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Abstract

Although a variety of industrial chemicals, as well as several chemotherapeutic agents used to treat
cancer or HIV, preferentially induce a peripheral sensory neuropathy what remains unclear is why
these agents induce a sensory vs. a motor or mixed neuropathy. Previous studies have shown that
the endothelial cells that vascularize the dorsal root ganglion (DRG), which houses the primary
afferent sensory neurons, are unique in that they have large fenestrations and are permeable to a
variety of low and high molecular weight agents. In the present report we used whole-mount
preparations, immunohistochemistry, and confocal laser scanning microscopy to show that the cell
body-rich area of the L4 mouse DRG has a 7 fold higher density of CD3 1+ capillaries than cell fiber
rich area of the DRG or the distal or proximal aspect of the sciatic nerve. This dense
vascularization, coupled with the high permeability of these capillaries, may synergistically
contribute, and in part explain, why many potentially neurotoxic agents preferentially accumulate
and injure cells within the DRG. Currently, cancer survivors and HIV patients constitute the largest
and most rapidly expanding groups that have chemically induced peripheral sensory neuropathy.
Understanding the unique aspects of the vascularization of the DRG and closing the endothelial
fenestrations of the rich vascular bed of capillaries that vascularize the DRG before intravenous
administration of anti-neoplastic or anti-HIV therapies, may offer a mechanism based approach to
attenuate these chemically induced peripheral neuropathies in these patients.

Background lidomide [2], adriamycin [3], chlorobiphenyl [4],
Previous reports in both humans with accidental expo-  chlorodinitrobenzene [5], dinitrobenzene [5], clioquinol
sure, and in experimental animals, have shown thatavari-  [2], arsenic [6], cadmium [7] and methyl mercury [8]. Itis
ety of industrial agents and heavy metals produce a  still not completely understood why these agents induce
predominant sensory neuropathy. This list includes clo-  primarily a sensory and not a motor peripheral neuropa-

ramphenicol [1], disulfiram [1], nitrofurantoin [1], tha-  thy although it has been shown that the vascular supply to
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the dorsal root ganglia (DRG) is unique in that it is highly
permeable to a variety of low and high molecular weight
compounds and that agents such a cadmium and methyl-
mercury preferentially accumulate in the DRG [9,10].

Peripheral neuropathy is also a major side effect of many
commonly used anti-neoplastic agents including taxanes
(eg, paclitaxel, docetaxel), vinca alkaloids, platinum-
based compounds (eg, cisplatin and oxaliplatin) and the
proteosome inhibitor bortezomib [11-14]. Interestingly, a
similar, predominately peripheral neuropathy is also fre-
quently observed in HIV patients receiving commonly uti-
lized antiretroviral agents such as didanosine, zalcitabine,
stavudine and indinavir [15-21]. This peripheral neurop-
athy is the de facto toxicity that limits the administration
of many commonly used anti-neoplastic and anti-HIV
agents [11-14,20,21]. This is significant as the current
trend is towards more aggressive chemotherapy as is evi-
dent in recent studies demonstrating that in many chem-
otherapeutic regimens increased dose is associated with a
clear increase in patient survival [13,22-24].

In the present report we quantitatively examined the den-
sity of the vascular supply of the cell body rich area
(CBRA), the nerve fiber rich area (NFRA) of the lumbar
(L4) DRG of the mouse and compared these to the vascu-
lar supply of the proximal and distal aspect of the sciatic
nerve. To accomplish this we used immunohistochemical
staining of CD31 (which is also known as platelet-
endothelial cell adhesion molecule) in both whole-
mount, and sectioned DRG and examined and quantified
this staining using confocal microscopy, three dimen-
sional reconstruction and quantitative histomorphome-

try.

Results

In order to determine the CD31+ blood vessel density
within the peripheral nervous system, we performed
immunohistochemical analysis using an antibody raised
against platelet endothelial cell adhesion molecule CD31.
The antibody against CD31 has been used as a pan-
endothelial marker and stains endothelial cells present in
blood vessels [25]. CD31+ immunostaining has been
reported to be weak or absent in endothelial cells of
murine lymphatic vessels [26,27].

Whole mount lumbar DRG with adjacent roots and spinal
nerve attached were isolated from C3H/He] mice. While
CD31+ blood vessels were present only sparsely within
the endoneurium of the sciatic nerve, a dense network of
CD31+ blood vessels was observed within the L4 DRG
(Figure 1). In order to elucidate the association of blood
vessels with cell bodies and axons of the sensory neurons
within the DRG, CD31 immunohistochemical analysis
on whole-mount preparations was conducted in L4 DRG
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of transgenic C57/B6 mice which constitutively express
yellow fluorescence protein (YFP) in axons and cell bod-
ies of sensory neurons (Fig 2A) [28,29]. YFP immunoflu-
orescence was readily visible in cell bodies and axons of
sensory neurons without signal amplification (Fig 2A).
The 3D reconstructions of the confocal scans show the cell
body-rich area (CBRA) is vascularized by an extensive net-
work of CD31+ blood vessels that encapsulate and encir-
cle the cell body of the YFP-expressing sensory neurons
(Fig 2B,C). In contrast, the nerve fiber-rich area (NFRA) of
the DRG contains relatively few CD31+ blood vessels (Fig
2B,D), and when present, run parallel to the bundles of
nerve fibers.

To determine these regional differences in the density of
CD31+ blood vessels within L4 DRG, we quantified the
CD31+ blood vessels in CBRA and NFRA (Fig 3). The den-
sity of CD31+ blood vessels in CBRA (351 + 27 CD31+
blood vessels/mm?2) was significantly higher than that in
NFRA (53 + 8 CD31+ blood vessels/mm?2). In order to
compare the CD31+ blood vessel density of the CBRA to
the peripheral nerves, we quantified CD31+ blood vessel
density in two regions of the sciatic nerve. CD31+ blood
vessels were observed mainly to run longitudinally along
the endoneurium of the sciatic nerve (data not shown).
No significant differences in the CD31+ blood vessel den-
sity were found between distal (47 + 2 CD31+ blood ves-
sels/mm?) and proximal (42 + 6 CD31+ blood vessels/
mm?2) regions of the sciatic nerve (Fig 3). While the
CD31+ blood vessel density in the sciatic nerve was simi-
lar in magnitude compared to that in NFRA, it was signif-
icantly lower as compared to that in CBRA (Fig 3). Finally,
we quantified the CD31+ blood vessel density in the dor-
sal horn of the spinal cord, as this tissue is highly vascular-
ized [30,31]. Results show that dorsal spinal cord is
significantly higher than CBRA and has the highest blood
vessel density (555 + 17 CD31+ blood vessels/mm?2) of
the tissues evaluated in this study (Fig 3).

Discussion

The unique vascularization and permeability of the CBRA
in the DRG

In the present study, we have shown that the CBRA of the
DRG has approximately a seven fold higher density of the
CD31+ blood vessels (which are mostly capillaries) than
the NFRA of the DRG or the proximal and distal regions
of the sciatic nerve. Interestingly, previous reports have
shown similar striking regional differences in the expres-
sion of tight junction proteins and the presence of a func-
tional blood-nerve barrier in the NFRA of the DRG but not
in the CBRA of the rat DRG [32]. Previous studies have
also shown that the blood vessels that vascularize the
CBRA of the DRG have large fenestrations when com-
pared to the peripheral nerves [33-35]. Thus, when large
molecules such as albumin [32,36] or horseradish perox-
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Figure |
Whole mount preparation showing the vascularization of the cell body rich area of the dorsal root ganglia

(DRG) vs. the dorsal and ventral roots and sciatic nerve at L4 in the C3H mouse. Bright-field photomicrograph of a
whole-mount L4 DRG preparation for anatomical reference. Dashed line demarks the cell body-rich area from the sciatic
nerve and dorsal and ventral spinal roots (A). Representative confocal micrograph of a mouse L4 DRG labeled with the
endothelial cell marker CD3 1 showing the marked difference in the density of the vascular supply within the sensory ganglia as
compared to the corresponding spinal nerve and dorsal root (B). This dense vascularization of the DRG along with the large
fenestrations of the blood vessels in the DRG may partially explain why certain neurotoxics preferential accumulate in the
DRG and produce a primarily sensory vs. motor neuropathy. The confocal image in (B) was assembled from 280 optical sec-
tions acquired at 0.5 um z-plane intervals so that the total z stack is 140 pm-thick. Scale bar = 100 um.
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nerve fiber-rich area

The density of CD3 1+ vessels is site dependent within the mouse lumbar dorsal root ganglia (DRG). Represent-
ative 3D reconstructed confocal images of L4 DRG whole mount preparation from thy |-YFP transgenic mice where the cell
body and axons of sensory neurons constitutively express yellow fluorescent protein (YFP, pseudocolored violet). In contrast,
the endothelial cells were immunohistochemically labeled with a marker of platelet endothelial cell adhesion molecule, CD3 1+
(green) (A, B). Note that a dense vascular plexus surrounds sensory neuron cell bodies within cell body-rich areas (C),
whereas the nerve fiber-rich areas have a lower density of CD3 |+ vascular labeling (D). The confocal image in A-D were
acquired at 0.5 um z-plane intervals and the total z-plane for (A) 90 um, (B) 60 um and (C&D) |5 pm. Scale bar A-D = 50 um.

idase [35,37] are injected into the rat tail vein these mole-
cules remain in the vessels in the NFRA of the DRG and
the vessels of the peripheral nerve but avidly leak out of
the vessels that vascularize the CBRA of the DRG. Thus,
the dense vascularization, lack of the full repertoire of
tight junction proteins and the highly fenestrated blood
vessels that are present in the CBRA of the DRG makes this
area of the peripheral nerve uniquely open and accessible
to a variety of low and high molecular weight agents [33].

Thus, even intravenous administration of fluorescently
labeled Evans-blue albumin (MW 68,000) results in dense
deposition of this tracer immediately adjacent to the
plasma membrane of the soma of rat DRG neurons [32].

Together, these results suggest that a blood-nerve barrier is
largely lacking in aspects of the peripheral nerve that
house the cell bodies of sensory neurons. In addition to
this relatively unrestricted access, there are high metabolic
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CD31*blood vessel density is significantly higher in
cell body-rich areas (CBRA) as compared to nerve
fiber-rich areas (NFRA) of the L4 dorsal root ganglia
(DRG) and distal and proximal sciatic nerve of the
C3H mouse. Regional differences in blood vessel density
were determined by quantifying the CD31* blood vessels/
mmz2in 15 um cut sections of the L4 DRG and attached
nerve roots. Each bar of the histograms represents the mean
+/- SEM of at least 4 mice and * indicates a difference of p <
0.05 vs CBRA of the L4 DRG.

demands placed on the cell bodies [38] that support the
long axons that innervate the most distal extremities. This
may in part explain why intravenous administration of
potentially neurotoxic agents such as methyl mercury
show preferential access [33,39], accumulation [39-41]
and toxicity [33,41-43] to sensory neurons when com-
pared to motor neurons whose cell bodies are housed
within the blood brain barrier within the ventral horn of
the spinal cord.

Chemical agents-induced peripheral neuropathy
Neurotoxicity is a major side effect of many commonly
used anti-neoplastic and anti-HIV agents [11-19,44]. Pre-
viously, the dose limiting toxicity of many chemothera-
peutic agents was hypersensitivity and neutropenia, but
since the former can now be treated with antihistamines
or steroids and the latter with granulocyte colony-stimu-
lating factor [45], peripheral neuropathy is the de facto
toxicity that limits the administration of many commonly
used anti-neoplastic agents [11-14]. This is significant as
the current trend in oncology is towards more aggressive
chemotherapy as is evident in recent studies demonstrat-
ing that in many chemotherapeutic regimens increased
dose is associated with a clear increase in patient survival
[13,22-24].
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In previous studies we showed that intravenous adminis-
tration of paclitaxel, a commonly used chemotherapeutic
agent, leads to the development of peripheral neuropathy
characterized by injury of neuronal and non-neuronal
cells in the DRG [46,47]. To define the location of the cells
that showed the first sign of injury we administered this
agent intravenously and then looked for the appearance
of markers of cell injury in the rat DRG, peripheral nerve
and spinal cord at 1, 3, 6 and 10 days following initial
intravenous infusion of paclitaxel [42]. Using this strat-
egy, it was found that at day 1 post-infusion there was a
marked up-regulation of activated transcription factor-3
(ATF3), wich is a marker of cell injury/regeneration
[48,49] in a subpopulation of large and small DRG neu-
rons. In contrast, markers of cell injury in the proximal or
distal aspects of the sciatic nerve were not observed until
10 days post-infusion of paclitaxel, suggesting that one of
the initial sites of paclitaxel induced injury was in the
CBRA of the DRG. Interestingly, by 10 days post-paclitaxel
infusion there were clusters of satellite cells in the DRG
which have been suggested to be a "tombstone" of dead
sensory neuron cell bodies [47]. Similar "tombstones"
have been observed in DRGs obtained at autopsies of can-
cer patients treated with cisplatin [50] and in AIDS
patients treated with antiretroviral agents [15,51], which
also frequently produce a predominantly sensory chemo-
therapy-induced peripheral neuropathy (CIPN) [16-
18,20,21]. Together these preclinical and clinical studies
demonstrate that there are signs of injury and death of the
cell body of sensory neurons of rats and patients receiving
chemotherapeutic drugs and that direct drug-induced
injury to the cell body and its supporting cells may partic-
ipate in the generation of CIPN.

Implications and future directions

Defining the mechanisms and developing new therapies
to attenuate or prevent therapy induced neuropathy in
cancer and HIV patients are both needed and possible.
Thus, in many cases these neuropathies are frequently the
dose limiting toxicity that limits the ability of clinicians to
pursue an aggressive chemotherapeutic regimen that will
in large part determine the survival of the patient [52-54].
For example, in patients with metastatic colorectal cancer,
oxaliplatin therapy offers clear dose-related benefits in
promoting disease free survival [55]. However, in many
cases optimal and aggressive dosing of oxaliplatin is lim-
ited by CIPN which results in reduction or cessation of
chemotherapy resulting in decreased survival rates for
these patients [52-54,56,57].

Therapy induced peripheral neuropathy presents a unique
opportunity in neuropathobiology in that preemptive
therapy can be commenced before the chemotherapeutic
regimen begins. Previous studies in preclinical models of
stroke and spinal cord injury have shown the significant
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advantages in preemptive versus post-injury administra-
tion of neuroprotective strategies [58]. However, the clin-
ical reality in stroke and spinal cord injury is that
neuroprotective therapies can usually only be initiated
after the neuronal injury has occurred [58]. In contrast,
anti-neoplastic or anti-HIV therapies offer a unique
opportunity in that the precise time and extent of neuro-
nal injury induced by the chemotherapeutic agent is
known allowing preemptive trials to be conducted in both
the preclinical and clinical setting.

Currently cancer and AIDS survivors constitute the largest
and most rapidly expanding group of patients that have
peripheral  neuropathy and neuropathic  pain
[19,20,44,59]. Thus, developing a mechanism based
understanding of how these chemotherapeutic agents
induce this primarily peripheral sensory neuropathy and
developing mechanism based therapies to prevent and/or
attenuate these neuropathies offers a significant opportu-
nity to impact both the survival and quality of life of these
patients.

Conclusion

The high density of the CD31+ capillaries in the cell body
rich area of the DRG, coupled with relative lack of a func-
tional nerve-blood barrier in these capillaries, may partly
explain why many circulating neurotoxic agents preferen-
tially accumulate and injure cells within the DRG and
induce a sensory rather than a motor neuropathy. Under-
standing the unique aspects of the vascularization of the
DRG and using this knowledge to modulate the permea-
bility of the capillaries that vascularize the DRG, before
intravenous administration of anti-neoplastic or anti-HIV
therapies, may offer a mechanism based approach to
blocking or attenuating chemically induced peripheral
neuropathies in these patients.

Methods

Animal model

Experiments were performed on a total of 12 adult male
C3H/HeJ (C3H) mice (Jackson Laboratories, Bar Harbor,
Maine) and 12 adult C57 B6.Cg-Tg(Thyl-YFP)16]rs/]
mice (Jackson Laboratories, Bar Harbor, Maine), weighing
20-25 g. The transgenic mice constitutively express yellow
fluorescent protein (YFP) in motor and sensory neurons
under the control of neuron-specific regulatory elements
from the Thy1 gene [28,29]. All procedures were approved
by the Institutional Animal Care and Use Committee at
the University of Minnesota.

Preparation of tissue

Mice were sacrificed with CO, and perfused intracardially
with 20 ml of 0.1 M phosphate buffered saline (PBS) fol-
lowed by 20 ml of 4% formaldehyde/12.5% picric acid
solution in 0.1 M PBS. For whole-mount DRG prepara-
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tions, the L3-L5 DRG of Thy1-YFP mice and C3H mice
were harvested together with its adjacent spinal roots and
nerve, post-fixed for 4 h in the perfusion fixative and then
processed for immunohistochemistry (see below). For
sectioned tissue, the lumbar (L3-L5) DRG, sciatic nerves,
and lumbar spinal cord of C3H mice were removed, post-
fixed for 4 h in the perfusion fixative, and cryoprotected
for 24 h in 30% sucrose in 0.1 M PBS all at 4°C and then
processed for immunohistochemistry. Longitudinal sci-
atic nerve sections (1.5 cm segment) were obtained at mid
thigh level approximately 1.0 cm proximal to the trifurca-
tion.

Immunohistochemistry on whole-mount preparations

Qualitative analysis indicated no differences in the
CD31+ blood vessel density in L3 to L5 DRG. Thus for
quantification and presentation purposes only L4 DRG
were used. The L4 DRG and attached nerves were incu-
bated for 60 min at room temperature (RT) in a blocking
solution of 3% normal donkey serum in PBS with 0.3%
Triton-X 100 and then incubated overnight at RT in pri-
mary antisera against the platelet endothelial cell adhe-
sion molecule CD31, a marker of endothelial cells present
in blood vessels [26,27] (monoclonal rat anti-mouse
CD31, 1:500, BD Pharmingen, San Diego, CA). YFP
immunofluorescence in Thy1-YFP mice was readily visi-
ble under an epifluorescence microscope, thus no ampli-
fication of the signal was performed. Tissue was washed in
PBS and incubated for 3 h at RT with a secondary antibody
(Cy3 anti-rat; 1:600, Jackson ImmunoResearch, West
Grove, PA). Finally, the DRG and attached nerves were
washed 3 x 10 min in PBS, mounted on gelatin-coated
slides, dried, dehydrated via an alcohol gradient (70, 90,
and 100%), cleared in xylene, and coverslipped with DPX.

Immunohistochemistry on sectioned tissue

Serial frozen sections of L4 DRG, lumbar spinal cord
(coronal sections) and sciatic nerve (longitudinal sec-
tions) were cut at 15 pm on a cryostat and mounted onto
gelatin-coated slides for immunohistochemical analysis.
In this case, sectioned tissues were incubated overnight at
RT in primary antisera against CD31. Secondary antibod-
ies conjugated to various fluorescent markers (Cy2 1:200,
Cy3 1:600; Jackson ImmunoResearch, West Grove, PA)
were used and further immunohistochemical steps were
performed as described above. To confirm the specificity
of the primary antibody, controls included preabsorption
with the corresponding synthetic peptide or omission of
the primary antibody.

Laser scanning confocal microscopy and three-
dimensional reconstruction

Laser scanning confocal microscopy of the whole mount
preparations was performed with a BX-61 microscope
equipped with the Fluoview 1000 imaging software 5.0
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(Olympus America Inc, Melville, NY). Confocal z-series at
0.5 um intervals were acquired for each observation area
and filtered by two-frame Kalman low-speed scans. YFP
was excited by a laser wavelength of 488 nm, and emis-
sions were detected using a 522-nm emission filter.
Sequential acquisition mode was used to reduce bleed
through. Z-series of the different experiments were
imported from the Olympus Fluoview format to the Ima-
ris Pro Software 5.7.0 (Bitplane AG, Zurich, CH). Image
threshold and channel pseudocolors were adjusted, and
3D reconstruction was performed in the Surpass module.
Images were cropped with Adobe Photoshop CS and
thereafter assembled in Adobe Illustrator CS.

Quantification of CD3 1+ blood vessels

Quantification of blood vessels was performed by deter-
mining the number of CD31 positive (+) blood vessels
per unit area [30,60]. Only sectioned tissue from C3H
mice was used to perform this quantification. Microvessel
profiles were identified using criteria described by Wei-
dner and colleagues [61] where the presence of a vessel
lumen was not required to identify vessel profiles. Only
CD31+ blood vessels that were 2-10 um in diameter were
counted and CD31+ branched blood vessels were counted
as one vessel. The number of CD31+ blood vessels was
determined in cell body-rich area (CBRA) and nerve fiber-
rich area (NFRA) [32]. Images of the DRG sections were
captured on an Olympus BX51 epifluorescent microscope
fitted with an Olympus DP70 digital camera and areas of
interest were determined using Image Pro Plus version 3.0
software (Media Cybernetics, Silver Spring, MD). The
number of CD31+ blood vessels per outlined area from 4
sections per ganglion spaced 100 um apart was averaged
for each animal and results were expressed as total
number of CD31+ blood vessels per unit area (mm?2).
Random 250 pm x 250 pm areas of the sciatic nerve and
medial dorsal horn of the spinal cord were viewed at x400
magnification and the number of CD31+ blood vessels
was quantified. Distal (approximately 1.2-1.5 cm dis-
tance from tribifurcation) and proximal areas (approxi-
mately 2.2-2.5 cm distance from tribifurcation) of the
sciatic nerve segment were used for quantification. Two
areas were counted per section of 4 sections of spinal cord
and sciatic nerve (proximal and distal) spaced 100 pm
apart. Results are expressed as the mean number of
CD31+ blood vessels per unit area (mm?) + SEM. Statisti-
cal differences were determined using ANOVA followed
by Tukey post hoc test. p < 0.05 was considered signifi-
cant.
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