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Abstract

Pain is comprised of the sensory and affective components. Compared to the well-investigated
mechanisms of the sensory pain, much less is known about the mechanisms underlying the affective
pain. In recent years, accumulating evidence suggests that the anterior cingulate cortex (ACC) is a
key structure for pain affection. To identify the molecules that may be involved in the affective
component of pain, we have searched the Allen Brain Atlas expression database for genes whose
expression is enriched in the ACC, and found that P311, an 8-kDa peptide, showed the strong
expression in the ACC. P31 is also expressed in other areas associated with pain affection
including the amygdala, insular cortex and thalamus. To understand the role of P31 in pain
perception, we have examined the pain behaviors of the mice lacking P311. P311-- mice showed
normal heat and mechanical sensitivity, as well as normal formalin-induced inflammatory pain. In
contrast, the formalin-induced avoidance behavior, which reflects pain-related negative emotion,
was significantly attenuated in P31 1-- mice relative to the control mice. These results suggest that
P311 is involved in the affective, but not in the sensory component of pain. Our study thus provides
the first evidence suggesting that the affective and sensory pain may be regulated by distinct
molecular mechanisms.

Introduction

The pain experience includes a sensory-discriminative
dimension, such as its location, intensity and quality, and
an affective dimension, such as unpleasantness and emo-
tions associated with future implications (secondary
affect) [1-3]. Recent studies in humans and experimental

animals have established that the sensory and affective
dimensions of pain are processed by partially dissociable
brain networks [2,3]. Human imaging studies showed
that the activity of the somatosensory (SS) cortex is corre-
lated with the intensity of the noxious heat, whereas that
of the anterior cingulate cortex (ACC) with subjective
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unpleasantness [4,5], suggesting a differentially func-
tional requirement for the SS cortex and ACC in pain per-
ception [3]. Animal behavioral studies using the formalin-
induced conditioned place avoidance (F-CPA) or place
escape/avoidance paradigm also support the hypothesis
that the ACC mediates the affective-like responses of tonic
pain [6-9].

Electrophysiological studies on neuroplasticity in the
ACC have also suggested an involvement of the ACC in
pain-related information processing [10,11]. It has been
shown that the ACC neurons respond to noxious stimuli
[12]. Importantly, peripheral injury caused long-term
potentiation (LTP) in the ACC [13]. LTP may be the mech-
anisms shared by both pain and memory [14]. LTP can be
induced in the ACC, and numerous molecular pathways
underlying the LTP in the ACC have been identified by
genetic and pharmacological approaches [10,15,16]. In
contrast to molecular mechanisms of the sensory compo-
nent of pain which have been subjected to intensive stud-
ies [17], the molecular basis for pain affection remains
elusive. To elucidate the molecular mechanisms underly-
ing the affective component of pain, we identified several
genes that are highly expressed in the ACC compared with
the SS cortex, and examined one of the genes, P311, in
pain affection.

P311 (also called PTZ17) was first identified because of its
high expression in the embryonic brain and does not
belong to any known family [18]. P311 encodes an 8-kDa
polypeptide and contains three PEST-like domains sub-
jected to rapid degradation by multiple proteolytic path-
ways [19]. As a non-secreted peptide, P311 is highly
conserved across the species and is localized in both the
cytoplasm and nucleus [19,20]. Previous studies have
implicated P311 in the induction of ameboid-like migra-
tion [21], glioblastoma cell migration [22], and in the
myogenesis of smooth muscle myogenesis [19]. In the
brain, P311 has been associated with seizures because its
expression altered when seizures was induced [23]. More-
over, P311 expression was found to be up-regulated in the

Table I: Top 10 ACC-enriched genes
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axotomized motoneurons during axonal elongation, and
its overexpression can further enhance axon elongation of
neurons in vivo and in vitro [20]. In this report, we exam-
ined the role of P311 not only in the sensory but also in
the affective component of pain processing in mice.

Methods

Identification of ACC higher genes

The ACC-enriched genes were identified by searching the
Allen Brain Atlas (ABA) [24]. Total of 2265 genes
expressed in the cortex, of which 763 have coronal section
expression data. The expression images of each gene
(0-1.0 mm anterior to Bregma) containing both the ACC
and SS were retrieved from ABA. And the expression level
of each gene in the ACC and the SS measured by the den-
sity (ACC: V¢, SS: Vgg.) was analyzed using a NIH Image]
software by manually defining the ACC and SS region in
every section (0 represents the lowest expression, 255 rep-
resents the highest expression). The difference (D) is cal-
culated by D = V,-Vg and the genes are sorted by
descending of D value. The higher D value means the
higher expression in the ACC. The top 10 genes with
higher expression in the ACC were listed in Table 1.

Animals

P311+/- and wild-type littermate mice were used in behav-
ior experiments (Taylor et al, manuscript submitted).
Male mice aged between 8 and 12 weeks were acclima-
tized to the experimental room and used for behavioral
tests by observers blinded to the genotype of the animals.
All the experiments were performed in accordance with
the guidelines of the National Institutes of Health and the
International Association for the Study of Pain and were
approved by the Animal Studies Committee at Washing-
ton University School of Medicine.

Pain behavioral experiments

Pain behavior tests were performed as described [25,26].
Briefly, thermal sensitivity was determined using hot-
plate (48, 52, 56°C), paw-flick (method of Hargreaves) or
water immersion tail-flick methods (48, 50, 52°C). For

# Symbol Name Access # Widely expressed?
| Dkk3 dickkopf homolog 3 (Xenopus laevis) NM 015814 Yes
2 Itpka inositol 1,4,5-trisphosphate 3-kinase A NM 146125 Yes
3 Marcksl | MARCKS-like | NM 010807 No
4 P311 DNA segment, human D4S1 14 NM 053078 No
5 Etvl ets variant gene | NM 007960 No
6 Adcyapl adenylate cyclase activating polypeptide | NM 009625 No
7 Ctnnbl catenin (cadherin associated protein), beta | NM 007614 Yes
8 Cacnalh calcium channel, voltage-dependent, T type, alpha IH subunit NM 021415 Yes
9 Ubtf upstream binding transcription factor, RNA polymerase | NM 011551 Yes
10 Tspyl2 TSPY-like 2 NM 029836 Yes
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the hot plate, the latency for the mouse to lick its hindpaw
or jump was recorded. For the Hargreaves test, thermal
sensitivity was measured using a Hargreaves-type appara-
tus (IITC Inc., Woodland Hills, CA), and the latency for
the mouse to withdraw from the heat source was
recorded. For water immersion tail-flick, tails dipped
beneath the water in a temperature-controlled water bath
(IITC Inc., Woodland Hills, CA), the latency to with-
drawal was measured with a 10-s cutoff. Mechanical sen-
sitivity: Mechanical sensitivity was assessed using a set of
calibrated von Frey filaments (Touch-Test kit, Stoelting,
Chicago, IL). Each filament was applied 5 consecutive
times and the smallest filament that evoked reflexive
flinches of the paw on 3 of the 5 trials was taken as paw
withdrawal threshold. The formalin test was performed by
intraplantar injection of formalin (Sigma, 15 pl of 5% for-
malin in saline) into the plantar surface of the right hind-
paw. The total time spent in licking and flinching of the
injected paw was monitored for 60 min at 5-min intervals.

Assessment of motor function

A rotarod system of accelerating treadmills (Ugo Basile,
Italy) was used to assess coordinate motor activity and
general motor disability as described [27]. The mice were
tested for 3 trials with 15-min intervals.

Formalin-induced conditioned place avoidance (F-CPA)

This procedure was modified from F-CPA in rats [6,7].
Animals were trained in a shuttle box (47.5 x 20 x 20
cm3), containing three compartments separated by guillo-
tine doors. Two large conditioning compartments (A and
B, 20 x 20 x 20 cm3) were separated by a small gray center
choice compartment (C, 7.5 x 20 x 20 cm3). The A com-
partment had white walls and stiff metal mesh flooring
with an odor of 1.0% acetic acid, and the B compartment
had black walls and parallel metal bars flooring with cin-
namon scent. The C compartment had gray walls and a
plain floor without distinctive odor. The experimental
procedures were recorded by a video camera connected to
a computer. The training procedure lasted for 5 days. The
pre-conditioning test was performed on Day 1. Mice were
placed into the central compartment and allowed to freely
explore the entire apparatus for 20 min. Time spent in
each compartment and the travel distance in three com-
partments was recorded. Any animal that spent more than
600 sec or less than 300 sec in any large compartment will
be discarded from the experiment. Only animals that did
not show a baseline preference were admitted into the
study (>90% mice met this criteria). Then, mice were con-
ditioned for 3 consecutive days with 2 pairing sessions
each day. In the first session, the animals were restricted to
one of the conditioning compartments (50% of the mice
in compartment A, 50% of them in compartment B) for
35 min in the morning. In the second session in the after-
noon, about 4 hr later, the animals received hindpaw
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injection of 5% formalin (15 pl) or normal saline (15 pl),
and restricted to the opposite conditioning compartment
for 35 min. For post-conditioning test on day 5, the ani-
mals were tested as day 1. On both day 1 and day 5, the
animals' activities were recorded by a wide-angle video
camera (Creative Technology Ltd.) connected with a com-
puter, and the travel distance and time in each compart-
ment were analyzed by ANYMAZE software (Stoelting
Co., Wood Dale, Illinois USA).

LiCl-induced conditioned place aversion (LiCI-CPA)

The apparatus for LiCI-CPA training was identical to that
in F-CPA. The training procedure was also similar to that
of F-CPA. In brief, the training procedure lasted for 5 days.
On day 1, mice were placed into the central compartment
and allowed to freely explore the entire apparatus for 20
min. Time spent in each compartment and the travel dis-
tance in three compartments was recorded. Animals
showing baseline preference were discarded from the
experiment. On day 2-4, mice were conditioned for 3
consecutive days with 2 pairing sessions each day. In the
first session, the animals received saline (10 ml/kg, i.p.)
and restricted to one of the conditioning compartments
for 35 min in the morning. In the second session in the
afternoon, the animals received LiCl (150 mg/kg, i.p.) and
restricted to the opposite conditioning compartment for
35 min. On day 5, the animals were tested as day 1. On
both day 1 and day 5, the animals' activities were
recorded. The travel distance and time in each compart-
ment were analyzed.

In situ hybridization

Mice were anesthetized with sodium pentobarbital (50
mg/kg i.p.) and euthanized by transcardiac perfusion
(saline wash, followed by 4% paraformaldehyde in 0.01
M phosphate buffer saline pH 7.4). The mouse brain was
removed and post-fixed for 4 hr, then stored in 0.01 M
PBS containing 30% sucrose for at least 24 hr for cryopro-
tection. Thin sections were made using an RNase-free
technique. In situ hybridization was performed as
described [25].

Statistical analysis

Statistical comparisons were performed with two-way
analysis of variance (ANOVA) or Student's t-test. Data are
shown as mean + S.E.M. (standard Error of Mean) and
error bars represent S.E.M. In all cases, P < 0.05 was con-
sidered statistically significant.

Results

Identification of the ACC-enriched genes

To study the molecular mechanism of pain affection, we
have searched the Allen Brain Atlas expression database
[24] for genes whose expression is higher in the ACC
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(Table 1). Three genes, Marcksl1, P311, Etvl, showed the
restricted expression pattern in the ACC.

In situ hybridization studies indicated that P311 was
abundantly expressed in the ACC as well as in other pain
affection related regions of the brain (Fig. 1A, 1C, 1D, data
not shown) [2,7]. P311 was weakly detected in the soma-
tosensory cortex and dorsal spinal cord (Fig. 1B, data not
shown). Expression of P311 was also detected in the hip-
pocampus and cerebellum, which is consistent with the
previous report [18]. P311 expression was strong in the
rostral ventromedial medulla (data not shown), but not
detected in the hypothalamus. Despite its extensive
expression in the brain, the function of P311 in the nerv-
ous system remains largely unknown.

Effects of the P31 | mutation on the sensory component of
pain perception

Because P311 is expressed in the sensory pathway of pain,
we first assessed the role of P311 in pain by comparing
thermal, mechanical and inflammatory pain responses of
P311-/- mice with their wild-type littermates [25]. We
found that the latencies responding to noxious thermal
stimuli in Hargreaves test, hotplate, and tail flick test as
well as mechanical stimuli produced by graded von Frey
filaments were indistinguishable between P3117/- and

A B
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Figure |

Expression pattern of P31 1 in mouse brain detected
by in situ hybridization. A. P3| | is expressed in the ante-
rior cingulate cortex (ACC). B. Weak expression of P31 1
was detected in the somatosensory cortex (SI). C. P311 is
also expressed in the centrolateral thalamic nucleus (CL), the
central medial thalamic nucleus (CM) and the paraventricular
thalamic nucleus (PV). D. In the amygdala, P31 1 is expressed
in the basolateral amygdala nucleus (BLA) and the lateral
amygdala nucleus (LA). Scale bar: A. 100 um (A-D).
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wild-type mice (Fig. 2A-D). P3117/ mice exhibited nor-
mal motor function (Fig. 2E). In formalin test, flinching
and licking behaviors in both the first phase (0-10 min)
and the second phase (10-60 min) were also comparable
between P311-/- and wild-type mice (Fig. 2F), indicating
that a loss of P311 does not impact normal inflammatory
pain response. Together, these data suggest that P311 is
not essential for the sensory component of pain percep-
tion.

Effects of the P31 1 mutation on the affective component

of pain

We next tested the requirement of P311 in the affective
component of pain by F-CPA, which is a well-established
model for testing pain affection in rats [6,7]. When hind-
paw formalin injections were paired with a particular
compartment in the place-conditioning apparatus, wild-
type mice spent significantly less time in this compart-
ment on the post-conditioning test day as compared with
the preconditioning test day (Fig. 3A). In the saline-
treated group, animals showed no significant avoidance
to the conditioned environment (Fig. 3A). The time spent
in the treatment-paired compartment of formalin-treated
mice was significantly less than that of saline-treated mice
on post-test day (Fig. 3A). These results validated the util-
ity of the F-CPA model in mice. When the same training
procedure was used in P311-- mice, CPA was not induced
(Fig. 3A). The finding that P311-/- mice, unlike their litter-
mates, displayed no aversive behaviors to formalin injec-
tions suggests that P311 is important for the acquisition
or expression of F-CPA. In addition, the travel distance on
both pre-test and post-test day was comparable between
wild-type and P3117/-mice (Fig. 2G), suggesting that lack
of F-CPA in P311-/- mice was not caused by a change in
locomotor activity.

LiCI-CPA was not affected by the absence of P31 1

To distinguish whether lack of aversive behavior in P311-
/-mice was confounded by a deficit in associative learning
and memory, we next examined aversive learning task of
P311+/- and wild-type mice by using the LiCl-CPA para-
digm [28]. LiCl induced CPA in both wild-type and P311-
/- mice (Fig. 3B), suggesting that the P311 mutation did
not reduce the animal's ability to acquire a CPA when the
stimulus was unpainfully aversive. This result further sug-
gests that the absence of P311 did not impact the animal's
ability to associate the aversive stimulus with the distinct
environmental context. Therefore, we conclude that the
absence of P311 does not alter the learning ability in the
place-conditioning paradigm, but rather results in a defi-
cit concerning the acquisition or expression of pain-
related aversion.
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Figure 2

Wild-type P311 "

Time (min)

Normal pain behaviors and locomotor activity in P31 1--mice. A. Acute pain measured by mechanical threshold was
comparable between wild-type (n = 8; white bars) and P31 1-- mice (n = 9; black bars). B-D. Responses to noxious thermal
stimuli were measured by the paw withdrawal latency to Hargreaves test (B), hotplate (C) and the water immersion tail-flick
latency (D). Thermal pain in all tests did not differ between wild-type (n = 8; white bars) and P31 |-~ mice (n = 9; black bars).
Student's t-test, P > 0.05. E. Motor function assessed by the rotarod test was not affected in P31 1--mice (n = 9; filled circles)
compared with wild-type mice (n = 8; open circles). Repeated measures analysis of variance; P > 0.05. F. Spontaneous pain
responses induced by formalin were comparable between wild-type (n = 9; open circles) and P31 |-~ mice (n = 10; filled circles).
Repeated measures analysis of variance; P > 0.05, Phase | (0—10 min); P > 0.05, Phase Il (10—-60 min). G. Travel distance was
monitored during the pre-test (day |) and post-test day (day 5) of experiment by the ANYMAZE software. There was no sig-
nificant difference between wild-type and P31 |-~ mice on both the pre-test and post-test day. And the travel distance was not
affected by formalin injection in either wild-type or P31 1--mice. n = |6 for each group. Student's t-test, P > 0.05.

Discussion

In this study, we have identified several genes including
P311 which are highly enriched in the ACC. We set out to
examine whether P311 is important for pain perception.
Despite P311 is also expressed in neural pathways
required for mediating sensory component of pain, we
found that mice lacking p311 showed normal acute and
persistent pain behaviors in several pain paradigms.
Remarkably, P311+-mice showed deficits in pain affection
assessed by the F-CPA paradigm.

Our finding that the P311 mutation abolished CPA
induced by formalin suggests that P311 is important for
the aversion behavior induced by painful stimuli. Since it
is well accepted that the avoidance behavior associated
with noxious stimuli can serve as a reflex of affective com-
ponent of pain, it is reasonable to believe that P311 is nec-
essary for the acquisition or expression of avoidance
behavior induced by the noxious stimulus, and thus pain
affection. Importantly, this compromised affective pain in

the mutant mice is not due to a deficit in associate learn-
ing and memory. This is evidenced by the result of the
LiCl-CPA paradigm, in which CPA was induced at a simi-
lar manner in both wild-type and P311-/- mice. This result
further indicates that P311 is not involved in the aversion
behavior associated with non-painful stimuli. Although
P311 is also expressed in the rostral ventromedial medulla
and the dorsal spinal cord, the findings that the pain
behaviors of P311-/- mice were normal in several thermal,
mechanical and chemical pain paradigms suggest that
P311 is dispensable for the sensory processing of pain.

Involvement of P311 in pain affection might not be
restricted to the ACC since P311 is also expressed in the
regions important for pain affection such as the amygdala,
and the thalamus (mainly in the medial/intralaminar tha-
lamic nuclei) [2]. In addition to its role in fear condition-
ing [29,30], the amygdala has also been implicated in
processing pain affect. Bilateral lesion of the amygdala sig-
nificantly reduced conditioned response in the laser-pain
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LiCI-P311 ™
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Defect of pain affection in P31 1--mice. Time spent in each compartment was monitored during the pre-test (day |) and
post-test day (day 5) of the experiments. A. In wild-type mice, formalin (n = 16) but not saline (n = 12) induced conditioned
place avoidance. Conditioned place avoidance was induced by formalin in wild-type mice (n = 16), but not in P31 |- mice (n =
16). Student's t-test, *P < 0.05, ***P < 0.001. B. LiCl (150 mg/kg, i.p.) induced conditioned place aversion in both wild-type (n =
10) and P31 1--mice (n = 10) in a comparable manner. Student's t-test, ***P < 0.001.

conditioning model [31] and F-CPA model [7,32] with-
out affecting normal behavior or baseline nociceptive
responses, suggestive of an involvement of the amygdala
in pain affection. The medial/intralaminar thalamic
nuclei which relay the information from the dorsal spinal
cord to the ACC and the insular cortex has been proposed
to process pain-related unpleasantness [2,33,34].
Although there is no direct evidence from animal experi-
ments showing the involvement of the insular cortex in
pain affect, the widespread connections among the insu-
lar cortex, thalamus, amygdala, hippocampus and cortical
regions related to sensory modalities and autonomic func-
tions suggest the involvement of the insular cortex in
autonomic reactions to noxious stimuli and in pain-
related learning and memory [2,35]. Given the presence
of P311 in these areas, it is unclear if P311 is required for
processing the affective dimension of pain in all of the
regions or only in one particular area. Future experiments
such as the site-specific deletion of P311 or overexpres-
sion of P311 are necessary to determine the site of P311
deficiency that may account for the deficit in pain affec-
tion.

The mechanism by which P311 exerts its function in pain
affection might involve the modulation of strength of the
neural circuits processing or storing affective pain infor-
mation. There are at least two possibilities. First, P311
may modulate the neuroplasticity by remodeling the
spine of the neurons. For example, activity-dependent
structural remodeling of dendritic spines in the cortex has
been shown to be important for LTP and Long-term

depression [36,37], and has been postulated as a cellular
basis of learning and memory [38]. In this regard, recent
work indicating that P311 can promote neurite outgrowth
of postnatal neurons [20], possibly by the reorganization
of cytoskeleton [39] is of interest. Second, P311 may mod-
ulate the neural activity in the ACC. Recent studies have
shown that NMDA and AMPA receptors are important for
pain processing in the ACC [10,15], so it is likely that
P311 may regulate the neuronal activity by directly or
indirectly interacting with the excitatory receptors. Never-
theless, the actual mechanism by which P311 regulates
the affective pain remains to be explored.

Conclusion

Regardless of mechanisms involved, our findings suggest
for the first time that sensory and affective pain may be
dissociated from each other at the molecular level. To our
best knowledge, our report represents the first to suggest
that a unique set of genes may be required for the function
of neural circuits underlying the pain affection, thereby
providing the molecular logic for explaining the partially
dissociable brain networks which are responsible for two
distinct components of pain perception [2,3]. Identifica-
tion of genes involved in the affective but not in the sen-
sory component of pain may have therapeutic value in the
management of pain affection. Since P311 is highly con-
served between the rodents and human and formalin
injection represents a noxious stimuli to human [18,40],
it is conceivable that P311 may be a potential target for
alleviating the affective component of pain.
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