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Background
Fast excitatory glutamatergic synaptic transmission in the

Abstract

GluR5-containing kainate receptors (KARs) are known to be involved in nociceptive transmission.
Our previous work has shown that the activation of presynaptic KARs regulates GABAergic and
glycinergic synaptic transmission in cultured dorsal horn neurons. However, the role of GIuR5-
containing KARs in the modulation of inhibitory transmission in the spinal substantia gelatinosa
(SG) in slices remains unknown. In the present study, pharmacological, electrophysiological and
genetic methods were used to show that presynaptic GIuR5 KARs are involved in the modulation
of inhibitory transmission in the SG of spinal slices in vitro. The GIuR5 selective agonist, ATPA,
facilitated the frequency but not amplitude of spontaneous inhibitory postsynaptic currents
(sIPSCs) in SG neurons. ATPA increased sIPSC frequency in all neurons with different firing
patterns as delayed, tonic, initial and single spike patterns. The frequency of either GABAergic or
glycinergic sIPSCs was significantly increased by ATPA. ATPA could also induce inward currents in
all SG neurons recorded. The frequency, but not amplitude, of action potential-independent
miniature IPSCs (mIPSCs) was also facilitated by ATPA in a concentration-dependent manner.
However, the effect of ATPA on the frequency of either sIPSCs or mIPSCs was abolished in GIuR5-
I~ mice. Deletion of the GIuR5 subunit gene had no effect on the frequency or amplitude of mIPSCs
in SG neurons. However, GIuR5 antagonist LY293558 reversibly inhibited sIPSC and mIPSC
frequencies in spinal SG neurons. Taken together, these results suggest that GIuR5 KARs, which
may be located at presynaptic terminals, contribute to the modulation of inhibitory transmission in
the SG. GluR5-containing KARs are thus important for spinal sensory transmission/modulation in
the spinal cord.

(NMDA), and kainate (KA) receptors. Compared with
AMPA and NMDA receptors, the functions and physiolog-

brain involves alpha-amino-3-hydroxy-5-methylisoxa-  ical roles of KA receptors (KARs) have been discovered

zole-4-propionic acid (AMPA), N-methyl-D-aspartate

recently with the discovery of selective pharmacological
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tools [1] and the use of KA receptor subunit knockout
mice [2,3]. KARs are composed of homomeric and heter-
omeric associations of five cloned subunits: GluR5-7, KA1
and KA2 [4]. Among KAR subunits, GluR5-7 homomers
are functional kainate gated ion channels [5,6]. KA1 and
KA2 form functional channels as heteromers [6,7].

KARs are present at both postsynaptic and presynaptic
locations [8-13]. Generally, postysynaptic KARs mediate a
small portion of excitatory synaptic transmission, whereas
the presynaptic KARs regulate either glutamatergic or
GABAergic transmission [11,13,14]. The modulation of y-
aminobutyric acid (GABA) release by presynaptic GIuR5
KARs has been well reported in the hippocampus and cor-
tex [2,15-22]. In the spinal dorsal horn, postsynaptic KARs
mediate excitatory synaptic responses by only high inten-
sity stimulation[14], while presynaptic KARs biphasically
regulate both the excitatory [23,24] and inhibitory trans-
mission [25,26]. The deletion of GIuR5 abolished KAR
function in cultured DRG neurons, whereas presynaptic
modulation of inhibitory transmission was preserved in
cultured dorsal horn neurons [26]. Thus, both GluR5 and
GluR6 may regulate presynaptic GABA and glycine release
in cultured spinal dorsal horn neurons. However, it is still
unknown whether similar modulation exists in the sub-
stantia gelatinosa (SG) of the intact spinal slices and
which KAR subunits are involved in the modulation in
inhibitory transmission in this region.

Superficial lamina of the spinal dorsal horn, particularly
the SG, receives nociceptive information from fine myeli-
nated As- and unmyelinated C-primary afferent fibers
[27,28]. The SG contains high densities of inhibitory
interneurons with glycine, GABA and their receptors [29].
Previous work showed that KARs expression was not par-
ticular obvious in the spinal cord, with the methods of in
situ hybridization [30] or immunocytochemistry [31].
However, several studies have provided persuasive evi-
dence for functional KARs in spinal neurons [14,24-26]. A
recent report showed that GluR5 is expressed in GABAer-
gic terminals in the superficial dorsal horn [32]. Also it
was suggested that functional presynaptic GluR5-contain-
ing KAR bidirectionally modulate the excitatory synaptic
transmission at C-fiber afferent synapses in the SG, while
GluR6-KARs inhibit glutamatergic synaptic transmission
at A3- and C-fiber afferent synapses in the SG [23]. How-
ever, it is still unclear about the functional modulation of
inhibitory synaptic transmission by KARs in the SG in spi-
nal cord slices. In the present study, we used a GluR5-
selective KAR agonist, antagonist and GIuR57/-to show that
GIuR5 KARs are involved in the modulation of inhibitory
transmission in the SG of spinal slices.

http://www.molecularpain.com/content/2/1/29

Methods

Animals

All adult C57BL/6 mice were purchased from Charles
River. GIuR5/- mice were gifts from Dr. Stephen Heine-
mann (Salk Institute, San Diego, CA)[2,3]. GIuR5/- mice
were maintained on a mixed 129Sv x C57BL/6 back-
ground and wild-type littermates were used as controls.
All mice were maintained on a 12 h light/dark cycle with
food and water provided ad libitum. All protocols used
were approved by the Animal Care and Use Committee at
the University of Toronto and conform to the NIH guide-
lines.

Histochemistry

For histological processing, we used a total of 3 wild-type
and 3 GluR57/-animals. All animals were anesthetized with
an overdose of sodium pentobarbital and perfused tran-
scardially with 20 ml of 0.1 M phosphate buffered saline
(PBS; pH = 7.4) followed by cold 4% paraformaldehyde
solution in PBS. Brains were then dissected out and cryo-
protected in a 30% sucrose solution until sunk down.
Brains were then included in embedding medium (Tissue-
Tek; Sakura Finetek, Torrance, CA), fast-frozen in dry-ice,
cut coronally on a cryostat (30 um) and thaw-mounted
on glass slides. Sections were then allowed to dry over-
night.

We used a standard Nissl staining protocol to evaluate
general anatomical features of both wild-type and GIuR5-
/-animals. Briefly, brain sections were first dehydrated in
a standard series of alcohols (50, 70, 95 and 100%; 2 mins
each). Next, tissue was re-hydrated by incubation in alco-
hol solutions of decreasing concentrations (100, 95, 70,
50%; 2 mins each) and placed in distilled water for 5
mins. This step was followed by incubation of sections in
a filtered solution containing 0.5% Cresyl violet in dis-
tilled water, where they remained for approximately 5
mins. Subsequently, sections were dehydrated in a series
of alcohols, defatted in xylenes and coverslipped.

Confocal imaging

In order to determine the morphology of neurons in the
SG of the dorsal horn, patch pipettes were filled with 0.1%
lucifer yellow. Loaded cells were imaged using a confocal
microscope (Olympus Fluoview FV1000) after the whole-
cell recording; composite images were obtained by stack-
ing optical sections into a single two-dimensional image.

Whole-cell patch clamp recordings in spinal cord slices

Young mice (postnatal 14-34 days) were anesthetized
with isoflurane. Transverse slices of the lumbar spinal
cord (300 pum) were prepared as described [33]. Briefly,
slices were incubated in a solution containing (mM):
NaCl 95, KCl 1.8, KH,PO, 1.2, CaCl, 0.5, MgSO, 7,
NaHCO, 26, glucose 15 and sucrose 50, and was oxygen-
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ated with 95% O,-5% CO,; pH7.4, osmolality 310-320
mOsm at 30°C for 20 mins, and then were shifted to the
solution above at room temperature (21-25°C) for 30
mins to recover. A single slice was transferred to a record-
ing chamber on the stage of a BX51W1 microscope
equipped with infrared DIC optics for patch clamp record-
ings with an Axon 200B amplifier (Axon Instruments,
CA), and continuously superfused with oxygenated
recording solution at 3 ml/min. The recording solution
was identical to the incubation solution except for (mM):
NaCl 127, CaCl, 2.4, MgSO, 1.3 and sucrose 0. Experi-
ments were conducted at room temperature.

Spinal lamina II could be identified as a translucent band
capping the dorsal part of the gray matter under the
microscope. The resting membrane potential was meas-
ured immediately after establishing the whole-cell config-
uration. Only neurons that had an apparent resting
membrane potential more negative than -50 mV were
investigated further. Depolarizing (20 - 160 pA in 20 pA
steps) current injections of 0.8 s duration were applied to
determine the firing pattern from resting membrane
potential. Recording electrodes (2-5 MQ) contained a
pipette solution composed of (in mM): K-gluconate 120,
NaCl 5, MgCl, 1, EGTA 0.5, Mg-ATP, 2, Na;GTP 0.1,
HEPES 10, pH 7.2, 280-300 mOsm. Cs-MeSO; was
replaced by K-gluconate when inhibitory postsynaptic
currents (IPSCs) were recorded. Spontaneous inhibitory
postsynaptic currents (sIPSCs) were recorded in the pres-
ence of NMDA receptor-antagonist AP5 (50 uM) at the
holding voltage of +10 mV. To study the relationship
between the responsiveness of theGluR5 selective KAR
agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-
4-yl) propanoic acid (ATPA) and firing patterns, sIPSCs
were recorded in the presence of AP5 (50 uM) and AMPA
receptor antagonist GYKI53655 (50 uM) at the holding
voltage of -70 mV and KCI was used as internal solution.
Inward currents were also recorded in the presence of AP5
(50 uM) and GYKI53655 (50 uM) at the holding voltage
of -70 mV. Access resistance was 15-35 MQ and was mon-
itored throughout the experiment. No correction for lig-
uid potential was made. Recorded currents were filtered at
1 kHz and digitized at 10 kHz.

Chemicals and drugs

All chemicals and drugs were obtained from Sigma (St.
Louis, MO), except for ATPA, and QX-314, which were
from Tocris Cookson (Ellisville, MO).

Data analysis

Results are expressed as means + SEM. Statistical compar-
isons were performed using the Student t-test or the paired
t test. y2 test was used to test the significance of in the pro-
portion of each type of neuronal firing patterns between
wild-type and GIuR57/- mice. Analysis of mIPSCs was per-
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formed with cumulative probability plots and was com-
pared using the Kolmogorov-Smirnov (K-S) test for
significant differences. The level of significance was set at
P <0.05.

Results

Spinal cord morphology in wild-type and GIuR5-- mice
We investigated whether the spinal cord of GluR57/- ani-
mals, especially the SG, exhibited any gross abnormalities
when compared to wild-type animals. Nissl stained sec-
tions of lumbar spinal cord of control and knock-out ani-
mals were used to study the gross and microscopic
anatomy. Examination revealed no obvious differences in
the gross anatomical organization of spinal cord between
GluR57/- and wild-type animals (Fig. 1).

Firing patterns of spinal SG neurons

Dorsal horn laminae I and II neurons can be classified
into five types according to their different firing patterns:
tonic firing, delayed-firing, single-spike, initial-bursting
and phasic-bursting neurons in rats [33]. Besides five fir-
ing patterns mentioned above, gap firing pattern was
observed in lamina II neurons in dorsal horn in mice [34].
To study the firing patterns of SG neurons in both wild-
type and GIuR57/- mice, we performed whole-cell patch
clamp recordings in visually identified wild-type (n = 43)
and GluR57/- (n = 17) SG neurons in lamina II of spinal
slices (Fig. 2A). Lucifer yellow (0.1%) was injected via the
recording pipette to show recording neurons in lamina II
(Fig. 2B). In wild-type mice, we found tonic firing (n =
19), delayed-firing (n = 16), single-spike (n = 4), initial-
bursting (n = 3) and phasic-bursting (n = 1) patterns
among 43 SG neurons (Fig. 2C). In GluR57/-mice, delayed-
firing (n = 9), tonic firing (n = 6), single-spike (n = 1) and
phasic-bursting (n = 1) patterns among 17 SG neurons
(Fig. 2C). Initial-bursting pattern was not identified in
GluR5/- mice. There was no difference between wild-type
or GluR57/-mice in the proportion of each type of neuro-
nal firing patterns in the total neurons recorded (P >
0.05). We also compared the membrane passive and
active properties of neurons from wild-type and GIluR57/-
mice. No significant difference was revealed between
wild-type and GluR5/- mice in membrane potential (-61.2
+1.0mV, n=43 versus-58.4 + 1.5 mV, n=17, P> 0.05),
membrane resistance (960.1 + 111.6 MQ, n = 21 versus
814.7 + 64.4 MQ, n = 13, P > 0.05), membrane capaci-
tance (35.1 £ 3.3 pF, n = 21 versus 45.9 + 3.8 pF, n = 13,
P>0.05), after hyperpolarization (AHP) depth (26.9 + 1.1
mV, n = 17 versus 22.5 + 2.4 mV, n = 13, P > 0.05) or
action potential threshold (-32 + 1 mV, n = 22 versus -29
+2mV,n=17,P>0.05 Table 1).
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Morphology of the spinal cord in wild-type and GIuR5-- mice. (A) Nissl-stained coronal sections through the spinal
cord of a representative wild-type (left) and GIuR5-- (right) mice. No obvious anatomical difference between these two strains
was detected. Scale bar: | mm. (B) Nissl-stained sections depicting the substantia gelatinosa of wild-type (left) and knock-out
(right) animals. No gross anatomical difference was detected when comparing both groups. Scale bar: 200 um.

Activation of GIuRS increases spontaneous inhibitory
transmission in SG neurons

Our previous work has shown the modulation of inhibi-
tory synaptic transmission by presynaptic GluR5 in cul-
tured spinal dorsal horn neurons [25,26]. To further
demonstrate that the activation of KARs can regulate
inhibitory transmission in the SG, we examined the effect
of the GIuR5 selective KAR agonist ATPA on sIPSCs in

vitro. Recordings were made in the presence of AP5 (50
puM) to block NMDA receptors at a holding potential of
+10 mV. Bath application of ATPA (3 uM) for 3 - 5 min
significantly increased the frequency of sIPSCs to 484.1 +
76.5% of control (n =9, P < 0.001; Figs. 3A and 3D) in
neurons tested from wild-type mice. However, the ampli-
tude of sIPSCs was not affected in the presence of ATPA
(101.8 + 8.0 % of control, n =9, P> 0.05) (Fig. 3E). In SG
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http://www.molecularpain.com/content/2/1/29

Delayed Phasic

e
P, NUVIP VU
Tonic Single spike
. ‘

TN "M_M*-]
e e
Initial 50 mV

200 ms
oy 100 pA
at - — OpA

Firing patterns in SG neurons in wild-type and GIuR5-- mice. (A) Diagram indicating the placement of recording elec-
trodes in spinal dorsal horn slices. (B) Confocal image of a SG neuron in a spinal slice loaded with 0.1% lucifer yellow. Scale bar:
8 uM. (C) Firing patterns of SG neurons in wild-type mice. When injected with current steps from -20 pA to +100 pA in 800
ms (right bottom), neurons were displaying delayed firing, tonic firing, initial bursting, phasic bursting, and single spike patterns.

neurons from GIuR57/-mice, there was no difference in the
frequency of sIPSCs compared with that of wide-type SG
neurons (GIuR57/-: 0.8 £ 0.1 Hz, n = 5; wide-type: 1.3 + 0.3
Hz, n =8, P> 0.05). ATPA (10 uM) had no effect on either
frequency (88.4 + 9.0%, n = 5) or amplitude (89.8 + 3.4%,
n = 5) of sIPSCs, (Fig. 3A and 3D). These results suggest
that ATPA significantly facilitated the inhibitory transmis-
sion in lamina II of the dorsal horn via the activation of
GluR5-containing KARs in SG neurons.

Table I: Passive and active properties of SG neurons

Wild-type GluR5--
RP (mV) 612+10(n=43)  -584%15(n=17)
Rm (MQ) 960.1 £ 111.6 (1=21) 8147 + 644 (n = 13)
Cm (pF) 35.0£33(n=21)  459%38(n=13)

AHP depth (mV)
AP threshold (mV)

269+ 1.1 (n=17)
32+ 1 (n=122)

225+24(n=13)
29+2(n=17)

RP: resting potential; Rm: membrane resistance; Cm: membrane
capacitance; AHP: afterhyperpolarization; AP: action potential

To investigate whether presynaptic GluR5 KARs are acti-
vated by endogenous glutamate, we examined the effect of
bath application of GluR5 antagonist, LY293558, on sIP-
SCs in spinal SG neurons. LY293558 (30 uM) reversibly
decreased sIPSCs frequency from 0.7 + 0.1 Hz to 0.5 + 0.1
Hz (n =9, P < 0.05, Fig. 3B). This indicates that endog-
enous glutamate tonically modulates the activity of
nearby inhibitory synapses via GluR5 containing KARs.

Both GABAergic and glycinergic release were enhanced by
GIuRS activation in SG neurons

Both GABAergic and glycinergic inhibitory transmissions
are present in the spinal cord. Glycine and GABA are co-
packaged in and co-released from interneurons in the spi-
nal cord [35-38]. We next tested whether ATPA has selec-
tive effects on glycinergic and/or GABAergic sIPSCs.
Bicuculline (10 pM) was bath applied to distinguish gly-
cinergic component of sIPSCs, and strychnine (0.5 uM)
was bath applied to separate the GABAergic component of
sIPSCs [25]. We found that ATPA (3 uM) significantly
increased the frequency of both glycinergic sIPSCs from
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Figure 3

Effect of the GIuR5 agonist ATPA on sIPSCs in SG neurons. (A) Facilitatory effect of ATPA (3 uM) on sIPSCs in one
SG neuron from wild-type mouse (left panel). Effect of ATPA (10 uM) on sIPSCs (top right trace) in one SG neuron from
GluR5-- mouse (right panel). (B) Inhibitory effect of GIuR5 antagonist LY293558 (30 M) on sIPSCs in one SG neuron from
wild-type mouse (n = 9). * P < 0.05. (C) Effect of ATPA (3 uM) on GABAergic sIPSCs in the presence of strychnine (0.5 uM)
(top trace) and glycinergic sIPSCs in the presence of bicuculline (10 uM) (bottom trace). (D) Pooled data of the effect of ATPA
on sIPSC frequency from wild-type (n = 9) and GIuR5-- (n = 5) neurons. ** P < 0.00] compared with the control value. (E)

Pooled data of the effect of ATPA on sIPSC amplitude from wild-type (n = 9) and GIuR5-- (n = 5) neurons.
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0.9+0.3Hzto6.1+1.6 Hz (n=7,<0.05), and the fre-
quency of GABAergic sIPSCs from 0.4 + 0.1 Hzt0 3.7 + 0.5
Hz (n = 11, p < 0.05; Fig. 3C and 3D) in neurons tested
from wild-type mice.

Effect of ATPA on sIPSCs and firing patterns of spinal SG
neurons

To study the relationship between firing patterns and
ATPA responsiveness in spinal SG neurons, inward sIPSCs
were recorded in the presence of AP5 (50 uM) and
GYKI53655 (50 uM) with KCl based internal solution at
the holding voltage of -70 mV. ATPA (3 uM) increased
sIPSC frequency in all neurons with different firing pat-
terns as delayed, tonic, initial and single spike patterns.
The percentages of ATPA's effect in neurons with two com-
mon patterns (delayed and tonic patterns) were com-
pared. There were no significant difference between
ATPA's responsiveness in neurons with these two firing
patterns (218.3 + 37.8%, n = 7 versus 182.7 + 22.6%, n =
4, P> 0.05, Fig. 4).

Since most SG neurons are believed to be local interneu-
rons [29], we wanted to know whether ATPA could induce
current which may underlie the modulation of inhibitory
neurotransmission. In the presence of AP5 (50 uM),
strychnine (0.5 uM) and bicuculline (10 uM), inward cur-
rents could be observed in all SG neurons recorded during
the application of ATPA (3 uM) (47.1 + 14.5 pA, n = 5).
The result suggests that GluR5-containing KARs exist in
somatodenderitic sites in spinal SG.

Activation of presynaptic GIuRS increases the frequency of
mlIPSCs in SG neurons

To further analyze the mechanism by which KARs modu-
late the inhibitory transmission in SG neurons, we exam-
ined the effect of ATPA on miniature IPSCs (mIPSCs).
Recordings were made in the presence of TTX (0.5 uM)
and AP5 (50 uM) at a holding potential of +10 mV. ATPA
(3 uM) increased the frequency of mIPSCs from 1.2 + 0.5
Hzt0 2.1 + 0.6 Hz (241.9 + 40.2%, n = 9, P < 0.05, Fig. 5)
in neurons tested from wild-type mice. Moreover, ATPA
(0.3 - 10 uM) increased the frequency of mIPSCs in a con-
centration-dependent manner (Fig. 5D). However, there
was no effect of ATPA on the amplitude of mIPSCs (16.2
+ 1.7 pAversus 16.1 + 1.7 pA, n =9, P> 0.05, Fig. 5F). In
GIuR5-/- mice, the frequency of mIPSCs in the presence of
ATPA (10 pM) was 98.4 + 3.3% of the control (n=5, P >
0.05, Fig. 5C-E). The amplitude of mIPSCs in the absence
and presence of ATPA (10 uM) was 28.3 + 5.3 pA and 27.3
+55pA (n=5,P>0.05, Fig. 5E).

We further examined the effect of LY293558 on mIPSCs in
spinal SG neurons. LY293558 (30 uM) reversibly
decreased sIPSCs frequency from 0.5 + 0.1 Hz t0 0.4 + 0.1
Hz (n = 5, P < 0.05, Fig. 5F). This indicates that endog-
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enous glutamate tonically modulates the activity of
nearby inhibitory synapses via presynaptic GluR5 con-
taining KARs.

No difference in mIPSC frequency and amplitude in SG
neurons between wild-type and GIuR5-- mice

As the activation of GluRS5 facilitated presynaptic GABA/
Glycine release, it is conceivable that the knockout of
GluR5 may affect inhibitory synaptic transmission. To test
this possibility, we compared mIPSCs between wild-type
and GIuR5-/- mice. Surprisingly, our results showed that
there was no difference in the frequency, amplitude and
kinetics of mIPSCs. The frequency of mIPSCs in SG neu-
rons from wild-type and GluR5/-was 1.2 + 0.3 Hz (n=17)
and 0.9 + 0.5 Hz (n = 8, P > 0.05) respectively. The ampli-
tude of mIPSCs in wild-type and GIuR57/-were 18.5 + 1.6
PA (n =17) and 22.1 + 4.5 pA (n = 8, P > 0.05) respec-
tively. Both the frequency and amplitude of mIPSCs were
not significantly different compared with those of wild-
type mice (Fig. 6A and 6B). In wild-type and GluR57/- mice,
the 37-90% rise time of GABAergic mIPSCs were 3.3 + 1.0
ms (n = 14) and 3.7 + 0.9 ms (n = 8), the 90-37% decay
time of GABAergic mIPSCs were 33.8 + 5.0 ms (n = 14)
and 48.4 + 6.5 ms (n = 8); glycinergic mIPSCs were 2.3 +
0.4 ms (n = 14) and 1.3 + 0.3 ms (n = 8), the 90-37%
decay time of glycinergic mIPSCs were 10.0 + 0.8 ms (n =
14) and 10.2 + 1.0 ms (n = 8). There were also no differ-
ences in the rise time and decay time constants of mIPSCs
between wild-type and GIuR5--mice (P> 0.05, Fig. 6C and
6D). These results indicated that genetic deletion of
GluR5 KARs might have no effect on the basal synaptic
transmission in SG neurons.

Discussion

Presynaptic KARs regulate GABA/glycine release in spinal
dorsal horn culture [25,39]. However, it is unknown
whether the similar modulation occurs in spinal cord
slices. We focused here on the GluR5 modulation of
inhibitory transmission in spinal cord lamina II, a region
rich in interneurons and primary afferents [29]. Activation
of presynaptic GluR5 by ATPA facilitates action potential-
dependent and independent GABA/glycine release. GIuR5
/~-mice showed normal spinal cord morphology and cellu-
lar firing properties of SG neurons as compared to wild-
type mice. However, the modulation of inhibitory synap-
tic transmission by ATPA was abolished in GIuR5-/-. Fur-
thermore, GluR5 antagonist LY293558 inhibited both
sIPSC and mIPSC frequencies in spinal SG neurons.

Mechanism for GIuR5 modulation of inhibitory
transmission in SG neurons

Regulation of GABA release by KARs has been intensively
studied in recent years [11,13]. The mechanisms for this
modulation, however, remain controversial. For example,
different research groups have reported that KAR activa-
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Figure 4

Effect of ATPA on sIPSCs in SG neurons with different firing patterns. (A) A typical trace showing the facilitatory
effect of ATPA (3 uM) on one SG neuron with delayed firing patterns (upper trace); a typical trace showing the facilitatory
effect of ATPA on one SG neuron with delayed firing patterns (bottom trace). (B) Pooled data of the effect of ATPA on sIPSC
frequency in neurons with between delayed (n = 7) and tonic (n = 4) firing patterns.
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No difference in mIPSCs in SG neurons from wild-type and GIuR5-- mice. (A) Typical traces of mIPSCs in SG neu-
rons. (B) Pooled data of mIPSC frequency (left) and amplitude (right) in SG neurons. (C) Typical traces of GABAergic and gly-
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tion can be inhibitory, facilitatory, or have no effect on
mIPSC frequency [2,20,40,41]. These conflicting results
likely reside in the fact that they were obtained using dif-
ferent preparations, dissimilar types of synapse and differ-
ent pharmacological agent concentrations. However, the
enhancement of sIPSC frequency by kainate or ATPA was
reported in most studies, suggesting that activation of
KARs could fire interneurons and thereby facilitating
action potential-dependent inhibitory transmission
[2,40,41].

Based on our previous work [25,26], we studied the mod-
ulation of GluR5 on inhibitory synaptic transmission in
the SG region of slices. The expression of GluR5 in the
dorsal horn is still a matter of debate. While one study
reported a large number of primary afferents expressing
GluR5-7 in the dorsal horn [42], another study showed
low levels of GIuR5 expression [43]. Another recent report
showed a low level of co-localization between GIluR5 and
GADG5-immunopositive terminals in the adult rat [32].
We found that the activation of GluR5 by ATPA increased
the frequency of sIPSCs in all SG neurons tested. How-
ever, the amplitude of sIPSCs was not altered by ATPA.
Furthermore, ATPA increased the frequency but not
amplitude of mIPSCs. These results indicate that: (1)
ATPA activation increased both action potential-depend-
ent and independent inhibitory synaptic transmission in
the SG region. In favor of this notion, we also noticed that
the effect of ATPA on the frequency of sIPSCs was more
than that of mIPSCs. Furthermore, ATPA could also
induce inward currents in spinal SG neurons, which indi-
cates that GluR5 KARs are located at somatodendrtic sites
in SG in spinal cord. (2) The increase of mIPSC frequency
indicates a change in the probability of inhibitory neuro-
transmitter release by activation of presynaptic terminals.
However, more work is needed to address whether volt-
age-dependent calcium channels are involved in this
modulation, similar to what is reported in cultured dorsal
horn neurons.

Modulation of both GABAergic and glycinergic inhibitory
transmission by GIuR5

Both GABA and glycine mediate inhibitory transmission
in the dorsal horn. Moreover, they both exist in and are
co-released from the same synaptic vesicles in dorsal horn
interneurons [35-38]. Therefore, the co-localization of
GABA and GIuR5 may also reflect, to some extent, the co-
localization of glycine and GluR5. Consistently, we found
that ATPA markedly increased the frequency of sIPSCs in
all SG neurons tested in the presence of bicuculline or
strychnine, suggesting that the activation of GIuR5 facili-
tates both GABAergic and glycinergic transmission in the
SG.

http://www.molecularpain.com/content/2/1/29

Tonic activation of GIuR5 KARs modulate inhibitory
synaptic transmission in SG neurons

Previous studies have shown that endogenous activation
of presynaptic GluR5 KARs in interneurons modulate the
inhibitory transmission in hippocampus, basolateral
amygdala and spinal cord [25,41,44]. Therefore, we
wanted to know whether tonic activation of presynaptic
GluR5 KARs modulates inhibitory synaptic transmission
in SG neurons in the spinal cord. To address this question,
we tested the effect of GluR5 antagonist, LY293558 on
inhibitory synaptic transmission. Our results showed that
LY 293558 could decrease the frequency of both sIPSCs
and mIPSCs. The result suggests the tonic activation of
GluRS5 in the spinal SG. However, when compared the fre-
quency and amplitude of mIPSCs in SG neurons between
wild-type and GIuR57/- mice, we found that the frequency
and amplitude of mIPSCs were not significantly different
from each other. The results from pharmacological data
and from GIuR5-- mice, therefore, seem different. The dis-
crepancy may be due to developmental compensation in
basal inhibitory synaptic transmission in the knockout
mice. Further studies are needed to elucidate this ques-
tion.

Pathophysiological role for the modulation of GABA and
glycine release by GIuR5

KARs were suggested to be involved in pathophysiological
functions such as epilepsy, fear memory and chronic pain
[45-48]. Our previous results in dorsal horn slices found
that the KAR-mediated current can only be elicited upon
the stimulation of the afferent axon at an intensity strong
enough to activate high threshold A8 and C fibers, sug-
gesting the critical role of spinal dorsal horn KARs in noci-
ception[14]. Behavioral studies using pharmacological
and genetic tools show the involvement of KARs, in par-
ticular GIuRS5, in both acute nociception and chronic pain
[46,49-51]. Considering the wide expression of functional
KARs from the DRG, the spinal cord and supraspinal
structures such as the anterior cingulate cortex [52,53], the
exact functional sites for KARs are largely unknown.

Our results demonstrate that presynaptic GluR5 in lamina
IT of the spinal dorsal horn plays a significant role in the
regulation GABA and glycine release. Regulation of inhib-
itory transmission in the dorsal horn is essential for noci-
ceptive processing and other sensory transmission
[54,55]. Since activation of presynaptic GluR5 in the SG
decreased the postsynaptic interneuronal excitability, the
net effect may cause an increase in excitability, thereby
enhancing the nociceptive transmission. Therefore, the
blockade of GIuRS5 at the spinal level would have an anal-
gesic effect. Accordingly, intrathecal injection of a selec-
tive GluR5 antagonist reduced nociceptive responses to
CFA inflammation and GluR5 expression was increased in
the spinal cords of CFA treated animals [50]. Moreover,
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GluR5-/- mice showed reduced behavioral responses to
inflammatory pain compared to wild-type mice [46].
Taken together with previous results, the present study
suggests that spinal GluR5 may play an important role in
pathological pain.
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