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Abstract

Background: We have proposed that nerve injury-specific loss of spinal tonic cholinergic
inhibition may play a role in the analgesic effects of nicotinic acetylcholine receptor (nAChR)
agonists on neuropathic pain. However, the tonic cholinergic inhibition of pain remains to be well
characterized.

Results: Here, we show that choline acetyltransferase (ChAT) signals were localized not only in
outer dorsal horn fibers (lamina I-lll) and motor neurons in the spinal cord, but also in the vast
majority of neurons in the dorsal root ganglion (DRG). When mice were treated with an antisense
oligodeoxynucleotide (AS-ODN) against ChAT, which decreased ChAT signals in the dorsal horn
and DRG, but not in motor neurons, they showed a significant decrease in nociceptive thresholds
in paw pressure and thermal paw withdrawal tests. Furthermore, in a novel electrical stimulation-
induced paw withdrawal (EPWV) test, the thresholds for stimulation through C-, A5- and AB-fibers
were all decreased by AS-ODN-pretreatments. The administration of nicotine (10 nmol i.t.)
induced a recovery of the nociceptive thresholds, decreased by the AS-ODN, in the mechanical,
thermal and EPW tests. However, nicotine had no effects in control mice or treated with a
mismatch scramble (MS)-ODN in all of these nociception tests.

Conclusion: These findings suggest that primary afferent cholinergic neurons produce tonic
inhibition of spinal pain through nAChR activation, and that intrathecal administration of nicotine
rescues the loss of tonic cholinergic inhibition.

Background

A potential analgesic effect of nicotine was claimed as
early as the 1930s [1]. Since then, many researchers have
demonstrated analgesic effects of nicotine and nicotinic
acetylcholine receptor (nAChR) agonists such as epibati-
dine and ABT-594 [2,3]. Marubio et al. [4] also reported
that the alpha4 nAChR subunit is crucial for nicotine-elic-
ited analgesia. Nicotinic agonists are effective by systemic

and intracerebroventricular administration [3,5-7], and
intrathecal administration [7-10]. Recently, we demon-
strated that these nicotinic agonists induced potent anal-
gesia in mice with neuropathic pain using doses 5 or 10
times lower than those required in naive mice [11]. Fur-
ther pharmacological and electrophysiological findings
suggest that this neuropathic pain-specific analgesia is
related to a loss of tonic nicotinic stimulation to inhibi-
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tory GABAergic and glycinergic interneurons [11,12], in
accordance with previous reports that nAChR agonists
enhanced inhibitory GABAergic and glycinergic activities
in the dorsal horn of the spinal cord [13-15].

However, little is known of the presence of acetylcholine
(ACh) neurons in the spinal dorsal horn. There have been
reports that dorsal root ganglion (DRG) neurons express
several marker molecules for cholinergic neurons, includ-
ing cholinergic vesicular acetylcholine transporter
(VAChT) and choline acetyltransferase (ChAT) [16-18]. In
addition, there ACh release from embryonic DRG
explants has been shown [19]. On the other hand, there
are many reports that neural injury reduces the biosynthe-
sis of ACh in terms of ChAT expression, ChAT activity,
ACh content and choline uptake [20-24]. Thus, it is inter-
esting to speculate that primary afferent cholinergic neu-
rons are responsible for the tonic inhibition of spinal
pain.

In the present study we attempted to clarify the role of pri-
mary afferent neurons in this tonic inhibition and to
reproduce nicotinic analgesia with low doses by down-
regulation of ChAT activity, based on this speculation.

Results

ChAT expression in the spinal cord and DRG

Using ChAT-specific rabbit antiserum [25,26], we per-
formed immunohistochemical analysis of L4-5 spinal
cords and DRG sections. Intense ChAT immunoreactivity
was observed in the lamina IX regions of the ventral horn
and the lamina X regions encircling the central canal, and
modest activity was seen in fiber-like structures in the lam-
ina I-III regions of the dorsal horn (Fig. 1A). Very few
ChAT-positive cell bodies were observed in dorsal lami-
nae I-III (Fig. 1A). From double-staining experiments
using anti-NeuN and anti-ChAT antibodies, it was
revealed that most immunoreactivities in the dorsal horn
originated from fibers (Fig. 1B), while those in the ventral
horn originated from large motor neurons (Fig. 1C). On
the other hand, most cells in the DRG, from small to large,
were ChAT-positive (Fig. 1D). All IB4-positive cells, indi-
cated as unmyelinated C-fiber neurons, and N52-positive
myelinated A-fiber neurons, in the DRG, were also ChAT-
positive (Figs. 1E, 1F). No ChAT-activity was observed
without ChAT antiserum (data not shown). Quite similar
cytochemical results were also observed using a commer-
cially available antibody from a different source (goat
anti-ChAT polyclonal antibody, AB144P, Chemicon, CA)
(see additional file 1A, B). Western blotting revealed only
one 68-kDa immunoreactive band in protein lysates of
DRGs, spinal dorsal horn and spinal ventral horn (Fig.
1G, and additional file 1C), indicating the high specificity
of the rabbit antiserum and goat polyclonal antibody.
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Knock-down of ChAT in the DRG and spinal dorsal horn
Mice were intrathecally treated with an antisense oligode-
oxynucleotide (AS-ODN) to ChAT or the corresponding
mismatch scrambled (MS)-ODN on the 1st, 3rd and 5th
days of the experiment, and perfused transcardially with
4% PFA solution on the 6th day. DRGs and spinal cord at
the L4-5 level were then isolated. As shown in Figs. 2A and
2B, ChAT-positive immunoreactivities in most cells were
reduced by AS-ODN treatments, but not by MS-ODN
treatments. Fiber-like immunoreactivities in the dorsal
horn were reduced by AS-ODN, but not by MS-ODN, but
the immunoreactivities in motor neurons were not
affected (Fig. 2C). In order to quantify the change in the
intensity of ChAT-immunoreactivity in the dorsal horn
lamina I-III, we evaluated the intensities in the gracile fas-
ciculus regions of white matter (as a background), the
lamina I-III layer and motor neurons in the ventral horn
(Fig. 2D). As shown in Figs. 2E and 2F, either ChAT-
immunoreactivities in laminae I-III or the ratio of the
level in the lamina I-III layer to that in motor neurons was
significantly reduced by the AS-ODN, but not by the MS-
ODN. However, there was no reduction in ChAT level in
the ventral motor neurons due to the AS-ODN (data not
shown).

Reduced nociceptive thresholds by ChAT-knock down
Nociception tests were performed on the 6th day after the
start of pretreatments with AS-ODN or MS-ODN. In the
paw pressure mechanical test and the thermal paw with-
drawal test, the average + S.E.M. vehicle control thresh-
olds were 10.21 + 0.29 g (n = 6) and 9.36 + 0.30 s (n = 6),
respectively. AS-ODN pretreatment significantly reduced
these thresholds, while MS-ODN pretreatment did not, as
shown in Fig. 3A and 3B.

We recently established an electrical stimulation-induced
paw withdrawal (EPW) test, which distinguishes between
responses mediated by different sensory fibers [27]. In
this novel nociception test, the foot of the hind limb was
given transcutaneous nerve stimuli with sine-wave pulses
of different frequencies of 5, 250 or 2000 Hz, to activate
C-, A3- or AB-fibers, respectively [28,29], and the intensity
(nA) inducing a withdrawal reflex was defined as the
threshold. The average + S.E.M. vehicle control thresholds
for 5, 250 and 2000 Hz stimuli were 138.0 + 5.3, 237.0 +
6.7 and 541.0 + 9.8 pA, respectively. AS-ODN pretreat-
ments significantly reduced the thresholds at all three fre-
quencies of stimuli to a similar degree, as shown in Fig. 3C
(5 Hz, 87.2 + 6.9 pA; 250 Hz, 162.7 + 9.0 pA; 2000 Hz,
418.2 + 10.4 pA). However, MS-ODN pretreatments
induced no change at all.

Page 2 of 11

(page number not for citation purposes)



Molecular Pain 2007, 3:41 http://www.molecularpain.com/content/3/1/41

A Spinal cord D DRG G Western blot
= 3 k)
A1 T % ‘ DRG DH VH
W B Sl
o \ S > ‘.“ s
Loy : \ ﬁ‘ a Ly
a8 X i W | @J S A
e / ?‘:Q A
g . p—— T ol
y’ ChAT | - i
A-2 P o | : b 68kDa F—- -
el o A o ” 4 " | _
b o |4 A
: 3Tubuli
"ssida ]
|8 —— R —

E DRG

B Spinal dorsal horn

C Spinal ventral horn

Figure |

Choline acetyltransferase (ChAT) immunoreactivities in the spinal cord and DRG. (A) ChAT-immunoreactivities in fiber-like structures of
lamina |-l regions of the dorsal horn, lamina X and in discrete lamina IX regions of ventral horn. Representative picture of fiber-like
structures; discrete lamina IX regions are marked in the figure (A-1). (A-2) Many fiber-like structures (inset in a) were observed, in con-
trast to the very few ChAT-positive cell bodies (inset in b) observed, in dorsal laminae I-Ill. Representative picture of the intense ChAT
signals found in the motor neurons of the lamina IX region (A-3). (B, C) Double-immunostaining for ChAT (green) and the neuronal
marker NeuN (red) in the lamina Il region (B), and in the lamina IX region (C). Note that ChAT-signals in the lamina I-lll region (B) are
not observed in neuronal cell bodies labeled by anti-NeuN IgG, while those in the lamina IX region (C) are always labeled by this IgG. (D)
Representative picture of ChAT-immunoreactivities in the DRG. ChAT signals were found in most cells across the size spectrum (inset in
a). (E) Double-immunostaining for ChAT (red) and the unmyelinated C-fiber marker IB4 (green) in the DRG. (F) Double-immunostaining
for ChAT (red) and the myelinated A-fiber marker N52 (green). Scale bar = 20 um for (B, C), and 50 um for (A-2a, A-2b, A-3, D, E, F).
(G) Western blot analysis using rabbit antiserum showing one 68-kDa immunoreactive band for ChAT. The 55-kDa immunoreactive band
for B-tubulin is also indicated at the bottom. DH: spinal dorsal horn and VH: spinal ventral horn.

an analgesic effect against the hyperalgesia in animals
with neuropathic pain, without any side effects [11]. In a

Nicotine rescues the reduced nociceptive thresholds by
ChAT knock-down

In naive mice, 30 nmol of nicotine (i.t.) produced an anal-
gesic effect in a thermal nociception test, but 10 or 20
nmol of nicotine did not (Figs. 4A, 4B). However, as mice
given 30 nmol of nicotine showed side effects including
hypolocomotion and nocifensive behavior (data not
shown), this analgesic effect might be artifactual. In this
study, we chose 10 nmol of nicotine (i.t.), which showed

paw pressure test using vehicle-treated mice, i.t. injection
of nicotine had no effect on the nociceptive threshold
throughout experiments, for 60 min (Fig. 4C). As men-
tioned above, AS-ODN pretreatment significantly reduced
the threshold for thermal nociception on the 6th day after
the start of treatments (Fig. 4C). Nicotine administration
completely reversed this reduction in nociceptive thresh-
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Figure 2

ChAT knock-down using an antisense oligodeoxynucleotide (AS-ODN) against ChAT, and decreased expression of ChAT in the DRG
and spinal cord. (A, B) Down-regulation of ChAT activities by the AS-ODN in a DRG cross-section. Representative immunohistochemis-
try (A) and scatter diagram of ChAT activities (B) showing down-regulation of ChAT protein by the AS-ODN, but not by the MS-ODN.
Immunoreactivity (B) was measured as an arbitrary value by automatic fluorescence microscopy using BZ Image Measurement software
(Bio-Zero, Keyence, Tokyo, Japan). The evidence for down-regulation was reproduced in another experiment. (C) Representative pic-
tures of ChAT-immunohistochemistry in the spinal cord treated with AS-ODN or MS-ODN. (D) Schematic diagram showing the region
of interest. (E) Down-regulation of ChAT immunoreactivity by AS-ODN in laminae I-Il of the dorsal horn. Each data point (average from
8 sections) was calculated by the formula [(signal/area in lamina |-lll) - (signal/area in gracile fasciculus regions of white matter)]. Results
represent the means + S.E.M. from 3 separate mice. *p < 0.05 vs. vehicle. (F) Selective down-regulation of ChAT immunoreactivity by the
AS-ODN in laminae |-l of the dorsal horn. Each point of data (average from 8 sections) was calculated by the formula [(signal/area in
lamina I-1l) - (signal/area in gracile fasciculus regions of white matter)]/[(signal/area in motor neurons) - (signal/area in white matter)].
Veh: vehicle, AS: AS-ODN and MS: MS-ODN. Results represent the means + S.E.M. from 3 separate mice. *:p < 0.05 vs. vehicle. Scale bar

= 50 pum for (A).
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Reduction in the nociceptive threshold in various tests following pretreatment with an AS-ODN against ChAT. The threshold represents
the weight (paw withdrawal threshold: PWT, in g) required to induce withdrawal behavior in the paw pressure test (A), latency (paw
withdrawal latency: PWL, in s) in the thermal paw withdrawal test (B) and minimum intensity (1A) in the EPW test using 5, 250 and 2000
Hz electrical stimuli. Tests of nociception were performed on the 6th day after the start of pretreatments with vehicle (Veh), AS-ODN
(AS) or MS-ODN (MS). *p < 0.05 vs. vehicle. Data represent the means * S.E.M. from experiments using at least 6 mice.

old induced by AS-ODN-pretreatments, at the 10 min
time point. The nicotine analgesia lasted for approxi-
mately 60 min, and quantitative analysis using area under
the curve (AUC) analysis also showed similar results (Fig.
4D). However, neither hyperalgesia nor nicotine analge-
sia was observed in MS-ODN-pretreated mice (Fig. 4C,
4D). Similar results were also observed in the thermal
pain test (Figs. 4E, 4F). Furthermore, nicotine-induced
analgesia was also observed specifically in AS-ODN-pre-
treated mice, which showed reduced thresholds for nocic-
eption of 5, 250 or 2000 Hz stimuli (Fig. 5).

Discussion

We found a number of fiber-like ChAT signals in the spi-
nal dorsal horn, consistent with previous studies [30,31].
As these fiber-like signals were characteristically localized
in the lamina I-III layers, it is suggested that such signals
are principally derived from primary afferent fibers. This
view is supported by the present study, showing that an
AS-ODN against ChAT caused selective down-regulation
of ChAT protein in both the DRG and the spinal dorsal
horn, but not in motor neurons in the spinal ventral horn.
Regarding this issue, we have observed that an intrathe-
cally administered FITC-labeled AS-ODN is more effi-
ciently distributed to the DRG than to the spinal cord, 30

min after administration [32]. This phenomenon may be
explained on the possibility that acidic, large molecules
are preferentially transported to the DRG, rather than the
spinal cord. The present data demonstrate that AS-ODN
pretreatment caused selective down-regulation of DRG-
originating ChAT protein in the dorsal horn. The lack of a
reduction of ChAT signals in the ventral horn can be
explained by a lower permeability of the AS-ODN into the
spinal cord.

ChAT signals were found in most cells in the DRG, includ-
ing the IB4-positive unmyelinated and N52-positive mye-
linated neurons. Quite similar cytochemical results were
also observed using a commercially available antibody
from a different source (goat anti-ChAT polyclonal anti-
body; additional file 1). These data suggest that ChAT
immunoreactivities in the spinal dorsal horn are derived
from the fibers of myelinated and unmyelinated types of
primary afferent cholinergic neurons. However, previous
studies detected ChAT signals predominantly in small-
diameter neurons of the rat DRG [16,17]. In addition, Bel-
lier and Kimura [16] demonstrated that the small size of
ChAT splice variant (55 kDa; pChAT) was only observed
in the rat DRG. However, they failed to detect the large
size of ChAT splice variant (68 kDa; cChAT). Our present
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Figure 4

Specific analgesic effects of nicotine in ChAT AS-ODN-pretreated mice in paw pressure and thermal paw withdrawal tests. (A, B) Ther-
mal paw withdrawal test in naive mice. Time-course of paw withdrawal latency (s) after nicotine (10 nmol, 20 nmol and 30 nmol i.t.) injec-
tion (A). Comparison of analgesia (in AUC) following nicotine injection (B). (C, D) Paw pressure test. Time-course of paw withdrawal
threshold (g) after nicotine (10 nmol i.t.) injection (C). Comparison of analgesia (in AUC) following nicotine injection (D). (C, D) Thermal
paw withdrawal test. Time-course of paw withdrawal latency (s) after nicotine (10 nmol i.t.) injection (E). Comparison of analgesia (in
AUC) following nicotine injection (F). *p < 0.05 vs. vehicle. Data represent the means + S.E.M. from experiments using at least 6 mice.

Page 6 of 11

(page number not for citation purposes)



Molecular Pain 2007, 3:41

5Hz (C-fiber)

2001
< 1507 -+ A
E £
S 1007
- {+}
£ 501
=
0""C CSFNic C CSFNic C CSF Nic
Veh AS MS
- 250Hz (As-fiber)
. ] .
< 2004 ule N
= *
T 150-
2
2 100
= 50
C CSFNic C CSFNic C CSF Nic
Veh AS MS
2000Hz (Ap-fiber)
600 -

Threshold (uA)

s00 [ | [ . S M
400- ]
300
200
100
0

C CSF Nic C CSFNic C CSF Nic
Veh AS MS

Figure 5

Specific analgesic effects of nicotine in ChAT AS-ODN-pretreated
mice in the EPW test. The EPWV test was performed 10 min after
nicotine injection. Veh: vehicle, AS: AS-ODN, MS: MS-ODN, C:
control, CSF: aCSF and Nic: nicotine. *p < 0.05 vs. vehicle. #p <
0.05 vs. aCSF. Data represent the means * S.E.M. from experi-
ments using at least 6 mice.

study shows that small- and large-diameter DRG neurons
in mice are ChAT positive. Western blot studies revealed
that cChAT alone was detected in the mouse DRG with the
ChAT-antiserum and with anti-ChAT antibody (AB144P,
Chemicon, CA). Therefore the discrepancy in ChAT
expression between the study by Bellier and Kimura and
ours may be attributed to a species difference (rats vs.

http://www.molecularpain.com/content/3/1/41

mice). Because the two antibodies used in our study do
not detect pChAT, we cannot evaluate the DRG distribu-
tion of the pChAT variant. However, as we designed the
AS-ODN against ChAT in a region common to both
cChAT and pChAT (the region flanking the start codon
ATG), it is expected to also down-regulate pChAT if
present.

It is important to discuss the physiological role of primary
afferent cholinergic innervation in terms of pain transmis-
sion. Previous studies have demonstrated the presence of
cholinergic markers in the DRG [16-18], but the physio-
logical role of ACh in these neurons remains to be deter-
mined. The present study firstly demonstrated the
evidence for an inhibitory role for cholinergic primary
afferents in spinal pain mechanisms. Pretreatments with a
ChAT AS-ODN, which reduced the ChAT protein level in
DRG neurons and in the terminal region of the spinal dor-
sal horn, led to significant decreases in the thresholds for
mechanical and thermal nociception. These data are con-
sistent with our previous data showing that intrathecal
treatments with nAChR antagonists (mecamylamine)
produce a reduction in the thresholds for mechanical and
thermal nociception [12].

We have proposed that neuropathic pain-specific nico-
tine-induced analgesia is mediated by inhibitory GABA
interneurons based on the findings that intrathecal treat-
ment with a GABA receptor antagonist (picrotoxin) also
produced a reduction in nociceptive thresholds, and the
analgesic effect of nicotine was abolished by pretreatment
with the GABA receptor antagonists bicuculline and picro-
toxin [11]. The presence of tonic nAChR activation of
inhibitory GABA interneurons is supported by many
reports that nAChR agonists enhance inhibitory postsyn-
aptic currents (IPSCs), possibly through GABAergic or gly-
cinergic activities in the dorsal horn of the spinal cord [12-
15,33]. Thus, the nicotine-induced analgesic effects in AS-
ODN treated mice are likely to be attributed to the loss of
tonic nAChR activation of inhibitory GABA interneurons.
In other words, pain-inhibitory GABA interneurons are
maximally or submaximally activated by tonic nicotinic
stimulation. Alternatively, the nicotine-induced analgesia
observed in the present study may be explained by super-
sensitivity of nAChR due to down-regulation of choliner-
gic activities by ChAT AS-ODN. However, the details of
this possibility remain to be determined.

In this study, we attempted to examine the thresholds to
stimuli through three different types of sensory fiber using
the EPW test in control and ChAT AS-ODN-treated mice.
As previously reported [34,35], the nociception of stimuli
of different frequencies, specifically 5, 250 and 2000 Hz,
was characterized to be through C, A8 and Ap-fibers,
respectively. In the present study, ChAT AS-ODN-pretreat-
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ments decreased the thresholds to stimuli through all C-,
A8- and AB-type fibers. These findings are consistent with
the immunohistochemical data in the DRG: extensive dis-
tribution of ChAT protein was observed in most DRG
neurons, including unmyelinated C- and myelinated A-
fiber neurons. As it has been observed that ACh is released
from DRG explants [19], we propose that primary afferent
cholinergic innervation may inhibit all three types of sen-
sory input through inhibitory GABA neurons, as illus-
trated in Fig. 6.

We have reported that nicotine shows potent analgesic
effects, specifically in mice with sciatic nerve injury using
doses at which these compounds had no effects in naive
mice [11]. To explain this result, we proposed that intrath-
ecally administered nicotine rescues the loss of tonic
cholinergic inhibition through GABA interneurons in
neuropathic pain. The present experiments, which
attempted to reproduce the loss of tonic cholinergic inhi-
bition by pretreatment of animals with an AS-ODN
against ChAT, may support this view. Recently, long-term
potentiation (LTP) has been widely studied as a potential
mechanism for central sensitization (spinal/cortical) in
animals with neuropathic pain [36,37]. In this mecha-
nism, LTP is facilitated by treatments with GABA antago-
nists [37]. Thus, the cholinergic innervation to GABA
neurons may have a further influence on the LTP mecha-
nism, in addition to tonic effects. The next step will be to
examine whether or not the activity of the cholinergic pri-
mary afferent system is altered in a neuropathic pain
model.

Ad-fiber
Ap-fiber

Figure 6

Spinal cord

http://www.molecularpain.com/content/3/1/41

In the present study we demonstrated that primary affer-
ent cholinergic neurons mediate tonic inhibition of spinal
pain through nAChR, since intrathecal treatments with
nicotine almost entirely normalized nociceptive thresh-
olds that had been reduced by a ChAT AS-ODN. However,
there are a number of reports that muscarinic receptors are
also involved in the tonic inhibition of pain in the spinal
cord [38,39]. Thus, it will be interesting to examine
whether muscarinic agonists have similar potent analgesic
effects in mice treated with a ChAT AS-ODN.

Conclusion

This study demonstrates that primary afferent cholinergic
neurons produce tonic inhibition of spinal pain through
nAChR, and that intrathecal administration of nicotine
rescues the loss of tonic cholinergic inhibition. This mech-
anism may be important for modulating spinal pain per-
ception especially in pathological conditions, such as
neuropathic pain.

Methods

Animals

Male ddY mice weighing 20-24 g were used after adapta-
tion to the laboratory conditions: 22 + 2°C, 55 + 5% rel-
ative humidity and a 12 h light/dark cycle with food and
water ad libitum. All procedures were approved by Naga-
saki University Animal Care Committee and complied
with the recommendations of the International Associa-
tion for the Study of Pain [40].

Tissue preparation
For immunohistochemistry, mice were deeply anesthe-
tized with sodium pentobarbital (50 mg/kg i.p.) and per-

Nicotine

Working hypothesis for the tonic inhibition of spinal pain by nicotinic cholinergic transmission through primary afferents. The cholinergic
primary afferents terminating in the spinal dorsal horn tonically activate nicotinic acetylcholine receptors on GABAergic interneurons
through acetylcholine synthesis and release. Due to maximal activation of this network, exogenously administered nicotine has no effect
in the normal state. On the other hand, in the ChAT knock-down state, the thresholds of pain mechanisms are reduced because of the
loss of this tonic pain inhibition system, and exogenously applied nicotine can activate nAChRs leading to analgesia. The physiological role
of ACh in DRG neurons is as a modulator of pain transmission to avoid hyperexcitability of spinal sensory neurons.

Page 8 of 11

(page number not for citation purposes)



Molecular Pain 2007, 3:41

fused transcardially with 20 ml of potassium-free
phosphate-buffered saline (K+-free PBS, pH 7.4), followed
by 50 ml of a 4% paraformaldehyde (PFA) solution. The
L4-5 DRGs and L4-5 spinal cord were isolated, postfixed
for 3 h, and cryoprotected overnight in a 25% sucrose
solution. Tissues were fast-frozen in cryo-embedding
compound in a mixture of ethanol and dry ice and stored
at -80°C until use. DRGs were cut on a cryostat at a thick-
ness of 10 um, thaw-mounted on silane-coated glass
slides, and air-dried overnight at room temperature (RT).
Spinal cords were cut on a cryostat at a thickness of 30 um,
collected in PBS solution containing 0.1% sodium azide,
and processed as free-floating sections.

Immunohistochemistry

DRG, but not spinal cord sections, were pretreated in 10
mM citrate buffer (pH 6.0) for antigen unmasking, using
a microwave for 15 min, before immunolabeling. Slide-
mounted DRG sections and free-floating spinal cord sec-
tions were incubated in 0.3% H,O, in methanol for 10
min and washed with PBST (0.1% Triton X-100 in PBS).
The sections were incubated with blocking buffer contain-
ing 1% BSA in PBST and subsequently reacted with rabbit
antiserum against ChAT (1:3000 dilution in blocking
buffer), which was kindly provided by Dr. H Misawa
(Kyoritsu College of Pharmacology, Tokyo, Japan), over-
night at 4°C[25,26]. After thorough washing, the sections
were incubated with secondary antibody, biotinylated
anti-rabbit IgG (1:500; Vector, CA), for 60 min at RT, and
subsequently with ABC complex (Vector, CA) at RT for 60
min. ChAT-activities were visualized by incubation with a
solution containing 0.02% 3,3'-diaminobenzidine tet-
rahydrochloride (DAB; Dojindo, Japan) and 0.0051%
H,0, in 0.05 M Tris-HCl buffer (pH 7.6), until brown
reaction products appeared. Sections were mounted on
glass slides, air-dried, dehydrated through a series of etha-
nol solutions, cleared in xylene, and coverslipped with
PermaFluor (Thermo Shandon, Pittsburgh, PA). For dou-
ble immunolabeling, we used the following antibodies: a
mouse monoclonal antibody against the N52 clone of
neurofilament 200, a marker of myelinated fibers (anti-
N52; 1:30000; Sigma, St. Louis, MO); a mouse mono-
clonal antibody against neuron-specific nuclear protein
(anti-NeuN; Chemicon, CA); biotin-conjugated BSI-B4
(10 pg/mL; Sigma, St. Louis, MO); Alexa Fluor 488-conju-
gated anti-mouse IgG; Alexa Fluor 594-conjugated anti-
mouse IgG; Alexa Fluor 488-conjugated anti-rabbit IgG;
Alexa Fluor 594-conjugated anti-rabbit IgG and Alexa
Fluor 488-conjugated streptavidin (1:300; Molecular
Probes, CA). The signal intensity of ChAT-immunoreac-
tivity and the cross-sectional areas of DRG neurons were
measured by automatic fluorescence microscopy using BZ
Image Measurement software (Bio-Zero, Keyence, Tokyo,
Japan). The sections shown in additional file 1 were incu-
bated with a goat polyclonal antibody against ChAT
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(1:100; AB144P, Chemicon, CA), and subsequently
reacted with biotinylated anti-goat 1gG (1:500; Vector,
CA).

Western blotting

L4-6 DRGs, L4-5 spinal dorsal horn and spinal ventral
horn proteins (40 pg) were separated on SDS-polyacryla-
mide gels (8%). Rabbit antiserum against ChAT (Fig. 1G)
or goat polyclonal antibody against ChAT (additional file
1) was used at a dilution of 1:3000 or 1:500, respectively.
HRP-labeled anti-rabbit antibody or HRP-labeled anti-
goat antibody was used as a secondary antibody at a dilu-
tion of 1:1000. Visualization of immunoreactive bands
was performed by the Light Capture (AE-6960/C/FC, Atto,
Tokyo, Japan) with an enhanced chemiluminescent sub-
strate for the detection of horseradish peroxidase, Super-
Signal® West Pico Chemiluminescent Substrate (PIERCE,
Rockford, IL).

Oligonucleotide treatments

The antisense oligodeoxynucleotide against ChAT (Gen-
Bank accession number: NM_009891) (AS-ODN; 5'-GGA
TAG GCA TCC TAG CGA TT-3') and its mismatch scram-
bled oligodeoxynucleotide (MS-ODN; 5'-GAG TGA GCA
CTC TAG CAG TT-3') were synthesized (Operon Biotech-
nologies, Tokyo, Japan), freshly dissolved in artificial CSF
(aCSF) comprising 125 mM NaCl, 3.8 mM KCl, 2.0 mM
CaCl,, 1.0 mM MgCl,, 1.2 mM KH,PO,, 26 mM NaHCO,
and 10 mM D-glucose (pH 7.4) and injected intrathecally
(i-t.) between the L5 and L6 lumbar space in unanesthe-
tized mice using a 30-gauge needle. This treatment was
performed (10 pg/5 ul) on the 1st, 3rd and 5th days of the
experiment, as stated in our previous study [41]. On the
6th day, treated mice were assessed in behavioral tests,
and tissues were isolated for immunohistochemical
experiments.

Nociception tests

In thermal paw withdrawal tests, the nociception thresh-
old was evaluated by the latency to paw withdrawal upon
a thermal stimulus [42-44]. Unanesthetized animals were
placed in plexiglas cages on top of a glass sheet and an
adaptation period of 1 h was allowed. The thermal stimu-
lator (IITC Inc.,, Woodland Hills, CA, USA) was posi-
tioned under the glass sheet and the focus of the
projection bulb was aimed exactly at the middle of the
plantar surface of the animal. A mirror attached to the
stimulator permitted visualization of the plantar surface.
A cut-off time of 20 s was set in order to prevent tissue
damage. The mechanical paw pressure test was performed
as described previously [43,44]. Briefly, mice were placed
in a plexiglass chamber on a 6 x 6 mm wire mesh grid
floor and were allowed to acclimatize for a period of 1 h.
The mechanical stimulus was then delivered to the middle
of the plantar surface of the right-hind paw using a Trans-
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ducer Indicator (Model 1601, IITC Inc., Woodland Hills,
USA). The pressure needed to induce a flexor response was
defined as the pain threshold. In these experiments using
mechanical and thermal tests, the thresholds were deter-
mined by three repeated challenges at 10 min intervals,
and the averages of responses were evaluated. For the
time-course experiment, we measured the threshold every
10 min only once, for a period of 1 h after i.t. injection. In
the "area under the curve" (AUC) analysis of the nicotine
effect on pain thresholds, we calculated the area under the
curve generated by plotting analgesic threshold (by
deducting the control threshold from each threshold
point) against time, from 10 to 60 min after nicotine treat-
ment, using a trapezoidal method. An electrical stimula-
tion-induced paw withdrawal (EPW) test was performed
as described previously [27]. Briefly, electrodes (Neuro-
tron Inc., Blatimore, MD) were fastened to the right
plantar surfaces and insteps of mice. Transcutaneous
nerve stimuli consisting of three sine-wave pulses (5, 250
and 2000 Hz) were applied using a Neurometer CPT/C
(Neurotron Inc.). The minimum intensity (pA) at which
each mouse withdrew its paw was defined as the current
stimulus threshold. Investigators blinded to drug-treat-
ments performed all behavioral experiments.

Nicotine treatment

Freebase (-)nicotine (Wako Pure Chemical Industries,
Osaka, Japan) was freshly dissolved in artificial cerebros-
pinal fluid (aCSF), and injected intrathecally (i.t.)
between the L5 and L6 lumbar space in unanesthetized
mice using a 30-gauge needle, as stated in our previous
study [11]. The behavioral threshold was measured at 10
min after i.t. injection. For the time-course experiment, we
measured the threshold every 10 min for 1 h after i.t.
injection.

Statistical analysis

Differences between multiple groups were analyzed using
a one-way ANOVA with Tukey-Kramer multiple compari-
son post-hoc analysis. Changes in the thresholds in the
EPW test, with and without nicotine treatment, were ana-
lyzed using an unpaired Student's t-test. The criterion of
significance was set at p < 0.05. All results are expressed as
means + S.E.M.

List of abbreviations
nAChR: Nicotinic acetylcholine receptor;

ChAT: Choline acetyltransferase;
AS-ODN: Antisense oligodeoxynucleotide;
MS-ODN: Mismatch scrambled oligodeoxynucleotide;

EPW: Electrical stimulation-induced paw withdrawal;
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Additional material

Additional file 1

ChAT-immunoreactivities in the spinal cord and DRG, using a commer-
cially available antibody from a different source (goat anti-ChAT polyclo-
nal antibody, AB144P, Chemicon, CA). (A) ChAT-immunoreactivities
in whole spinal cord. (A-1) Representative picture of ChAT-immunohis-
tochemistry in the spinal cord. Many fiber-like structures in the dorsal
horn (A-2) and intense ChAT-like signals in the lamina IX region (A-3)
were observed. (B) ChAT-immunoreactivities in the DRG. (B-1) Repre-
sentative pictures of ChAT-immunohistochemistry in the DRG. ChAT sig-
nals were found in most cells across the size spectrum (B-2). Scale bar =
50 um for (A-2, A-3, B-2). (C) Western blot analysis using goat polyclo-
nal antibody indicates one 68-kDa immunoreactive band for ChAT. The
55-kDa immunoreactive band for f-tubulin is also indicated at the bot-
tom. DH: spinal dorsal horn and VH: spinal ventral horn.

Click here for file
[http://www.biomedcentral.com/content/supplementary/1744-
8069-3-41-S1.jpeg]

Acknowledgements

We thank Dr. H. Misawa (Kyoritsu College of pharmacology, Tokyo, Japan)
for providing the antiserum against ChAT, and D. Chavlah for technical
help.

The research described in this article was supported in part by funds from
Philip Morris U.S.A. Inc. and Philip Morris International to H.U. This study
was also supported by MEXT KAKENHI-S (17109015).

References

. Davis L, Pollock L), Stone TT: Visceral pain. Surg Gynecol Obstet
1932, 55:418-427.

2. Spande TF, Garraffo HM, Edwards MW, Yeh H)C, Pannell L, Daly JWV:
Epibatidine: a novel (chloropyridyl)azabicycloheptane with
potent analgesic activity from an Ecuadoran poison frog. |
Am Chem Soc 1992, 114:3475-3478.

3. Bannon AW, Decker MW, Holladay MW, Curzon P, Donnelly-Rob-
erts D, Puttfarcken PS, Bitner RS, Diaz A, Dickenson AH, Porsolt RD,
Williams M, Arneric SP: Broad-spectrum, non-opioid analgesic
activity by selective modulation of neuronal nicotinic acetyl-
choline receptors. Science 1998, 279:77-81.

4. Marubio LM, del Mar Arroyo-Jimenez M, Cordero-Erausquin M, Lena
C, Le Novere N, de Kerchove d'Exaerde A, Huchet M, Damaj MI,
Changeux JP: Reduced antinociception in mice lacking neuro-
nal nicotinic receptor subunits. Nature 1999, 398:805-810.

Page 10 of 11

(page number not for citation purposes)


http://www.biomedcentral.com/content/supplementary/1744-8069-3-41-S1.jpeg
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9417028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9417028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9417028
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10235262
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10235262

Molecular Pain 2007, 3:41

20.

21.

22.

23.

24.

25.

Sahley TL, Berntson GG: Antinociceptive effects of central and
systemic administrations of nicotine in the rat. Psychopharma-
cology (Berl) 1979, 65:279-283.

Rao TS, Correa LD, Reid RT, Lloyd GK: Evaluation of anti-nocic-
eptive effects of neuronal nicotinic acetylcholine receptor
(NACHhR) ligands in the rat tail-flick assay. Neuropharmacology
1996, 35:393-405.

Damaj M, Fei-Yin M, Dukat M, Glassco W, Glennon RA, Martin BR:
Antinociceptive responses to nicotinic acetylcholine recep-
tor ligands after systemic and intrathecal administration in
mice. | Pharmacol Exp Ther 1998, 284:1058-1065.

Khan IM, Buerkle H, Taylor P, Yaksh TL: Nociceptive and antino-
ciceptive responses to intrathecally administered nicotinic
agonists. Neuropharmacology 1998, 37:1515-1525.

Damaj MI: The involvement of spinal Ca(2+)/calmodulin-pro-
tein kinase Il in nicotine-induced antinociception in mice. Eur
J Pharmacol 2000, 404:103-110.

Ferretti G, Dukat M, Giannella M, Piergentili A, Pigini M, Quaglia WV,
Damaj MI, Martin BR, Glennon RA: Chain-lengthened and imida-
zoline analogues of nicotine. Bioorg Med Chem Lett 2000,
10:2665-2668.

Rashid MH, Ueda H: Neuropathy-specific analgesic action of
intrathecal nicotinic agonists and its spinal GABA-mediated
mechanism. Brain Res 2002, 953:53-62.

Rashid MH, Furue H, Yoshimura M, Ueda H: Tonic inhibitory role
of alphad4beta2 subtype of nicotinic acetylcholine receptors
on nociceptive transmission in the spinal cord in mice. Pain
2006, 125:125-135.

Kiyosawa A, Katsurabayashi S, Akaike N, Pang ZP: Nicotine facili-
tates glycine release in the rat spinal dorsal horn. | Physiol
2001, 536:101-110.

Takeda D, Nakatsuka T, Papke R, Gu JG: Modulation of inhibitory
synaptic activity by a non-alphadbeta2, non-alpha7 subtype
of nicotinic receptors in the substantia gelatinosa of adult rat
spinal cord. Pain 2003, 101:13-23.

Genzen JR, McGehee DS: Nicotinic modulation of GABAergic
synaptic transmission in the spinal cord dorsal horn. Brain Res
2005, 1031:229-237.

Bellier JP, Kimura H: Acetylcholine synthesis by choline acetyl-
transferase of a peripheral type as demonstrated in adult rat
dorsal root ganglion. | Neurochem 2007, 101:1607-1618.

Sann H, McCarthy PW, Mader M, Schemann M: Choline acetyl-
transferase-like immunoreactivity in small diameter neu-
rones of the rat dorsal root ganglion. Neurosci Lett 1995,
198:17-20.

Tata AM, De Stefano ME, Srubek Tomassy G, Vilaro MT, Levey Al,
Biagioni S: Subpopulations of rat dorsal root ganglion neurons
express active vesicular acetylcholine transporter. | Neurosci
Res 2004, 75:194-202.

Bernardini N, Tomassy GS, Tata AM, Augusti-Tocco G, Biagioni S:
Detection of basal and potassium-evoked acetylcholine
release from embryonic DRG explants. | Neurochem 2004,
88:1533-1539.

Dixon CE, Bao ], Bergmann S, Johnson KM: Traumatic brain
injury reduces hippocampal high-affinity [3H]choline uptake
but not extracellular choline levels in rats. Neurosci Lett 1994,
180:127-130.

Carriedo SG, Yin HZ, Weiss JH: Motor neurons are selectively
vulnerable to AMPA/kainate receptor-mediated injury in
vitro. | Neurosci 1996, 16:4069-4079.

Jacobsson G, Piehl F, Meister B: VAMP-1 and VAMP-2 gene
expression in rat spinal motoneurones: differential regula-
tion after neuronal injury. EurJ Neurosci 1998, 10:301-316.
Scremin OU, Li MG, Roch M, Booth R, Jenden DJ: Acetylcholine
and choline dynamics provide early and late markers of trau-
matic brain injury. Brain Res 2006, 1 124:155-166.

Wang W, Salvaterra PM, Loera S, Chiu AY: Brain-derived neuro-
trophic factor spares choline acetyltransferase mRNA fol-
lowing axotomy of motor neurons in vivo. | Neurosci Res 1997,
47:134-143.

Ichikawa T, Ajiki K, Matsuura J, Misawa H: Localization of two
cholinergic markers, choline acetyltransferase and vesicular
acetylcholine transporter in the central nervous system of
the rat: in situ hybridization histochemistry and immunohis-
tochemistry. | Chem Neuroanat 1997, 13:23-39.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.
39.

40.

41.

42.

43.

44.

http://www.molecularpain.com/content/3/1/41

Ichikawa T, Ohsako S, Deguchi T: Production of an antiserum
using a fusion protein produced by a cDNA for rat choline
acetyltransferase. Neurosci Lett 1991, 131:213-216.

Matsumoto M, Inoue M, Hald A, Xie W, Ueda H: Inhibition of pacl-
itaxel-induced A-fiber hypersensitization by gabapentin. |
Pharmacol Exp Ther 2006, 318:735-740.

Lengyel C, Torok T, Varkonyi T, Kempler P, Rudas L: Baroreflex
sensitivity and heart-rate variability in insulin-dependent dia-
betics with polyneuropathy. Lancet 1998, 351:1436-1437.
Katims ]J: Neuroselective current perception threshold quan-
titative sensory test. Muscle Nerve 1997, 20:1468-1469.

Barber RP, Phelps PE, Houser CR, Crawford GD, Salvaterra PM,
Vaughn JE: The morphology and distribution of neurons con-
taining choline acetyltransferase in the adult rat spinal cord:
an immunocytochemical study. | Comp Neurol 1984,
229:329-346.

Borges LF, Iversen SD: Topography of choline acetyltransferase
immunoreactive neurons and fibers in the rat spinal cord.
Brain Res 1986, 362:140-148.

Ueda H: In vivo molecular signal transduction of peripheral
mechanisms of pain. Jpn | Pharmacol 1999, 79:263-268.

Takeda D, Nakatsuka T, Gu JG, Yoshida M: The activation of nic-
otinic acetylcholine receptors enhances the inhibitory synap-
tic transmission in the deep dorsal horn neurons of the adult
rat spinal cord. Mol Pain 2007, 3:26.

Koga K, Furue H, Rashid MH, Takaki A, Katafuchi T, Yoshimura M:
Selective activation of primary afferent fibers evaluated by
sine-wave electrical stimulation. Mol Pain 2005, 1:13.
Matsumoto M, Inoue M, Hald A, Yamaguchi A, Ueda H: Character-
ization of three different sensory fibers by use of neonatal
capsaicin treatment, spinal antagonism and a novel electri-
cal stimulation-induced paw flexion test. Mol Pain 2006, 2:16.
Zhuo M: Neuronal mechanism for neuropathic pain. Mol Pain
2007, 3:14.

Sandkuhler J: Understanding LTP in pain pathways. Mol Pain
2007, 3:9.

Zhuo M, Gebhart GF: Tonic cholinergic inhibition of spinal
mechanical transmission. Pain 1991, 46:211-222.

Naguib M, Yaksh TL: Antinociceptive effects of spinal
cholinesterase inhibition and isobolographic analysis of the
interaction with mu and alpha 2 receptor systems. Anesthesi-
ology 1994, 80:1338-1348.

Zimmermann M: Ethical guidelines for investigations of exper-
imental pain in conscious animals. Pain 1983, 16:109-110.
Ueda H, Inoue M: In vivo signal transduction of nociceptive
response by kyotorphin (tyrosine-arginine) through Gal-
pha(i)- and inositol trisphosphate-mediated Ca(2+) influx.
Mol Pharmacol 2000, 57:108-115.

Hargreaves K, Dubner R, Brown F, Flores C, Joris J: A new and sen-
sitive method for measuring thermal nociception in cutane-
ous hyperalgesia. Pain 1988, 32:77-88.

Inoue M, Rashid MH, Fujita R, Contos JJ, Chun ], Ueda H: Initiation
of neuropathic pain requires lysophosphatidic acid receptor
signaling. Nat Med 2004, 10:712-718.

Rashid MH, Inoue M, Kondo S, Kawashima T, Bakoshi S, Ueda H:
Novel expression of vanilloid receptor | on capsaicin-insen-
sitive fibers accounts for the analgesic effect of capsaicin
cream in neuropathic pain. | Pharmacol Exp Ther 2003,
304:940-948.

Page 11 of 11

(page number not for citation purposes)


http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=117500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=117500
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8793901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8793901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8793901
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9495867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9495867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9495867
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9886674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9886674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9886674
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10980268
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11128647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11128647
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12384238
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16781069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16781069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16781069
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11579160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=11579160
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12507696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12507696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12507696
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15649448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15649448
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17542812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17542812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17542812
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8570086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14705140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=14705140
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15009654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15009654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15009654
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7700564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7700564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=7700564
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8753869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8753869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8753869
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9753139
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17084821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17084821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17084821
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9008144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9008144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9008144
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9271193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9271193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9271193
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1762693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1762693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1762693
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16687474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16687474
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9593442
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9342169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=9342169
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6389613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6389613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6389613
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3510688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3510688
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10230852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10230852
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17894865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17894865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17894865
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15813963
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=16681855
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17553143
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=17407590
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1661000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=1661000
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8010479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8010479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=8010479
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6877845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=6877845
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10617685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=10617685
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3340425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3340425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=3340425
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15195086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15195086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=15195086
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604668
http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=12604668

	Abstract
	Background
	Results
	Conclusion

	Background
	Results
	ChAT expression in the spinal cord and DRG
	Knock-down of ChAT in the DRG and spinal dorsal horn
	Reduced nociceptive thresholds by ChAT-knock down
	Nicotine rescues the reduced nociceptive thresholds by ChAT knock-down

	Discussion
	Conclusion
	Methods
	Animals
	Tissue preparation
	Immunohistochemistry
	Western blotting
	Oligonucleotide treatments
	Nociception tests
	Nicotine treatment
	Statistical analysis

	List of abbreviations
	Competing interests
	Authors' contributions
	Additional material
	Acknowledgements
	References

