm that they are
truly changing between samples, but this change cannot
be detected using RNA-seq.
It is also notable that a far wider range of log2 FC is

detectable using RNA-seq. This is shown in Figure 5B,
which shows the distribution of absolute log2 FCs found
f differentially expressed genes. A) Correlation between fold
es detectable by both technologies. There is an overall concordance in
platforms (red points), however a large number of DE genes are
). B) Plot of the distributions of absolute log2 FCs for DE genes. FCs are
hed and solid lines show RNA-seq and microarray fold changes), using
tribution curve computed using the probability density function,
nd to be differentially expressed by RNA-seq at distinct read depths



Perkins et al. Molecular Pain 2014, 10:7 Page 10 of 26
http://www.molecularpain.com/content/10/1/7
by either technology. In addition, we can see that the
genes called DE only using RNA-seq show a similar dis-
tribution of FCs to the genes called DE by both plat-
forms. Conversely the genes called DE only using
microarrays show a much narrower distribution of FCs
than the genes called DE by both platforms. Additional
file 2 shows the distributions of FCs for significantly DE
genes alongside those genes that are not called DE by ei-
ther platform. The significantly DE genes exclusively de-
tected by microarrays show a similar distribution to the
non-DE microarray genes. Conversely, the separation be-
tween the distributions of FCs for the DE RNA-seq and
the non-DE RNA-seq genes is much clearer. This sup-
ports the idea that some of the genes detected as DE by
microarray only are likely to be called as such because of
noise related to non-specific binding. This leads to a
small but consistent FC between samples and not true
transcriptional changes.
Figure 5C shows the overlap between the DE genes

found by microarrays and RNA-seq at distinct read
depths. We see a large overlap between the different
platforms; this overlap increases with RNA-seq depth.
We also see that a higher sequencing depth leads to a
sharp increase in the number of genes that are called DE
using RNA-seq only.

Comparison of exon arrays and RNA-seq at the exon level
There are 233498 exons annotated in the rat genome ac-
cording to Ensembl (version 69). Removing overlapping
exons leaves 209219 that can be probed uniquely by
RNA-seq. Microarrays can probe 146765 exons (using
core and extended confidence probesets). In order to
compare the two platforms directly, in terms of expres-
sion of individual exons, RNA-seq reads were aligned to
the Rn4 genome assembly for this analysis (Additional
file 3). As with Figure 5A, we see a good agreement be-
tween platforms. However the correlation is less strong
for exons than for genes. Reasons for the weaker correl-
ation include the increased sampling error inherent
when counting reads mapping to exons, since exons rep-
resent a much shorter genomic area than genes. Estimat-
ing microarray expression at the exon level is also likely
to be less accurate than estimating gene expression, due
to the reduced number of probes across which to sum-
marise the probe intensity value. A weaker correlation
between platforms is also observed for FCs between
SNT and naive samples (Additional file 3: Figure B). The
Venn diagram in Additional file 3: Figure C shows that
at a 50 M read depth microarrays and RNA-seq detect a
similar amount of differentially expressed exons. This is
in contrast with the gene level comparison, which shows
that RNA-seq can detect a much higher number of DE
genes. Both of these observations are likely to be due
to sampling error, leading to difficulties in separating
RNA-seq expression from “shot noise” using the DESeq
algorithm (as described in [19]). Sequencing to a higher
depth could reduce this sampling error. Because the exons
are much shorter, shot noise is more problematic at the
exon level than the gene level. We also notice that for lower
sequencing depths the number of exons called DE using
RNA-seq is much lower, suggesting 50 M is the minimum
read depth that should be used when investigating DE of
exons in heterogeneous tissue (Additional file 4).

Sequencing depth and the detection of differentially
expressed genes
We investigated the effect of sequencing depth on the
ability of RNA-seq to find differentially expressed genes.
In order to do this we sequenced replicates of each sam-
ple at three depths: 17 M, 25 M and 50 M reads. The
Venn diagram in Figure 6A shows the total number of
DE genes detected at each depth. It is clear that, whilst
there is a very large overlap between the results at all
three sequencing depths, increasing read depth leads to
the detection of a higher number of DE genes. Generally,
genes detected as DE at a lower sequencing depth will
also be detected as DE when sequencing to higher depth.
However it should be noted that a small number of genes
are detected as DE at lower sequencing depths only.
We considered the differential expression of genes that

were detected as DE at a depth of either 17 M reads
only, or 50 M reads only. Figure 6B shows the distribu-
tion of absolute log2 FCs for these genes. The genes
found DE exclusively at a 50 M read depth show a wider
range of FCs, with fewer genes showing a log 2 fold
change less than one. This observation is likely to be re-
lated to sampling errors for genes with a low read count,
which have a higher impact on measurements at low
read depths: through sampling error, these genes may
have obtained inflated (higher) values for SNT samples
and deflated (lower) values for naive samples, or vice-
versa, when in reality there is no change between sam-
ples. This is often a problem for RNA-seq experiments,
since limitations related to the cost of the technology
often mean that expression can only be measured for a
limited number of samples.
To further investigate the hypothesis that the DE

genes found at a depth of 17 M may be erroneously la-
belled as DE due to sampling error, we have plotted the
mean number of aligned reads against FC for all genes
(Figure 6C). The 295 genes deemed as DE at 17 M only
are highlighted in orange. We see that the 17 M only
genes are on the cusp of significance at a depth of 17 M,
and that many have low read counts, i.e. few reads align
to these genes. In addition, many of these genes show
much lower FCs at a depth of 25 M and 50 M reads.
The opposite is true for the genes deemed significant at

a depth of 50 M only (highlighted in green in Figure 6D) –



Figure 6 Sequencing depth and the detection of differentially expressed genes. A) Venn diagram showing the overlap between the total
numbers of DE genes found at the different sequencing depths. B) Distributions of absolute log2 fold changes for the DE genes found at each
sequencing depth. C) The 194 genes deemed as DE exclusively at 17 M read depth (but not at higher read depth), plotted as log2 read count vs.
log2 fold change at three distinct read depths (orange points), along with not significantly DE genes (grey points) and genes significantly DE at
all read depths (pink points). As read depth increases, the estimated fold changes for genes with low mean read count decreases, suggesting
that the estimation of DE at lower sequencing depths suffers from sampling errors for genes with low read count. D) More plots of log2 read
count vs. log2 fold change for all genes at all three respective sequencing depths. Genes detected as DE exclusively at a 50 M read depth (896
genes in total) are shown as green points.
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we see that, at all sequencing depths, most of these genes
still maintain large FCs, and are situated close to the pink
coloured points, which represent the genes significant at
both 17 M and 50 M read depths.
In summary, using the higher sequencing depth of
50 M reads leads to the detection of a larger number
of DE genes, particularly for genes with low read
counts.
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Intronic expression and its effect on fold change
calculation
We also examined expression from intronic regions, a
feature of expression that can be quantified much more
precisely and comprehensively when using RNA-seq
than exon arrays, which by definition are designed to
probe known (and predicted) exons.
In Figure 7A we compare the log2 FCs in gene expres-

sion calculated when considering exonic reads only
(x axis) with log2 FCs calculated considering exonic + in-
tronic reads (y-axis). If intronic expression is absent or is
proportional to exonic expression in all samples then
the point that represents a given gene will fall close to
x = y on the graph. This is the case for the majority of
genes (Figure 7B). However there are also a number of
genes where intronic expression is proportionally much
higher for SNT samples than naive samples, and vice
versa. This change in fold change as a result of including
reads that align to intronic regions may reflect the inclu-
sion of novel exons in these transcripts, may be due to
the expression of unannotated genes that occur at the
same loci, or possibly due to non-coding RNAs. We
measured the significance of these relative changes in in-
tronic expression between naive and SNT samples using
DEXSeq [45] (Additional files 5 and 6). Using an FDR
cutoff of 0.1, we found 2030 genes showing a significant
change in ratios of intronic to exonic expression follow-
ing SNT (1914 genes show a relative increase in expres-
sion from non-exonic regions following SNT, whilst 116
of these genes show a decrease), these results were simi-
lar at more conservative FDR cutoffs. In Figure 7C we
show an example of one of the top genes found using
this method (in terms of a low p-value): ST3 beta-
galactoside alpha-2,3-sialyltransferase 6 (St3gal6). We
show genome graphs for the genomic coordinates of the
gene, showing expression in the naive samples (left,
7 Ci) and SNT samples (right, 7Cii). We see that for
SNT samples more reads map to intronic regions, and
less to exonic regions. This results in contrasting pat-
terns of differential expression for this gene after SNT:
downregulation when only exonic reads are considered,
and upregulation if exonic + intronic reads are considered.
These reads may represent novel exons of the annotated
St3gal6 gene that are expressed after SNT; alternatively,
they may originate from a yet unannotated gene with
overlapping genomic coordinates.
In any case, the pattern of expression of the transcript

(or transcripts) arising from this genomic location after
SNT, demonstrates an advantage of RNA-seq: finding
areas of expression occurring outside of annotated
exons. Using microarrays, we would not be able to find
such unusual intronic expression, as shown by the posi-
tions of exon array probes for the genes in Figures 7C:
although exon arrays do sometimes probe intronic
regions, we see the coverage is not as comprehensive as
that offered by RNA-seq. The biological significance of
non-exonic expression is still very much an open ques-
tion, however it is clear that over the last few years more
and more such regions of non-exonic expression have
being detected and several functions have being ascribed
to them [42,46].

Biological function analysis
We compared two genome-wide expression technologies
in their ability to detect differential gene expression in
L5 DRGs in response to SNT. Having established that
RNA-seq outperforms exon arrays from a technical
point of view, we investigated how the biological insights
provided by the two datasets compare. Firstly, we inter-
rogated the datasets for differential expression of classic
“pain markers” as well as novel candidate genes, and sec-
ondly we performed functional analysis of entire datasets
to investigate physiological, cellular and molecular
events that are disturbed by SNT and may underlie pain
conditions.
A number of published microarray studies have ad-

dressed gene expression changes in models of pain
[1,4,34]. Genes typically dysregulated in pain conditions
include injury markers (e.g. Atf3), ion channel subunits
(e.g. Cacna2d1, Kcnc2), neuropeptides (Gal, Npy), in-
flammatory mediators such as cytokines and chemokines
(Ccl2, Cxcl10, Cxcl13), and growth factors (Vgf ).
LaCroix-Fralish et al. [4] performed a systematic review
of microarray studies in rodent neuropathic and inflam-
matory pain models, identifying a list of genes that are
commonly dysregulated. In our exon array dataset, the
great majority of these genes appeared dysregulated in
the direction expected (Table 3). Reassuringly, this was
in agreement with RNA-seq data, with the added advan-
tage that the magnitude of FC estimated for the same
genes was higher in RNA-seq, a reflection of its higher
dynamic range.
In high throughput transcriptomic studies, the

prioritization of candidates for further validation is gen-
erally dictated by the magnitude (and significance) of
FC. In order to determine how the choice of candidates
is influenced by technological platform, we compiled
lists of the top 50 significant fold changes for each
method (Table 4). Twenty-five genes are simultaneously
ranked amongst the top 50 by both techniques. For the
remaining genes in the RNA-seq top 50, thirteen are also
deemed as DE by exon arrays, although with a lower FC,
two genes are not deemed significantly dysregulated by
exon arrays and ten genes cannot be measured/detected
by exon arrays due to lack of probes at the core or ex-
tended confidence levels. Amongst the top 50 genes
found by exon arrays that do not coincide with the
RNA-seq top 50, twenty-two are still deemed as DE by



A B

Figure 7 The effect of intronic expression on fold change calculation. A) Estimation of log2 FC considering exonic reads only (x-axis)
compared to FC calculating counting exonic and intronic reads (y-axis). Red points represent genes called DE when using both counting
schemes with the same direction of fold change, peach points represent the two genes that are called as DE with both schemes, but with
opposite directions of fold change. Green points show genes called DE when considering exonic reads only, but not when considering exonic
and intronic reads. Blue points show genes DE when considering exonic and intronic reads but not when considering exonic reads only. B)
Distribution of the ratio of fold changes estimated by both methods. Calculated by subtracting the log2 FC values calculated using full gene
expression from log2 FC calculated exon expression only. Ci, Cii) Genome graphs for gene St3gal6, showing intronic expression that is not
proportional to exonic expression, i.e. that is increased following SNT. The figure comprises a series of “tracks” for each gene, and its expression
levels for SNT samples (Ci) and naive samples (Cii). The top tracks show the genomic coordinates of the gene on chromosome 11 (precise
position marked in red). The middle histogram-like tracks show the positions of RNA-seq reads mapping to the genomic location of the gene.
Below these tracks is a track showing the gene structure (exons are represented by boxes, introns are represented by arrowed lines, the direction
of these arrows shows the direction of transcription). Bottom track shows the position of the microarray probes that map to the genomic location
of the gene.
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Table 3 Differential gene expression of commonly dysregulated genes in experimental pain models

Gene Symbol Gene name Fold change
RNA-Seq

Fold change
exon arrays

Genes upregulated after SNT

Aif1/Iba-1 Allograft inflammatory factor 1 (Iba-1) 4.7 2.0

Apoe Apoliprotein E 1.5 (ns) 1.2

Arg1 Arginase, liver 30.1 2.4

Arpc1b Actin related protein 2/3 complex, subunit 1B, 41 kDa 3.7 2.7

Atf3 Activating transcription factor 3 33.8 13.7

C1qb Complement component 1, q subcomponent, B chain 10.1 5.5

C1qc Complement component 1, q subcomponent, C chain 7.7 4.5

C1s Complement component 1, s subcomponent 4.4 2.5

Cacna2d1 Calcium channel, voltage-dependent, alpha 2/delta subunit 1 5.0 3.0

Ccl2 Chemokine (C-C motif) ligand 2 2.1 1.4

Ccnd1 Cyclin D1 4.1 2.7

Cd74 CD74 molecule, major histocompatibility complex, class II invariant chain 6.5 2.8

Coro1a Coronin 1-A 1.0 (ns) 1.2 (ns)

Crabp2 Cellular retinoic acid-binding protein 2 3.1 2.1

Csrp3 Cysteine and glycine-rich protein 3 (cardiac LIM protein) 590.2 22.6

Ctsd Cathepsin D precursor 1.4 (ns) 1.3

Ctsh Cathepsin H 1.6 1.3 (ns)

Cxcl10 Chemokine (C-X-C motif) ligand 10 7.5 3.8

Cxcl13 Chemokine (C-X-C motif) ligand 13 4.0 2.2

Egr1 Early growth response 1 2.2 1.8

Gabra5 Gamma-aminobutyric acid (GABA) A receptor, alpha 5 2. 5 2.1

Gadd45a Growth arrest and DNA-damage-inducible, alpha 6.8 4.6

Gal Galanin/GMAP prepropeptide 46.3 13.5

Gap43 Growth associated protein 43 3.2 2.3

Gfap Glial fibrillary acidic protein 8.8 3.8

Gfra1 GDNF family receptor alpha 1 3.2 2.1

Igfbp3 Insulin-like growth factor binding protein 3 4.7 2.9

Igfbp6 Insulin-like growth factor binding protein 6 1.8 1.5

Lum Lumican 2.5 1.6

Npy Neuropeptide Y Not detected 7.8

Reg3b Regenerating islet-derived 3 beta 61.0 20.1

S100a4 S100 calcium binding protein A4 2.8 1.9

Sprr1a Small proline-rich protein 1A/cornifin-1 176.6 57.9

Stmn4 Stathmin-like 4 6.1 3.2

Timp1 TIMP metallopeptidase inhibitor 1 3.5 2.1

Vgf VGF nerve growth factor inducible 5.3 2.5

Vip Vasoactive intestinal peptide 138.1 5.4

Genes downregulated after SNT

Atp1b3* ATPase, Na+/K + transporting, beta 3 polypeptide 0.6 0.8

Calca* Calcitonin-related polypeptide alpha 0.3 0.4

Cd55 CD55 molecule, decay accelerating factor for complement 0.2 0.3

Chrna3 Cholinergic receptor, nicotinic, alpha 3 (neuronal) 0.1 0.1
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Table 3 Differential gene expression of commonly dysregulated genes in experimental pain models (Continued)

Ckmt1 Creatine kinase, mitochondrial 1, ubiquitous 0.2 0.3

Gabbr1 Gamma-aminobutyric acid (GABA) B receptor, 1 0.8 0.8 (ns)

Grik1 Glutamate receptor, ionotropic, kainate 1 0.2 0.1

Htr3a 5-hydroxytryptamine (serotonin) receptor 3A, ionotropic 0.1 0.1

Kcnc2 Potassium voltage-gated channel, Shaw-related subfamily, member 2 0.3 0.5

Nefh Neurofilament, heavy polypeptide 0.3 0.4

Nefl Neurofilament, light polypeptide 0.2 0.5

Nefm Neurofilament, medium polypeptide 0.3 0.5

Nsf N-ethylmaleimide-sensitive factor 0.5 0.5

Rab3a RAB3A, member RAS oncogene family 0.3 0.4

Rgs4 Regulator of G-protein signaling 4 0.2 0.2

Scn11a Sodium channel, voltage-gated, type XI, alpha subunit 0.1 0.1

Snap25 Synaptosomal-associated protein, 25 kDa 0.3 0.6

Sst* Somatostatin 0.1 0.1

Sv2b Synaptic vesicle glycoprotein 2B 0.3 0.3

Tac1* Tachykinin, precursor 1 0.3 0.3

Vsnl1 Visinin-like 1 0.2 0.3

Ywhag Tyrosine 3-monooxygenase/tryptophan 5-monooxygenase activation protein gamma polypeptide 0.5 0.7

The list of genes resulted from a meta-analysis study of microarray data of DRG and/or spinal cord tissue in inflammatory and neuropathic pain models [4]. Fold
changes expressed as ratio SNT/naive in L5 DRGs. All fold changes are significant (p < 0.1, FDR) except if indicated by “ns” – non significant. The direction of fold
change is consistent between the exon array and RNA-Seq dataset and largely coincides with the reported trends. Exceptions are genes marked with “*” Atp1b3,
Calca, Sst, Tac1 which are listed as upregulated in the meta-analysis study but are significantly downregulated in our study. In support of our results, qPCR data re-
ported by LaCroix-Fralish et al. [4] suggested that these genes are down regulated (albeit not significantly) in DRG tissue after chronic constriction injury. Also Npy
expression is not detected in RNA-seq because there is a paralogous gene to Npy sharing 98% sequence homology. Therefore, reads aligning to Npy would be
deemed as ambiguous and discarded from our analysis. Mapping to the Rn4 assembly of the rat genome (where paralogous genes are not annotated) reveals a
36.4 upregulation of Npy.
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RNA-seq (with fold changes higher than 4 fold). The
remaining three genes cannot be detected by our RNA-
seq alignment protocol, due to the existence of paralo-
gous genes with high sequence conservation, which
leads to reads from these transcripts being classified as
ambiguous and discarded from the analysis.
The knowledge generated by our high throughput

studies is not restricted to the identification of individual
candidate genes in pain. Gene ontology and literature in-
formation on the roles of dysregulated genes provide in-
sights into the biological phenomena compromised after
SNT. As depicted in Figure 8A, the distribution of dys-
regulated genes based on corresponding “protein classes”
(as categorized by PANTHER) is similar in both
datasets.
Similarly, functional analysis using Ingenuity Pathway

Analysis (IPA) revealed similar significant enrichment
for the same biological functions/“diseases and disor-
ders” for both datasets (Figure 8B). As expected, and in
agreement with previously published studies [47-49],
categories related to “neuronal/neurological function”
and “immune/inflammatory” are significantly enriched.
Despite the overall similarity in top biological func-

tions, a more detailed analysis using “canonical path-
ways”, annotated in IPA revealed very specific features of
each of the datasets. While the most significant physio-
logical/cellular/molecular pathways in the exon array
dataset reflect the heavy contribution of immune system-
related genes to the overall profile of the tissue after in-
jury (Figure 8 Ci), in the RNA-Seq dataset there is a clear
representation of neuronal pathways (Figure 8 Cii). These
include “axonal guidance signalling”, “ephrin receptor
signalling”, “Nerve Growth Factor (Ngf) signalling”,
“reelin signalling in neurons”, and “CREB-signalling in
neurons”. The overrepresentation of neuronal pathways
in the RNA-seq dataset is due to the number of genes
assigned to these pathways that are deemed as DE by
RNA-seq but not by exon arrays. For example, a total of
483 genes are ascribed to the “axon guidance” pathway
according to the IPA “canonical pathways” database.
In our datasets, 292 “axon guidance genes” are simultan-
eously deemed as DE by microarrays and RNA-seq.
However an additional 73 genes are exclusively detected
by RNA-seq. Furthermore, the list of DE genes detected
by RNA-seq only features molecules with established
functions in nociception and/or pain such as neuronal ni-
tric oxide synthase 1 (Nos1), and the transient receptor po-
tential cation channel, subfamily V, member 4 (Trpv4,
[50]), as well as a number of molecules belonging to protein
categories such as “receptors”, “transporters”, “G-protein



Table 4 Top 50 significantly upregulated genes in RNA-seq and exon arrays

Gene symbol Gene name Rank
RNA-seq

Rank exon
arrays

Fold change
RNA-seq

p adj
RNA-seq

Fold change
exon arrays

p adj exon
arrays

Crisp3 Cysteine-rich secretory protein 1 1 5 1414.6 7.06E-10 21.0 2.58E-03

Csrp3 Cysteine and glycine-rich protein 3 2 3 590.1 4.30E-44 22.6 8.59E-05

Mmp12 Macrophage metaloelastase 3 14 427.5 2.98E-03 7.8 1.58E-02

Tgm1 Protein-glutamine gamma-glutamyltransferase k 4 25 355.1 2.18E-43 5.9 1.39 E-03

Hpd 4-hydroxyphenylpyruvate dioxygenase 5 34 237.3 1.56E-20 4.9 1.11E-03

Ucn Urocortin 6 187 180.1 2.92E-36 2.5 1.10E-03

Sprr1a Small proline-rich protein 1a / Cornifin-a 7 1 176.6 2.02E-25 57.9 2.36E-05

Serpina3n Serine protease inhibitor A3N 8 4 174.6 1.97E-44 21.6 3.66E-04

Cxcl14 Chemokine (C-X-C motif) ligand 14 9 2 167.3 3.62E-08 33.4 1.59E-03

Hamp Hepcidin antimicrobial peptide 10 11 162.5 5.41E-35 13.1 1.11E-03

Ptprh Receptor-type tyrosine-protein phosphatase h 11 49 161.4 2.48E-48 3.9 1.40E-04

Rgd1305807 /
LOC298077

Uncharacterized protein 12 2333 159.3 6.66E-06 1.2 1.89E-02

Cldn4 Claudin 4 13 31 159.2 3.29E-42 5.3 1.391E-03

Mmp7 Matrix metallopeptidase 7 14 319 158.3 2.62E-02 2.0 3.85E-02

Vip Vasoactive intestinal peptide 15 28 138.2 3.21E-25 5.4 1.39E-03

Mroh4 Maestro heat-like repeat family member 4 16 ND 132.8 3.58E-08 - -

Stac2 SH3 and cysteine-rich domain-containing
protein 2

17 46 126.0 2.35E-69 4.1 1.43E-03

Ucn2 Urocortin 2 18 21 88.8 5.08E-04 6.0 2.67E-03

Il6 Interleukin 6 19 41 78.4 8.66E-18 4.5 1.58E-03

Serpinb2 Plasminogen activator inhibitor 2 type a 20 95 75.7 1.09E-34 3.2 6.07E-03

Abp1 Amiloride-sensitive amine oxidase 21 2050 73.8 6.06E-08 1.3 1.89E-02

D3zu79_rat/
lsmem1

Leucine rich single pass membrane protein 22 ND 73.7 8.13E-07 - -

Ankrd1 Ankyrin repeat domain-containing protein 1 23 40 68.3 5.46E-31 4.5 2.22E-03

Cd8b T-cell surface glycoprotein cd8 beta chain
precursor

24 105 67.4 1.75E-02 3.0 1.24E-02

Vtcn1 V-set domain containing t cell activation
inhibitor 1

25 183 67.4 1.13E-30 2.5 4.33 E-04

RT1-M2 RT1 class IB, locus M2 26 ND 64.9 2.54E-08 - -

Il1a Interleukin-1 alpha precursor 27 642 64.2 3.14E-22 1.7 5.58E-03

Reg3b Regenerating islet-derived protein 3-beta 28 6 61.0 1.45E-114 20.1 2.36E-05

Il24 Interleukin-24 29 19 55.3 3.21E-25 6.4 1.39E-03

Igsf23 Immunoglobulin superfamily, member 23 30 ND 53.7 2.41E-28 - -

En1 Homeobox protein engrailed 31 ND 51.6 2.90E-18 - -

Trim55 Tripartite motif-containing protein 55 32 2142 49.4 1.24E-02 1.3 4.16E-02

Igsf7 Immunoglobulin superfamily, member 7 33 ND 46.9 1.51E-02 - -

Cd8a T-cell surface glycoprotein CD8 alpha chain 34 20 46.7 2.16E-03 6.1 4.13E-03

Gal Galanin/GMAP prepropeptide 35 10 46.3 3.94E-58 13.5 1.36E-04

LOC363060/
Plet1

Placenta-induced transcript 1 36 588 41.2 5.17E-08 1.7 4.41E-03

Vsig4 V-set and immunoglobulin domain
containing 4

37 1752 39.7 1.18E-02 1.3 5.80E-02

Nps Neuropeptide S 38 ND 37.4 2.07E-07 - -
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Table 4 Top 50 significantly upregulated genes in RNA-seq and exon arrays (Continued)

Htr2b 5-hydroxytryptamine receptor 2b, g-protein
coupled

39 18 36.3 8.44E-04 7.2 3.89E-03

Col7a1 Collagen alpha-1(VII) chain precursor 40 1426 34.2 2.37E-11 1.4 1.60E-02

Atf3 Activating transcription factor 3 41 9 33.8 2.36E-66 13.7 1.99E-05

Novel Novel protein coding 42 ND 32.8 1.61E-03 - -

Gpnmb Transmembrane glycoprotein nmb 43 8 31.9 4.00E-03 14.3 1.39E-03

Lilrb4 Leukocyte immunoglobulin-like receptor,
subfamily b, member 4

44 12 31.6 6.33E-02 9.1 3.14E-02

Gzmb Granzyme b (granzyme 2, cytotoxic
t-lymphocyte-associated serine esterase 1)

45 7 31.4 2.52E-11 16.6 4.87E-05

Arg1 Arginase-1 46 197 30.1 2.30E-66 2.4 2.00E-03

Fcrls Fc receptor-like s, scavenger receptor 47 ND 30.0 7.34E-05 - -

Mmp10 Matrix metallopeptidase 10 48 NS 29.2 4.47E-03 1.1 NS

Lce1f Late cornified envelope 1F 49 ND 28.3 5.03E-04 - -

Cnga4 Cyclic nucleotide gated channel alpha 4 50 NS 27.7 5.20E-12 1.1 NS

Npy Neuropeptide Y ND 13 - - 7.8 4.12E-03

Cthrc1 Collagen triple helix repeat containing 1 90 15 16.9 4.57E-04 7.6 2.39E-03

Clec7a C-type lectin domain family 7, member a 91 16 16.2 5.58E-04 7.4 3.61E-03

Cd68 Macrosialin precursor 71 17 21.8 4.51E-03 7.4 3.84E-03

Thbs2 Thrombospondin 2 precursor 87 22 17.3 1.66E-04 6.0 3.41E-03

Ccl9 Chemokine (C-C motif) ligand 9 55 23 25.3 8.48E-07 5.9 4.92E-03

Apobec1 Apolipoprotein B mRNA editing enzyme,
catalytic polypeptide 1

104 24 14.3 1.37E-04 5.9 4.62E-03

C1qb Complement C1Q subcomponent subunit
B precursor

160 26 10.1 2.82E-04 5.5 2.15E-03

Cdkn1a Cyclin-dependent kinase inhibitor 1 174 27 9.6 1.20E-29 5.4 5.12E-04

Postn Periostin precursor 132 29 11.3 1.33E-04 5.4 4.78E-03

Fcgr2a Low affinity immunoglobulin gamma fc region
receptor iii

ND 30 - - 5.3 4.26E-03

Crlf1 Cytokine receptor-like factor 1 110 32 13.1 4.06E-04 5.1 4.22E-03

C1qa Complement C1Q subcomponent subunitA 135 33 11.2 9.39E-05 5.0 1.43E-03

Trem2 Triggering receptor expressed on myeloid cells 2 68 35 22.3 2.64E-03 4.8 7.16E-03

Cxcl9 Chemokine (C-X-C motif) ligand 9 301 36 6.7 7.44E-09 4.6 5.39E-03

Socs3 Suppressor of cytokine signaling 3 239 37 7.7 1.66E-06 4.6 1.09E-02

Gadd45a Growth arrest and DNA damage-inducible protein
gadd45 alpha

287 38 6.8 5.03E-25 4.6 3.03E-04

C1qc Complement c1q subcomponent subunit c 235 39 7.7 2.65E-04 4.5 2.99E-03

Ly49si2 Immunoreceptor ly49si2 ND 42 - - 4.5 2.92E-02

RT1-DA RT1 class II, locus Da 307 43 6.7 5.88E-17 4.3 2.45E-03

Tgfbr1 Transforming growth factor, beta receptor 1 528 44 4.6 5.23E-03 4.2 4.92E-03

Ecel1 Endothelin converting enzyme-like 1 51 45 27.0 1.52E-93 4.1 4.87E-05

Cx3cr1 Chemokine (C-X3-C motif) receptor 1 219 47 8.1 1.08E-05 3.9 3.40E-03

RT1-BB RT1 class II, locus Bb beta chain 308 48 6.7 5.23E-06 3.9 1.76E-03

Cxcl10 Chemokine (C-X-C motif) ligand 10 251 50 7.5 5.36E-03 3.8 1.88E-02

Rank indicates highest significant fold changes determined by each method in descending order. In order to obtain a numeric FC for genes with infinite fold
changes, a read count of one was ascribed to the naïve samples.
NS- Non significant; ND- not detectable by exon arrays due to lack of probes in the core or extended confidence level or not detectable by RNA-Seq due to the
existence of paralogous rat genes sharing high sequence homology leading to reads being classified as ambiguous and discarded from the analysis.

Perkins et al. Molecular Pain 2014, 10:7 Page 17 of 26
http://www.molecularpain.com/content/10/1/7



Figure 8 Functional analysis of differentially expressed genes after SNT as determined by RNA-seq (50 M) and exon arrays.
A) Distribution of DE genes according to respective protein classes is similar for both datasets. B) Top Biological Functions/“Diseases and Disorders”
assigned to DE genes largely overlap between the two datasets. Ci, Cii) Statistically overrepresented “canonical pathways” rank differently between the
datasets, with top pathways in exon arrays being mostly related to immune function (Ci), while in RNA-seq, neuronal pathways are more represented (Cii).
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coupled receptors”, “ion channels” and “signalling mole-
cules”, which may be important in neuronal function.

Discussion
RNA-seq has several advantages over microarrays
RNA-seq technology presents a novel tool for compre-
hensive, high throughput whole genome transcriptional
profiling. In this study we profiled injured L5 DRG tissue
following spinal nerve transection, using RNA-seq and
microarrays. The same RNA samples were used for both
platforms to enable a direct comparison of these tech-
nologies in an experimental pain model for the first
time. We assessed both technologies for their ability to
interrogate the transcriptome, detect gene expression,
and to identify dysregulated genes that represent puta-
tive novel pain mediators.
Hammer and colleagues [9], have reported the use of

RNA-seq to profile expression in the uninjured L4 DRG
following L5 spinal nerve transection and reported a higher
number of transcriptional changes in the SNT model than
previously estimated in published microarray studies.
In the more direct comparison presented here, we also

found a larger number of DE genes using RNA-Seq than
using exon arrays, consistent with the literature
[20,24,25]. This is partly due to the wider dynamic range
of RNA-seq, as microarrays suffer from non-specific
binding to probes, and signal saturation [13,20]. Non-
specific binding leads to background signals which affect
detection/quantification of lowly expressed genes, while
highly expressed mRNA species may saturate the fluor-
escent signal, which can compromise the detection of
differential expression. However it should be noted that
estimation of DE for short length/lowly expressed genes
can be also inaccurate for RNA-seq [18]. This is espe-
cially important with regards to exons – our study found
a similar number of DE exons using either platform
when sequencing to a depth of 50 M, and microarrays
outperformed RNA-seq at lower sequencing depths
(Additional file 3).
Discrepancy in the number of DE genes detected by

either method may also be caused by the different ana-
lysis methods employed (limma for microarray analysis
[51] and DESeq for RNA-seq [19]). However we believe
that these do not have a significant impact on our find-
ings, since both methods apply variance-shrinking steps
to reduce false positives. In fact, DESeq has been shown
to be one of the most conservative methods for RNA-
seq differential expression detection [52]. The variance-
shrinking steps are implemented to deal with small fold
changes occurring by chance due to extremely low
values of variance between samples, a common problem
when testing a large number of genes across a small
number of samples. Such shrinkage methods have been
shown to outperform methods based on simple t-tests and
fold change cut-offs [53]. For this reason we did not impose
an “effect size filter” when determining significantly DE
genes. Finally, we do not believe that the FDR cutoff (0.1)
favoured either technology, as we obtained qualitatively
similar results with other FDRs (Additional file 7).
Despite the previously mentioned advantages of RNA-

seq over microarrays, we observed a number of genes
detected as DE using microarrays but not classed as
such by RNA-seq (Figure 5). We have shown in
Figure 4B and Additional file 2 that most of these genes
have low FC values. Some of these genes may be false
positives: the apparent significant change in expression
might be due to non-specific binding. However it is also
likely that some of these genes are truly DE. There are
several reasons why microarrays might detect DE genes
that are missed when using RNA-seq. For example,
some genes will share high homology with other genes
or pseudo genes, thus making it difficult to map reads to
the genes unambiguously, as observed for three genes
listed in Table 4 that appear DE in exon arrays and are
classified as non-detected by RNA-seq. This should not
be a problem for highly expressed genes, as long as there
are enough regions of unique sequence along the length
of the gene to make a robust signal, but can be a prob-
lem for lowly expressed genes, or genes with repetitive
regions. Another reason is that lowly expressed genes
will be strongly affected by random sampling – the ex-
pression of a gene for which only 10 copies are present
in a sample is much less likely to be estimated accurately
than a gene for which 1000 copies are present. The obvi-
ous solution to this issue with RNA-seq is to increase
the sequencing depth, enabling a more accurate estima-
tion of lowly expressed genes in conjunction with the in-
creased detection of differential expression.

Functional analysis of DE genes reveals consistent results
across datasets
Although RNA-seq detected a larger number of DE
genes, functional enrichment analysis of the microarray
and RNA-seq datasets individually using Ingenuity Path-
way Analysis revealed qualitatively similar results. In
agreement with previous studies in animal models
of pain, functional categories/“diseases and disorders”
related to immune function/inflammatory response, as
well as neurological disease were statistically overrepre-
sented in the respective lists of DE genes [47-49]. This
suggests that the genes found exclusively with RNA-seq
are likely to be true positives – as they fall into the cat-
egories already enriched amongst the overlapping genes.
Had these genes arisen as an artefact of RNA-seq, we
would expect less coherence in terms of enriched cat-
egories in the RNA-seq results, and reduced significance.
This is consistent with our canonical pathway analysis
where a number of neuron-specific pathways rank highly
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in the RNA-seq dataset (Figure 8 Cii), because ~10-20%
of genes assigned to these pathways are deemed as DE
by RNA-seq but not by exon arrays. In terms of discov-
ery of putative pain mediators, RNA-seq has clear ad-
vantages over exon arrays as it unravels candidate genes
that exon arrays (at the core and extended probeset con-
fidence levels) would fail to identify (e.g. Nos1, Trpv4
and other molecules with established or putative func-
tions in neurotransmission). In contrast, the great major-
ity of putative candidates identified by exon arrays can
be confidently identified by RNA-Seq.
In summary, our gene expression datasets accurately

reflect the biological mechanisms triggered by peripheral
nerve injury as demonstrated in prior pain and injury-
related studies. However, it is worthwhile pointing out
that our functional analysis is shaped by current litera-
ture information used to build the Ingenuity database
and may also be incomplete due to lack of gene ontology
annotations for a large proportion of genes in both data-
sets. We expect that the functional information provided
by our dataset will become more refined as gene ontol-
ogy and pathway annotations evolve.

A higher sequencing depth leads to the detection of a
greater number of DE genes
We compared three distinct sequencing depths (17 M,
25 M, 50 M reads/sample) in terms of the number of
DE genes detected (Figure 5). Increasing RNA-seq read
depth leads to the detection of a higher number of DE
genes (Figure 5C). A recent study has shown that a high
sequencing depth could lead to the false detection of
genes that are not expressed in the sample [54]. How-
ever, it is unlikely that we have reached such a point;
moreover, it is unclear whether reaching such a point
would affect DE calculation in an experimental design
that takes into account biological variation between rep-
licate samples. In conclusion, for our biological question,
we recommend a 50 M read depth in order to obtain a
truly comprehensive measure of differential gene expres-
sion. However it is important to use biological replicates
in order to increase power and ensure results are
generalizable to the population level [19,55].

RNA-seq allows us to profile non-exonic expression
In addition to higher sensitivity and dynamic range,
RNA-seq differs from microarrays in its ability to detect
expression from areas of the genome regardless of prior
annotation, allowing the detection of novel areas of tran-
scription. Such areas, initially dubbed as transcribed
“dark matter” [39], are becoming the focus of much
attention and debate, fuelled in part by the recent
ENCODE project, which showed that a large proportion
of the non-exonic region of the human genome was
transcribed in at least one cell line [41].
Our read mapping statistics suggest active transcrip-
tion from non-exonic areas in rat DRGs: only 56-58% of
the mappable reads aligned with previously annotated
exons, 7-9% of the reads aligning to intronic regions
(Figure 2C) and 33-35% aligning outside of the boundar-
ies of annotated genes, i.e. intergenic areas. It would be
interesting to perform this experiment in another organ-
ism used extensively in pain research, such as mouse, in
order to investigate how the proportion of non-exonic
reads compare. A possible cause for the high proportion
of non-exonic reads may be due to yet unknown tissue-
specific gene expression in DRG.
Remarkably, we observed a consistent increase in the

proportion of reads mapping to regions of the genome
annotated as intronic in SNT samples compared to naive
samples, from 7 to 9% of the total number of mapped
reads. On a gene-by-gene basis, ten times as many genes
showed a significant increase in the proportion of reads
mapping to intronic regions in SNT samples compared to
naive (Additional file 5). Taken together, these data suggest
that the SNT procedure is associated with an increase in
expression from intronic regions. Such regions may repre-
sent novel exons whose inclusion into mature transcripts is
induced upon peripheral nerve injury: the transcriptome of
injured DRGs may contain novel exons that have not previ-
ously been observed in rat tissues, and are therefore not
included in the rat transcriptome annotation.
In our alignment procedure, reads aligning within the

genomic coordinates of an annotated gene are ascribed
to this gene, however it is also possible they belong to
novel genes with overlapping genomic coordinates either
in the same or opposite strands (something we cannot
determine due to lack of strand information in our
protocol). Such novel and nested exons may be protein
coding, but also correspond to other RNA species such
as microRNAs (miRNAs) or long non-coding RNAs. For
example, dysregulation of a number of miRNAs had
been demonstrated in experimental models of pain, and
a growing body of evidence suggests links between
miRNA, spinal nerve injury and pain [10,56-58]. In
recent years the study and discovery of long non-coding
RNAs has exploded, and at least one such molecule has
been shown to have an effect on neuropathic pain [59].
Clearly, these data need further study in order to prioritise

potential genes showing SNT-associated non-exonic expres-
sion and to confirm a potential role in pain. Prioritisation
might include computational methods, such as enrichment
studies of the genes showing intronic expression, or se-
quence based analysis of the intronic RNA, for example
looking for potential complementarity to other genomic re-
gions. Such methods would be greatly aided by further, more
focused sequencing experiments that use longer, paired end,
stranded reads, as well as other techniques to determine the
precise start and end site of these RNA species.
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Related to the “agnostic” nature of RNA-seq, allowing
it to probe unannotated areas of the genome, another
useful aspect of RNA-seq data is that it can constantly
be reanalysed in light of new genome builds and updated
annotations. This would be far harder to achieve for
microarray data, because the proportion of the tran-
scribed genome that can be interrogated is constrained
by genome annotation at the time of array design:
clearly, any genomic area that is not probed in the array
chip cannot be measured. Although it would require
some modifications to the protocol used in this study,
RNA-seq could also be used to compare the transcrip-
tomes of different strains of rat or other organisms,
complementing the work of Sorge et al. [60], who com-
pared strains of mice at the genome level and correlated
differences in the genome with differences in pain
sensitivity.

Summary of results
We compared RNA-seq and Affymetrix exon array tech-
nologies for the purpose of transcriptional profiling of
rat DRG tissue after L5 Spinal Nerve Transection. Our
key findings were as follows:

1. RNA-seq technology is suitable for the transcriptional
profiling of experimental models of pain, as it is able
to replicate prior microarray studies.

2. RNA-seq identifies a larger number of DE genes
than microarrays, due to its increased sensitivity and
higher dynamic range. The number of DE genes
identified increases with higher sequencing depth.

3. RNA-seq detects novel areas of transcription
mapping to regions not currently annotated as exons
(introns and intergenic regions). Some of these
regions are differentially expressed in SNT relative
to exonic expression and may represent novel
candidate pain mediators.

Conclusions
We have demonstrated that RNA-seq offers major advan-
tages over microarrays for the purpose of whole genome
transcriptional profiling of DRG tissue after peripheral
nerve injury. Firstly, RNA-seq is more comprehensive as it
can interrogate previously unrecognized areas of tran-
scription, while microarray design is constrained to known
or predicted transcripts. Secondly, RNA-seq has a much
wider dynamic range which favours detection and estima-
tion of differential expression for highly expressed genes
and, provided read depth is adequate, lowly expressed
genes can also be measured more precisely. Most import-
antly, RNA-seq provided novel insights into putative novel
pain mediators that were not detected using microarrays.
We therefore highly recommend the use of RNA-seq for
high throughput transcriptional profiling of pain models,
and we expect that this technology will supersede micro-
arrays in the near future.

Methods
Surgery and tissue collection
Spinal nerve transection (SNT) of the L5 spinal nerve
was performed on male Wistar rats (n = 12) as described
in [33]. L5 dorsal root ganglia (DRG) were harvested 7
days after surgery by fresh dissection, immediately
frozen in liquid nitrogen and stored at -80°C. L5 DRG
tissue from naive animals (n = 12) was used as control.
Tissue from 4 animals was pooled to create three inde-
pendent biological replicates per group (SNT or naive)
and total RNA was extracted using the miRNEasy kit
(QIAGEN, Redwood City, CA, USA) according to manu-
facturer’s instructions. RNA concentration was measured
using the NanoDrop 1000 Spectrophotometer (Thermo
Scientific, Wilmington, DE, USA). RNA integrity was
assessed using RNA Nano chips in an Agilent 2100
Bionalyzer (Agilent technologies, Santa Clara, CA, USA);
RNA integrity numbers (RIN) were between 8.5 and 9.3.
Each RNA sample was separated into two technical rep-
licates; one was further processed for microarray analysis
and the other for RNA-seq library preparation. Each
RNA-seq library was further subdivided into 3 technical
replicates, which were sequenced to three distinct read
depths as described below.

Microarray analysis and data processing
Microarray analysis was performed using the Affymetrix
GeneChip Rat Exon 1.0 ST Array (Affymetrix, Santa
Clara, CA, USA). Sample preparation and hybridization
were performed by UCL genomics, following Affymetrix
instructions. The resultant CEL files were processed in R
using the oligo Bioconductor package [61]. Background
correction, normalisation and summarisation were
performed using robust multi-array average (RMA),
quantile normalisation and median polish respectively
[62]. Summarisation was performed at the exon level
(where each probeset corresponds to an exon, with some
exons being probed by more than one probeset) or the
transcript cluster/gene level, where all probesets from
different exons belonging to the same gene were sum-
marised to produce a single transcript cluster measure-
ment. Throughout this manuscript “normalised probe
intensity” is used to refer to expression at the transcript
cluster or exon level, following all three pre-processing
steps. Transcript clusters were summarised and anno-
tated using the official Affymetrix .ps and .mps data-
files, obtained from the NetAffx Analysis Center (www.
affymetrix.com/analysis/index.affx) through the getNe-
tAffx() function of the oligo package. Presence/Absence
calls were determined at the exon level using the
detection above background (DABG) method. A default

http://www.affymetrix.com/analysis/index.affx
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threshold of p = 0.05 for expression above background
was used to assign “present” (p < 0.05) and “absent” calls
(p > 0.05).
Detection of differentially expressed genes/exons was

performed using the limma Bioconductor package [51].
In order to adjust for multiple testing, the false discov-
ery rate (FDR) was derived from the p-values using the
method described in [63]. An FDR of 0.1 is accepted
when defining significantly differentially expressed
genes. Differential expression analysis results for exon
arrays, containing fold changes and FDR can be found
in Additional file 8. All array data can be found in GEO
using accession numbers GSE53764 and GSE53860 for
transcript and probe-set level data, respectively. Differ-
ential expression data is also available from PainNet-
works [64].

Probeset confidence levels
Rat exon array probesets are annotated with different
evidence levels, which indicate the confidence that the
probeset truly represents a transcribed genomic se-
quence, based on the quality of evidence supporting that
claim. Probes labelled “core” refer to probesets probing
gene transcripts taken from RefSeq and full-length
mRNA GenBank records, “extended” probesets are sup-
ported by ESTs or partial mRNAs from databases, and
“full” probesets are supported by computational predic-
tions. These probeset confidence scores were assigned at
the time of array design. Separate gene and exon-level
expression matrices were produced, depending on the
probe set confidence levels considered, for: 1) core
probes only, 2) core and extended probes, and 3) all
probes in the chip (core, extended and full, respectively).
Core and extended level confidence probes were used
when comparing microarrays with RNA-seq. This level
of confidence was chosen because it led to the largest
number of differentially expressed genes that could be
detected with an FDR of 0.1.

RNA-seq protocol
cDNA libraries were prepared using the TruSeq™ RNA
Sample Preparation Kit (Illumina, San Diego, CA, USA),
low throughput protocol: 200 ng of total RNA were sub-
jected to poly(A) enrichment using poly(T)-attached
magnetic beads. Poly(A)-enriched RNA was subse-
quently used for reverse transcription and library prepar-
ation according to Illumina’s instructions. Sequencing
was performed using the Illumina GAIIx sequencer (Illu-
mina). Each library was sequenced at three distinct read
depths (M =million reads/sample): ~17 M (average:
16.6 M; range: 14.7 M-17.8 M), ~25 M (average: 25.5 M
reads; range: 23.3 M-27.3 M), and ~50 M (average:
50.7 M; range: 42.8 M-53.7 M). All reads were 34 base
pairs in length.
Read alignment
Reads were aligned to the rat genome as summarised in
Figure 2. Low quality reads were discarded using the
Illumina quality filter, leaving an average 11.9 M (range:
10.7 M- 13.0 M), 19.2 M (17.7 M-20.4 M) and 36.7 M
(32.4 M-38.5 M) million reads/sample. Reads were
aligned to the reference genome UCSC Rattus norvegi-
cus Rn5 (March 2012) using Bowtie [65]. Up to one mis-
match was allowed between the reads and the reference
genome. Ambiguously mapping reads (i.e. reads that
could be mapped to more than one position in the gen-
ome) were discarded. One mismatch was chosen be-
cause allowing either 0 or 2 or more mismatches
reduced the average percentage of uniquely mapping
reads per sample.

Gene expression quantification
Bowtie output files were imported into R using RSam-
tools [66]. Reads were classified as exonic if they mapped
to an annotated exon, intronic if they mapped within the
5’ and 3’ boundaries of a given gene, but outside anno-
tated exons, or intergenic if they aligned outside known
5’ and 3’ boundaries of annotated genes (Figure 2). Gene
expression was estimated using the GenomicFeatures
package. Gene expression was quantified in one of two
ways: considering exonic reads only, or considering in-
tronic and exonic reads (i.e. all reads mapping within the
5’ and 3’ ends of a gene). For genes whose transcripts
had alternative start/stop sites, the combination of 5’
and 3’ coordinates that gave maximal coverage, i.e. in-
cluded all exons of the gene, was selected.

Comparing relative frequencies of read counts between
naive and SNT samples
In order to compare the numbers of reads mapping to
the exonic, intronic and intergenic regions, the overdis-
persed logistic regression model of Williams (1982) was
used [67], due to within-group variability being too
high to satisfy the assumptions of a simple binomial
test.

Normalisation and differential gene expression in RNA-seq
DESeq [19] was used for normalization of the RNA-seq
counts and calculation of differential gene expression.
Count data was normalized by estimating effective li-
brary size for each sample. As with the microarray ana-
lysis, we estimated FDR using the method of Benjamini
and Hochberg. An FDR threshold of 0.1 was used to
control for false discoveries. Full results for the differen-
tial expression analysis for RNA-seq data, including fold
changes, p-values and FDR can be found in Additional
file 9. RNA-seq alignments (BAM files) can be found in
GEO (accession number: GSE53762). Differential ex-
pression data is also available from PainNetworks [64].
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Comparison of gene-level expression between platforms
In order to compare microarray gene expression levels
to expression measured by RNA-seq, Ensembl (release
69, Rn4) gene annotation was obtained for each micro-
array transcript-cluster, thus an expression value was
obtained for each Ensembl gene probeable using the
Affymetrix array. This was plotted against the RNA-seq
Reads Per Kilobase per Million mapped reads (RPKM)
value for the same Ensembl gene (Ensembl release 74,
Rn5). Because the RNA-seq reads were mapped to Rn5,
and the microarray annotation was for Rn4, only genes
found in both genome builds were plotted. The RPKM is
obtained by counting the number of sequenced reads
mapping to the exons of a given gene and normalising
by the total length of all exons for that gene and the
library size [44]. The use of an FDR of 0.1 is somewhat
arbitrary (although commonly used). Therefore, in order
to justify the use of and FDR of 0.1, we have repeated
the comparison of DE genes detected using various FDR
thresholds. Additional file 7 shows the overlap in DE
genes found by the different platforms at FDRs of 0.05,
0.1, 0.15 and 0.2. We see a similar pattern for all three FDR
values – there is a large overlap between platforms, with
comparatively few extra genes found by microarrays only,
and a larger number of genes found by RNA-seq only.

Comparison of exon-level expression between platforms
When comparing exon expression between platforms,
the normalised probe intensity for each microarray
probeset that mapped to an Ensembl exon was com-
pared to the number of reads mapping to that exon,
normalised using the RPKM procedure described in
[44]. In the case of more than one probeset mapping to
the same Ensembl gene, the probeset exhibiting the
largest variance in expression across all samples was
used for the comparison, as used in [68]. In order to
compare expression at the exon level directly between
technologies the RNA-seq alignments considered for
this particular analysis were made using the Rn4 version
of the genome.

Changes in non-exonic expression following SNT
In order to identify genes for which non-exonic expression
changed significantly following SNT, gene expression
calculated using exonic expression was compared to gene
expression calculated using exonic and intronic expression
as described above. Nested genes were not used for this
process – any gene that overlapped with any other gene
(on either strand) was excluded. In order to look for genes
showing a significant increase or decrease in the propor-
tion of reads aligning to intronic gene regions, we used
the DEXSeq package [45]. We considered each gene to
consist of two units: exons and introns. The package is
then employed to look for genes that show a difference in
the relative ratios of exonically and intronically aligned
reads between SNT and naive samples. Genes were
normalised and dispersion estimated using the standard
parameters employed by DEXseq. A count based filter
was applied before analysis: any gene with less than 200
reads aligning to its intronic regions for more than 3
samples was excluded from the analysis.

Functional analysis
For functional enrichment analysis the exon array and the
RNA-seq (read depth 50 M) datasets were considered
separately. Lists of dysregulated genes (FDR p < 0.1) were
subjected to gene ontology analysis. Analysis by “Protein
Class” was performed with “PANTHER classification
systems” (www.pantherdb.org/) [69]. Functional analysis
was performed with Ingenuity Pathway Analysis (IPA,
QIAGEN). Lists of dysregulated genes were subjected to
“core analysis” using IPA default settings, and top
biological functions/ “diseases and disorders” as well as
“canonical pathways”; p-values were adjusted using the
Benjamini-Hochberg multiple testing correction.

Data access
Raw and processed data are available from the Gene
Expression Omnibus (GEO) (www.ncbi.nlm.nih.gov/geo/),
series accession number: GSE53861. Tables of gene ex-
pression and the lists of the DE genes are available from
www.PainNetworks.org [64] from the experiments tab.

Additional files

Additional file 1: Inter-platform correlation at the gene level. Each pdf
file in this zipped folder contains plots of RNA-seq RPKM expression vs.
microarray normalised probe intensity for all respective samples. Spearman’s
correlation coefficient is indicated in the top left corner of each graph.

Additional file 2: The distributions of absolute log2 FCs for DE genes,
shown alongside the absolute log2 FCs for non-DE genes. Absolute log
2 FCs are shown for the genes that are called as DE by both platforms
(red lines, dashed and solid lines show RNA-seq and microarray fold
changes), by RNA-seq only (dashed green line) and by microarrays only
(solid blue line). Non DE genes shown in grey (dashed line shows RNA-seq
values, solid line represents microarray values). Distribution curve computed
using the probability density function, implemented in R.

Additional file 3: Comparison of RNA-seq and microarrays for the
measurement of exon expression and the detection of differentially
expressed exons. A) Correlation between normalised hybridisation
intensity and normalized read counts (RPKM) at a 50 M read depth for
exons measureable using microarrays and RNA-seq. Where more than
one probeset maps to a given exon, both values are plotted, as separate
points, for the equivalent RNA-seq value for that exon. Ai) Average
expression for all three SNT samples. Aii) Average expression for all three
naive samples. The red points show exons expressed in both platforms,
blue points show exons that are not detected by RNA-seq (i.e. 0 reads
aligned to that exon). Green points show exons with microarray
normalised probe intensity below that of the background probesets
(calculated using the DABG measure described in the Methods section),
but with an RNA-seq RPKM value above 0. Grey points show exons with
microarray normalised probe intensity below that of background
probesets, and with an RPKM of 0. Some noise has been added to the
expression values of the exons for clearer visualization of the point

http://www.pantherdb.org/
http://www.ncbi.nlm.nih.gov/geo/
http://www.painnetworks.org/
http://www.biomedcentral.com/content/supplementary/1744-8069-10-7-S1.zip
http://www.biomedcentral.com/content/supplementary/1744-8069-10-7-S2.pdf
http://www.biomedcentral.com/content/supplementary/1744-8069-10-7-S3.pdf
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density. B) Correlation between fold changes estimated by microarrays
and RNA-seq (50 M read depth) for exons detectable by both
technologies. Exons deemed as significantly DE by both platforms are
shown as red points; exons detected as DE exclusively by RNA-Seq are
shown as green points; exons detected as DE exclusively by microarrays
are shown as blue points. C) Venn diagram showing the number of
exons found to be differentially expressed by RNA-seq (shown for a read
depth of 50 M) and the overlap with microarray data.

Additional file 4: Overlap between platforms at the exon level, for
all sequencing depths. Number of exons called as DE for RNA-seq,
microarrays and the overlap between them. For lower sequencing
depths, microarrays call more exons as DE.

Additional file 5: Fold change at exonic and intronic levels and
p-values. Table containing fold changes calculated by DEXseq at intronic
and exonic level and DEXSeq p-values for all genes tested.

Additional file 6: Volcano and mean-fold change plot for the DEXSeq-
based analysis of relative exonic vs. intronic expression. A) Volcano plot,
which shows the logarithm of the change in exonic expression minus the
change in intronic expression, following SNT (x-axis). This is plotted against the
negative logarithm of the p-value (y-axis). We can see that the most significant
genes (i.e. those with the highest value on the y-axis) are represented by
points with a negative value on the x-axis; this suggests that the most affected
genes in terms of intronic vs. exonic expression are showing an increased
expression in intronic regionsfollowing SNT. B) Plot of mean intronic expres-
sion vs. the logarithm of the change in exonic expression minus the change
in intronic expression, highlighting the genes that have been deemed signifi-
cant (FDR < 0.1), showing that significance is not a function of expression.

Additional file 7: The effect of changing the permitted false
discovery rate, on the total number of genes deemed as
differentially expressed. Numbers of genes called as significantly DE for
RNA-seq, microarrays and the overlap between them for varying FDRs.
Ensembl gene ids and gene symbols are given.

Additional file 8: Exon array limma analysis, containing the
Ensembl gene ids and gene symbols (obtained from NetAffx and
Biomart). Results produced using the limma package. In the case of
more than one transcript cluster id with the same Ensembl id, the
transcript cluster showing the highest level of variation across samples
was used for the limma analysis. Results are shown for extended level
confidence probes.

Additional file 9: RNA-seq (50 M) DESeq results containing the
Ensembl gene ids and gene symbols (obtained from NetAffx and
Biomart). Results produced using the DESeq package, using the default
normalization parameters. Genes to which no reads could be aligned for
four or more samples were excluded from analysis.
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