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Abstract

Peripheral nerve injury is known to up-regulate the expression of rapidly-repriming Nav 1.3 sodium
channel within first-order dorsal root ganglion neurons and second-order dorsal horn nociceptive
neurons, but it is not known if pain-processing neurons higher along the neuraxis also undergo
changes in sodium channel expression. In this study, we hypothesized that after peripheral nerve
injury, third-order neurons in the ventral posterolateral (VPL) nucleus of the thalamus undergo
changes in expression of sodium channels. To test this hypothesis, adult male Sprague-Dawley rats
underwent chronic constriction injury (CCIl) of the sciatic nerve. Ten days after CCI, when
allodynia and hyperalgesia were evident, in situ hybridization and immunocytochemical analysis
revealed up-regulation of Navl.3 mRNA, but no changes in expression of Navl.l, Navl.2, or
Navl.6 in VPL neurons, and unit recordings demonstrated increased background firing, which
persisted after spinal cord transection, and evoked hyperresponsiveness to peripheral stimuli.
These results demonstrate that injury to the peripheral nervous system induces alterations in
sodium channel expression within higher-order VPL neurons, and suggest that misexpression of the
Nav .3 sodium channel increases the excitability of VPL neurons injury, contributing to neuropathic

pain.

Background

Peripheral nerve injury can result in the development of
chronic pain that is associated with hyperexcitability of
sensory neurons within the dorsal root ganglia (DRG)
[1,2] and the spinal cord dorsal horn [3-5]. Changes in
sodium channel expression are known to contribute to
neuronal hyperexcitability, and to reductions in behavio-
ral nociceptive thresholds after nerve injury. It is now
well-established that peripheral axotomy and chronic
constriction injury (CCI) trigger upregulated expression of
the Navl.3 sodium channel within DRG neurons [6-8]
and that CCI is followed by upregulation of Nav1.3
within nociceptive dorsal horn neurons [9]. This is func-

tionally important because Nav1.3 produces a persistent
current [10] and a ramp response which amplifies small
depolarizations close to resting potential, and reprimes
rapidly from inactivation [11,12], thereby contributing to
hyperexcitability of these neurons [9].

Questions remain regarding molecular changes in
supraspinal sensory neurons after nerve injury. Of partic-
ular interest is the ventral posterolateral (VPL) nucleus of
the thalamus which receives input from spinal sensory
neurons, and is involved in sensory-discriminative aspects
of pain processing [13]. Previous work has demonstrated
that VPL neurons sensitize to mechanical and thermal

Page 1 of 10

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16916452
http://www.molecularpain.com/content/2/1/27
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/

Molecular Pain 2006, 2:27

stimuli after peripheral neuropathy [14], and that NMDA
blockade can decrease nociceptive transmission [15].
However, whether there are changes in sodium channel
expression within the thalamus that might contribute to
neuronal hyperresponsiveness after injury is not yet
known.

In this study we asked whether peripheral nerve injury can
also trigger supraspinal changes in sodium channel
expression within the thalamus. We hypothesized that
upregulated expression of Nav1.3, and possibly other iso-
forms, occurs in third-order VPL neurons after peripheral
nerve injury.

Results

Behavioral testing

Testing of behavioral nociceptive thresholds was per-
formed to confirm that animals had developed pain-
related behaviors following CCI, at the time of histologi-
cal or electrophysiological analysis. Ten days following
CCI, animals demonstrated significantly reduced hind-
limb mechanical thresholds on the ipsilateral side (4.1
2.5 g) when compared to the contralateral side (18.8 + 4.7
g) or sham-operated animals (21.9 + 2.6 g) (data not
shown), indicating the development of mechanical allo-
dynia. Thermal paw withdrawal latencies were also signif-
icantly reduced for the ipsilateral hindlimb 10 d after CCI
(4.3 + 2.0 sec) relative to the contralateral side (9.8 + 2.4
sec) or sham-operated animals (10.2 + 2.6 sec) (not
shown), indicating the development of thermal hyperal-
gesia.

Extracellular unit recordings

Examination of sections corresponding to the ventrobasal
complex of the thalamus at bregma -3.14 mm confirmed
that the tip of the recording electrode was within the VPL
(Figure 1A). Representative unit recording locations are
shown for intact as well as CCI animals for ipsilateral and
contralateral sides at 10 days after injury, superimposed
on a schematic diagram of the thalamus [16]. Typically
the track of the electrode passed through the hippocam-
pus and VPM. All units analyzed were located within the
atlas boundaries of the VPL.

Representative peristimulus time histograms from an
intact animal (Figure 1B), as well as from sides ipsilateral
(Figure 1C) and contralateral (Figure 1D) to the CCI 10
days after injury, show that in comparison to MR units
recorded from intact and the ipsilateral VPL after CCI,
units recorded from the contralateral side exhibited ele-
vated evoked firing rates. Quantification of mean evoked
rates (Figure 1E) revealed that in intact animals, mean
evoked discharge rates to phasic brush (17.5 + 2.4 Hz),
144 g/mm? (19.1 + 3.6 Hz), and 583 g/mm?2 (22.1 + 4.4
Hz) compressive stimuli were in accordance with previ-
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Two-dimensional distribution of 10 histologically identified
recording sites plotted on a schematic diagram [16] of the
ventrobasal complex of the thalamus corresponding to
bregma -3.14 mm, which delineates the posterior nucleus
group (Po), ventral posteromedial nucleus (VPM), and VPL.
Units from intact control (open circles), 10 days after
chronic constriction injury (CCI) ipsilateral side (open
squares), and CCI contralateral side (filled triangles) groups
are shown (A). All units used in this analysis were confined to
the VPL. Representative extracellular multireceptive unit
recordings plotted as peristimulus time histograms as well as
unit activity are shown for intact (B), and ipsilateral (C) and
contralateral (D) sides after CCl in response to phasic brush,
144 g/mm? press, and 583 g/mm?2 pinch, stimulation (10 sec)
of peripheral receptive fields located on the corresponding
hindpaw. Quantification (E) of spikes/second show that 10
days after CCl, on the contralateral side, evoked discharge
rates were significantly (*p < 0.05) elevated in response to all
peripheral stimuli compared to intact animals and the ipsilat-
eral side of CCl animals.

ously published reports [17]. Ten days after induction of
CCI, on the side ipsilateral to the CCI, evoked responses
to brush (23.9 + 4.2 Hz), 144 g/mm?2(19.4 + 4.2 Hz), and
583 g/mm?2 (24.5 + 5.9 Hz) were not significantly different
from intact animals. In contrast, on the contralateral side,
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discharge rates during application of brush (42.1 + 4.8
Hz), 144 g/mm?2 (50.6 + 11.4 Hz), and 583 g/mm?2 (69.2
+ 13.6 Hz) were significantly (p < 0.05) increased com-
pared to intact and ipsilateral CCI units.

Spontaneous thalamic activity independent of spinal
dfferent barrage

Recordings from VPL neurons with hindlimb receptive
fields demonstrated a high rate of background firing 10
days after CCI. To ascertain whether this high rate of firing
was the result of increased afferent barrage from sites
below the VPL, we recorded from VPL neurons before and
after application of 2% lidocaine and subsequent spinal
cord transection at T6. In a representative record from an
animal with CCI (Figure 2A), spontaneous background
activity was present in the contralateral VPL and occurred
at 5-11 Hz (Figure 2B), and a response was evoked upon
brush and press stimulation of the hindpaw (Figure 2a).
Topical lidocaine application and cord transection (at t =
120 s) at T6 had no effect on spontaneous firing rates of
thalamic units which remained high (5-12 Hz) (Figure

A CCl PR (b)

PR (a) Iid(3+tx
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2B), although it abolished the evoked response to periph-
eral stimulation of the hindpaw (Figure 2b). In this series
of experiments, after blockade of evoked afferent activity,
increased spontaneous activity of VPL units was present
for the duration of the experiment (up to 1450 sec). Com-
pared to intact animals, background activity was signifi-
cantly higher in the contralateral VPL of CCI animals
(Figure 2B).

In situ hybridization

In situ hybridization studies were performed on intact and
CCI brains for detection of mRNA for neuronal sodium
channels Nav1.1, Nav1.2, Nav1.3, and Nav1.6 in the VPL.
Sections from the ipsilateral and contralateral sides 10
days after CCI probing for Nav1.3 are shown in Figure 3.
A coronal brain slice corresponding to bregma -3.14 mm
illustrates the location of image fields (Figure 3A) and
location of the VPL. On the side ipsilateral to the CCI, very
little hybridization signal for Nav1.3 is detectable (Figure
3B). On the contralateral side, however, Nav1.3 hybridi-
zation signal was clearly present within small (5-20 pm
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Representative recording of spontaneous and evoked activity of a contralateral VPL neuron with a hindlimb receptive field
demonstrated spontaneous discharge 10 days after CCI (A). The VPL unit was continuously recorded, and the spinal cord was
acutely transected at Té following application of 2% lidocaine (lido+tx, at t = 120 s). The corresponding unit waveform is
shown. Spontaneous background (BK) activity and evoked responses to brush and press (PR, bar) stimuli are shown on an
expanded time scale before (a, t = 50-59 sec) and after (b, t = 300-309 sec) cord transection. In CCl animals, spontaneous fir-
ing of VPL neurons was unaffected and occurred at a frequency of 5—12 spikes/s following cord transection, but no evoked
responses to PR could be elicited (b). Quantification (B) revealed that evoked responses could no longer be elicited after cord
transection in intact and CCl (contralateral) groups, and that background activity remained significantly (*p < 0.05) elevated in
CCl animals before (pre) and after interruption (tx) of ascending afferent barrage compared with intact animals.
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Figure 3

Schematic representation of a coronal brain section corre-
sponding to bregma -3.14 [16] showing the location of the
VPL and image locations. Ten days after CCl, representative
images from in situ hybridization for detection of Navl.3
mRNA are shown for the ipsilateral (B) and contralateral (C)
sides. On the ipsilateral side, only very light Nav|.3 signal was
detectable. On the contralateral side, punctuate Nav|.3 sig-
nal was present in CCl animals. Higher magnification insets
are shown for the ipsilateral (B') and contralateral (C') sides.
Quantification of the number of Nav|.3-positive cells exhibit-
ing a neuronal morphology from each group is shown in (D).
Compared to intact animals, and to the ipsilateral side after
CCl, the contralateral VPL exhibited a significantly (*p <
0.05) increased number of Nav|.3-positive profiles after CCI.
Nav .3 signal intensity was very low in intact animals, and on
the ipsilateral side after CCI, whereas on the contralateral
side signal intensity was significantly increased after CCI.
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diameter) neurons in the VPL (Figure 3C). Signal was
punctuate and easily discernable from background. Neu-
rons expressing Nav1l.3 mRNA were localized to the VPL
exclusively, and no signal was observed in the VPM, intral-
aminar, or adjacent thalamic nuclei. The number of
Nav1.3-positive neurons ranged from 22-54 (mean 38.2
+ 8.4 neurons) per section on the contralateral side, signif-
icantly higher compared to 0-4 (2.4 + 1.9 neurons) in
intact animals and in CCI animals on the side ipsilateral
to CCI (1.9 # 1.2 neurons) (Figure 3D). Signal intensity
within Nav1.3-positive neurons was significantly elevated
only on the side contralateral to CCI (Figure 3E). In intact
animals, the signal intensity was relatively low (7.4 + 4.2
arbitrary units), and was not different from the ipsilateral
side of CCI animals (5.4 + 4.6 units). In contrast, the con-
tralateral side of CClI rats displayed significantly increased
Nav1.3 signal intensity (57.6 + 15.4 units).

In intact animals, Nav1.1, Nav1.2, and Nav1.6 were con-
stitutively expressed within the VPL. Nav1.1 was expressed
on both ipsilateral (mean 13.9 + 4.0 neurons per section)
and contralateral (16.1 + 7.1 neurons) VPL after injury,
which was not changed relative to intact (15.2 + 4.4 neu-
rons) animals. Similarly, Nav1.2 was expressed but was
not different from control (31.2 + 3.0 neurons) in either
the ipsilateral (34.1 + 2.6 neurons) or contralateral (30.0
+ 4.7 neurons) sides after CCI. Differences in Navl.6
expression were not detected relative to intact animals
(23.6 + 4.9 neurons) in either ipsilateral (26.1 + 5.2 neu-
rons) or contralateral (22.5 + 6.5 neurons) sides after CCIL.

In situ hybridization for Navl.1 revealed widespread
punctuate staining. Quantification of signal intensity in
ipsilateral (36.1 + 3.2 arbitrary units) (Figure 4A) and con-
tralateral (36.4 + 4.6 units) (Figure 4B) revealed no signif-
icant difference 10 days following CCI. Similarly, Nav1.2
signal intensity between ipsilateral (64.5 + 11.1 units)
(Figure 4C) and contralateral sides (74.8 + 13.8 units)
(Figure 4D) were not significantly different after CCI.
Finally, Nav1.6 signal intensity was not significantly dif-
ferent between ipsilateral (44.1 + 9.2 units) (Figure 4E)
and contralateral (50.2 + 6.5 units) (Figure 4F) sides after
CCI. Compared to intact animals, no significant differ-
ences were observed after CCI (Figure 4H).

Discussion

In the present study we confirm that peripheral nerve
injury (CCI) results in long-distance changes in respon-
siveness to peripheral stimulation in third-order pain-
processing neurons of the ventral posterolateral (VPL)
nucleus of the thalamus that receive inputs from the
injured contralateral sciatic nerve in animals that display
lowered behavioral nociceptive thresholds [14,18]. These
changes include increased rates of firing in response to
natural peripheral stimuli equivalent to light touch, press-
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Figure 4

Representative images showing Navl.| (A, B), Navl.2 (C, D), and Navl.6 (E, F) mRNA transcripts within regions correspond-
ing to the ipsilateral (A, C, E) and contralateral (B, D, F) VPL in coronal brain sections collected at bregma -3.14 10 days follow-
ing CCI. Signal was detectable in cells exhibiting a neuronal morphology. Quantification of the number of neurons per section
expressing each sodium channel isoforms (G) did not reveal any significant differences in ipsilateral or contralateral expression
after CCl when compared to intact animals. Quantification of sodium channel in situ signal intensity (H) showed moderate
expression of all channel isoforms in intact animals, and that |10 days after CCl no isoforms exhibited changes in signal intensity.
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ing of the skin, and pinching of the skin. Our new data
also document the abnormal expression of the Nav1l.3
voltage-gated sodium channel transcripts in the VPL dur-
ing this time of neuronal hyperresponsiveness and
reduced nociceptive thresholds. We observed no changes
in the expression of neuronal sodium channels Navl.1,
Nav1.2, or Nav1.6 in VPL neurons, although we can not
rule out a contribution of other channels that could have
an affect on firing thresholds [19,20]. Our results demon-
strate for the first time, that changes in sodium channel
expression within the thalamus are associated with abnor-
mal sensory processing and chronic neuropathic pain
after CCI.

The abnormal expression of Nav1.3 in third-order neu-
rons suggests a mechanism whereby injury to a peripheral
nerve can propagate pathological molecular changes to
sequentially-ordered upstream targets. Second-order dor-
sal horn nociceptive neurons receive input from the
periphery via the dorsal root ganglia, and project rostrally
to third-order neurons within a pain-signaling pathway,
located within the ventrobasal complex of the thalamus.
Most of these spinothalamic projections terminate in the
VPL, and this pathway underlies most of the transmission
of nociceptive information from the periphery to the
brain [21]. No changes in expression of Navl.3 were
observed in other thalamic nuclei, such as the intralami-
nar nuclei [22], which is important in processing affective
components of pain. This could be related to the relatively
few number of projections from the lumbar spinal cord,
or low levels of Nav1.3 transcript upregulation after CCI.
We have previously demonstrated that Nav1.3 contributes
directly to hyperresponsiveness of second-order dorsal
horn neurons after CCI [9], and that knock-down of
Nav1.3 expression with intrathecally-delivered antisense
oligonucleotides that selectively target Nav1l.3 mRNA can
reduce Nav1l.3 expression in NK1R-positive dorsal horn
nociceptive neurons, quiet hyperresponsive dorsal horn
neurons, and return behavioral nociceptive thresholds to
near-normal levels.

In this study, we document Nav1l.3 misexpression in
third-order neurons after nerve injury. The number of
Nav1.3-expressing neurons is quite low, and may reflect
the fact that only a subset of neurons receives pathological
input from dorsal horn neurons rendered hyperrespon-
sive by DRG efferents. Through FosB immunoreactivity,
the number of neurons of the VPL that are responsive to
noxious stimulation has been studied and is also low [23];
the number of Navl.3-positive neurons in our study
closely approximates this number.

The factors that drive expression of Nav1.3 in these neu-
rons are not yet clear, and a number of possibilities exist.
First, if we assume that Nav1.3 enables a neuron to fire at

http://www.molecularpain.com/content/2/1/27

higher-than-normal frequencies, it is possible that VPL
neurons are upregulating Nav1.3 in order to accommo-
date high-frequency information received from the spinal
cord. As soon as 3 days after injury, ectopic and inappro-
priate discharges originate in the injured axons and their
cell bodies within the DRG [1,24-26]. This abnormal fir-
ing could drive dorsal horn neurons to relay higher fre-
quency afferent information supraspinally towards the
VPL, which in turn also become hyperresponsive in
response to increased drive and upregulate Navl.3 to
accommodate higher than normal firing frequencies. Sec-
ond, VPL neurons may undergo reactive changes that
make them hyperresponsive. Abnormal firing has been
shown to originate and persist within the dorsal horn after
peripheral injury [3-5,27], as well as the thalamus after
spinal cord injury after interruption of spinal afferent bar-
rage [17]. Activity-dependent central sensitization can
outlast the conditioning stimulus for hours [28]. Third,
while the up-regulated expression of Nav1.3 within DRG
neurons following axotomy appears to be due in part to
deprivation from peripheral pools of neurotrophic factors
[29-31], the signals that trigger Navl.3 upregulation
within third-order neurons have not been identified. It is
known that after peripheral nerve injury 2-deoxyglucose
metabolic activity [32] and regional blood flow [33] are
increased in the thalamus, and that changes in cannabi-
noid receptors [34] and monoamine release [35] occur,
but whether these are linked to Nav1.3 expression is
unclear.

Nav1.3 recovers from inactivation rapidly and produces a
depolarizing response to small stimuli close to resting
potential, and produces a persistent current - increasing
the excitability of cells that express Nav1.3 [7,10-12]. The
Nav1.3 sodium channel has been linked to pain-related
phenomena in a variety of model systems. Increased
expression of Nav1.3 occurs in DRG and dorsal horn neu-
rons following injury to the sciatic nerve [6,7,9,36,37],
and while expression of Nav1.3 is not increased in axot-
omized cortical pyramidal neurons [38]. Up-regulation of
Nav1.3 expression in DRG neurons is associated with
allodynia and hyperalgesia [8]. Similarly, pain after spinal
cord injury is ameliorated after knock-down of Nav1.3
[9,17,39].

Sodium channel blockade after peripheral [40] or central
[41] injury with systemic lidocaine administration has
been shown to be effective in the amelioration of chronic
pain. It is not yet known how lidocaine, for example,
might affect sodium channel dysregulation after experi-
mental injury, but this is an important question to ask.

Conclusion
In sum, our findings demonstrate changes in excitability
and expression of Nav1.3, but not other neuronal sodium
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channels (Navl.1, Nav1.2, Nav1.6), within contralateral
VPL neurons following CCI. Together with our earlier
results on dorsal root ganglion [8] and dorsal horn neu-
rons [9], these results provide evidence suggesting that
dysregulated Nav1.3 expression at both spinal and
supraspinal levels after peripheral nerve injury contributes
to altered processing of somatosensory information and
chronic neuropathic pain.

Methods

Animal care

Experiments were carried out in accordance with National
Institutes of Health guidelines for the care and use of lab-
oratory animals, and adhered to the guidelines of the
Committee for Research and Ethical Issues of Interna-
tional Association for the Study of Pain; all animal proto-
cols were approved by the Yale University Institutional
Animal Use Committee. Adult male Sprague-Dawley rats
(200-225 g) were used for this study. Animals were
housed under a 12 h light-dark cycle in a pathogen-free
area with free access to water and food.

Chronic constriction injury

Rats (n = 24) were deeply anesthetized with ketamine/
xylazine (80/5 mg/kg i.p.) and the left sciatic nerve
exposed at the mid-thigh level by blunt dissection of the
biceps femoris. For chronic constriction injury (CCI) (n =
12), four chromic gut (4-0) ligatures were tied loosely
around the nerve, about 1 mm apart, proximal to its trifur-
cation, as described by [42]. For sham surgery (n = 12),
the sciatic nerve was isolated but not ligated. After sham
or CCI surgery, the overlying muscles and skin were closed
in layers with 4-0 silk sutures and staples, respectively, and
the animal recovered on a 30°C heating pad. Postopera-
tive treatments included saline (2.0 cc s.c.) for rehydra-
tion, and Baytril (0.3 cc, 22.7 mg/ml s.c.) to prevent
urinary tract infection.

Behavioral analysis

Testing of nociceptive thresholds was performed (n = 6
animals/group) 10 days after sham or CCI surgery to con-
firm that CCI animals had developed behavioral signs of
chronic pain (for all experiments we used only animals
that demonstrated the development of chronic pain).
After acclimation to the testing area (30 min), mechanical
sensory thresholds were determined by paw withdrawal to
application of a series of von Frey filaments (Stoelting,
Wood Dale, IL, USA) to the glabrous surface of the paw.
Following application of calibrated von Frey filaments
(0.4-26 g) with enough force to cause buckling of the fil-
ament, a modification of the 'up-down' method of [43]
was used to determine the value at which paw withdrawal
occurred 50% of the time [44], interpreted to be the
mechanical nociceptive threshold.

http://www.molecularpain.com/content/2/1/27

After acclimation to the test chamber, thermal hyperalge-
sia was assessed by measuring the latency of paw with-
drawal in response to a radiant heat source [45]. Animals
were placed in Plexiglas boxes on an elevated glass plate
under which a radiant heat source (4.7 A) was applied to
the glabrous surface of the paw through the glass plate.
The heat source was turned off automatically by a photo-
cell upon limb-lift, allowing the measurement of paw
withdrawal latency. If no response was detected, the heat
source was automatically shut off at 20 s. Three minutes
were allowed between each trial and four trials were aver-
aged for each limb.

Electrophysiology

Animals that had been sham-operated (n = 6), and CCI
animals (n = 6) that exhibited reduced behavioral nocice-
ptive thresholds 10 days after injury, underwent extracel-
lular single unit recording according to established
methods [9]. The activity of 3-7 units/animal was
recorded, yielding 18-42 cells/group. Rats were initially
anaesthetized with halothane (4% in induction cham-
ber), and maintained by tracheal intubation (1.1%, 2-2.5
ml tidal volume, 60-70 strokes/min). Halothane anesthe-
sia lasted ~2 h, until the end of each experiment. Rectal
temperature was maintained at 37°C.

For unit recording, the head was fixed in a stereotaxic
apparatus (Kopf Instruments, Tujunga, CA, USA) and skin
incision and a limited craniotomy exposed the brain sur-
face vertical to the recording sites within the thalamus.
Neuronal units were isolated bilaterally from the VPL
nucleus of the thalamus [stereotaxic coordinates in mm:
bregma (-3.30); lateral (2.6); vertical (4.8)]. Extracellular
single-unit recordings were made with low-impedance 5
MQ tungsten insulated microelectrodes (A-M Systems,
Carlsborg, WA, USA). Electrical signals were amplified
and filtered at 300-3000 Hz (DAMS80, World Precision
Instruments, Sarasota, FL, USA), processed by a data col-
lection system (CED 1401+; Cambridge Instruments,
Cambridge, UK), and stored on a computer (Pentium 4
PC, Dell, Austin, TX, USA) to construct peristimulus time
histograms or Wavemark records. The stored digital
record of individual unit activity was retrieved and ana-
lyzed off-line with Spike2 software (v3.13, Cambridge
Electronic Design, Cambridge, UK).

Once a cell was identified by a gentle probing of the body
surface, its receptive field was mapped and stimulated by
an experimenter blinded to the treatment of the animal.
Background (BK) activity was measured followed by cuta-
neous receptive field mapping with von Frey filaments
and/or brief pinches. Receptive fields for VPM units were
exclusively mapped to the head, whereas those for VPL
units were mapped to the rest of the body. Three mechan-
ical stimuli were routinely applied: (i) phasic brush (PB)
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stimulation of the skin with a cotton brush; (ii) increasing
intensity von Frey filaments (0.39 g; 1.01 g; 20.8 g forces);
(iii) pressure (PR), by attaching a large arterial clip with a
weak grip to a fold of the skin (144 g/mm?2); and (iv)
pinch (PI), by applying a small arterial clip with a strong
grip to a fold of skin (583 g/mm?2). Multireceptive units
were identified by their responsiveness to brush, press and
pinch, and with increasing responsiveness to increment-
ing strength von Frey stimuli. Low threshold or high
threshold units were classified as such based on their high
(>30%) rate of response to brush, von Frey stimulation or
pinch. BK activity was recorded for 20 s and stimuli
applied serially for 20 s, separated by 20 s of baseline
activity. Care was taken to ensure that the responses were
maximal, that each stimulus was applied to the unit's pri-
mary receptive field, and that isolated units remained
intact and held for the duration of each experiment using
Spike2 template matching routines. Neurons responding
mainly to joint movement or to probing subcutaneous tis-
sue were excluded from analysis. Evoked responses were
calculated by subtracting the prestimulus baseline activity
to yield net number of spikes per response.

At the conclusion of recording, a direct current (1 pA for
20 s) was passed through the recording electrode to iden-
tify the location of unit recording sites. Recording sites
were plotted from 3-4 animals in each group. The brain
was removed and fixed in 4% cold buffered paraformalde-
hyde in PBS for 48 h at 4°C in 30% sucrose before frozen
sectioning at 20 um. Sections were mounted on gelatin/
potassium chromium sulfate-coated slides and stained
with cresyl violet (0.1%) for visualization and photomi-
Croscopy.

Blockade of afferent barrage to the thalamus

In a second group, sham-operated animals (n = 4) and
animals 10 days after CCI (n = 4) were prepared for stand-
ard electrophysiological recording within the VPL. In
these experiments, the spinal cord was exposed by lami-
nectomy at the T6 level, and topical application of 2%
lidocaine (20 mg/ml, pH 6.5; Abbott Labs, North Chi-
cago, IL, USA) to the dorsal and lateral surfaces of the spi-
nal cord was followed by complete cord transection at the
same site with iridectomy scissors at t = 120 sec. Following
cord transection, responses to press stimulation of the
hindlimb were abolished in all animals. For each animal
one unit was isolated in the VPL that had an identifiable
contralateral (injury side) hindlimb receptive field. The
unit's activity was continuously recorded for the duration
of each experiment. Background and evoked activity were
recorded before and after lidocaine and transection.

In situ hybridization
Following perfusion with 4% paraformaldehyde PBS and
cryoprotection in 30% sucrose, coronal sections were col-

http://www.molecularpain.com/content/2/1/27

lected from the brain at levels corresponding to the ven-
trobasal complex of the thalamus (bregma -3.14 mm)
from animals that had been sham-operated (n = 6), and
that exhibited reduced behavioral nociceptive thresholds
10 days after CCI (n = 6). Twelve micron transverse cryo-
sections (n = 5 sections/animal) from each group were
processed for detection of mRNA for the neuronal sodium
channels Nav1.1, Navl.2, Nav1l.3, and Navl.6 as previ-
ously described [46,47], with incubation in 4% parafor-
maldehyde increased to 12 min and permeabilization
with proteinase K reduced to 6 min. DIG-labeled anti-
sense and sense riboprobes were synthesized as previously
described by our group [46,47]. Sense riboprobes yielded
no signal on in situ hybridization (data not shown).
Nav1.4 (which is normally expressed within skeletal mus-
cle), Navl.5 (cardiac muscle), Navl.7, Nav1l.8, and
Nav1.9 (normally expressed in peripheral ganglia and not
in brain) were not studied.

Quantitative image analysis

Images were captured with a Nikon Eclipse E800 light
microscope equipped with epifluorescence and Nomarski
optics, using a Photometrics CoolSnap HQ camera (Roper
Scientific, Tucson, AZ) and MetaVue v6.216 software (Uni-
versal Imaging Corporation, Downingtown, PA). Quanti-
tative analysis was performed by a blinded observer using
MetaVue and IPLab Spectrum v3.0 software (Scanalytics,
Fairfax, VA) where the number of positively labeled neu-
rons was counted for ipsilateral and contralateral VPL
regions. Cells were sampled only if the nucleus was visible
within the plane of section and if cell profiles exhibited
distinctly delineated borders. Signal intensity of reaction
products was determined by software functions. Back-
ground levels of signal were subtracted, and control and
experimental conditions evaluated in identical manners.

Statistical analysis

All statistical tests were performed at the alpha level of sig-
nificance of 0.05 by two-tailed analyses using parametric
tests. Pair-wise comparisons were applied with either the
paired Student's t-test or the two sample Student's t-test.
Data involving multiple timepoints for individual ani-
mals was tested for significance using repeated-measure
ANOVA. Data management and statistical analyses were
performed using SAS (1992) statistical procedures with
Jandel SigmaStat (v1.0), and graphed using Jandel Sigma-
Plot (v7.0) as mean + standard deviation (S.D.).

Abbreviations
BK background

CCI chronic constriction injury

DRG dorsal root ganglion
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PB phasic brush

PI pinch

PR pressure

VPL ventral posterolateral
VPM ventral posteromedial
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