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Abstract

Background: We have previously demonstrated that different spinal transmissions are involved
in the nociceptive behavior caused by electrical stimulation of AB-, Ad- or C-fibers using a
Neurometer® in naive mice. In this study, we attempted to pharmacologically characterize the
alteration in spinal transmission induced by partial sciatic nerve injury in terms of nociceptive
behavior and phosphorylation of extracellular signal-regulated kinase (pERK) in the spinal dorsal

horn.

Results: AB-fiber responses (2000-Hz), which were selectively blocked by the AMPA/kainate
antagonist CNQX in naive mice, were hypersensitized but blocked by the NMDA receptor
antagonists MK-801 and AP-5 in injured mice in an electrical stimulation-induced paw withdrawal
(EPWV) test. Although Ad-fiber responses (250-Hz) were also hypersensitized by nerve injury, there
was no change in the pharmacological characteristics of Ad-fiber responses through NMDA
receptors. On the contrary, C-fiber responses (5-Hz) were hyposensitized by nerve injury.
Moreover, Ad- and C-, but not AB-fiber stimulations significantly increased the number of pERK-
positive neurons in the superficial spinal dorsal horns of naive mice, and corresponding antagonists
used in the EPW test inhibited this increase. In mice with nerve injury, Ap- as well as Ad-fiber
stimulations significantly increased the number of pERK-positive neurons in the superficial spinal
dorsal horn, whereas C-fiber stimulation decreased this number. The nerve injury-specific pERK
increase induced by Af-stimulation was inhibited by MK-801 and AP-5, but not by CNQX.
However, AB- and Ad-stimulations did not affect the number or size of pERK-positive neurons in
the dorsal root ganglion, whereas C-fiber-stimulation selectively decreased the number of pERK-

positive neurons.

Conclusion: These results suggest that AB-fiber perception is newly transmitted to spinal
neurons, which originally receive only Ad- and C-fiber-mediated pain transmission, through NMDA
receptor-mediated mechanisms, in animals with nerve injury. This pharmacological switch in AB-

fiber spinal transmission could be a mechanism underlying neuropathic allodynia.
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Introduction

Primary afferent fibers have been classified into three
major types, unmyelinated C-, thinly myelinated A3-, and
myelinated AB-fibers. The nociceptors of C-fiber and A8-
fiber primary afferent neurons transduce noxious chemi-
cal, mechanical or thermal stimuli into depolarizing
potentials, which in turn cause nociceptive responses. On
the other hand, the stimulation of AB-fibers is mostly
thought to induce an innocuous tactile sensation. We
recently characterized the nociceptive responses through
these three different types of fiber activated by different
frequencies of electrical stimuli using a Neurometer® (elec-
trical stimulation-induced paw flexion test; EPF test) [1].
In such studies, AB-fiber responses were unique, since an
AMPA/kainate receptor antagonist selectively blocked
them, while NK1 and/or NMDA receptor antagonists
blocked C- and A3-fiber responses. Thus, pharmacological
characterization of these responses may contribute to our
understanding of pain transmission.

On the other hand, neuropathic pain has attracted the
concern of many neuroscientists in terms of the mecha-
nisms underlying spinal neurotransmission. Neuropathic
pain results in two characteristic abnormal nociceptive
behaviors, namely, hyperalgesia and allodynia. Of partic-
ular interest are the mechanisms of allodynia, which
include the conversion of innocuous stimuli to pain. We
previously found that both Ad-fiber- and AB-fiber-medi-
ated responses of mice with partial sciatic nerve injury
were hypersensitized in the EPF test [1], although a phar-
macological characterization of such hypersensitivity in
terms of spinal neurotransmission has not been per-
formed.

Extracellular signal-regulated kinases (ERKs), representing
one of the major subfamilies of mitogen-activated protein
kinases (MAPKs), are phosphorylated following mem-
brane depolarization and Ca2* influx [2]. ERKs have been
reported to be immediately activated after noxious stimu-
lation in the neurons of the dorsal root ganglions (DRGs)
and spinal dorsal horn in a stimulus intensity-dependent
manner [3,4]. Therefore, ERK phosphorylation in DRGs
and the spinal dorsal horn could be a biochemical marker
of activated neurons, allowing us to visualize pain-signal-
ing pathways and obtain more objective evidence of neu-
rotransmission. In the present study, we present
behavioral and biochemical evidence for AB-fiber-medi-
ated allodynia (hypersensitization) and its associated
alteration in synaptic neurotransmission at the level of the
spinal cord in animals with neuropathic pain.

http://www.molecularpain.com/content/4/1/25

Results

Determination of spinal pain transmitters using an
electrical stimulation-induced paw withdrawal (EPW) test
Transcutaneous nerve stimuli, specifically three sine-wave
pulses with frequencies of 2000, 250 or 5 Hz, to activate
AB-, Ad- or C-fibers, respectively [5-7], were applied to the
right hind paw of a mouse. The threshold of current (pA)
for each stimulus was determined by evaluating paw with-
drawal behavior. Each stimulus including 2000 Hz (Ap-
fiber), which described as an unpleasant vibrating percep-
tion [8] or light tickling sensation [9], caused the paw
withdrawal response in mice. In control (aCSF) mice, the
withdrawal thresholds for each frequency were 486.3 =+
12.9 pA (2000 Hz, Ap-fiber), 212.0 + 6.5 pA (250 Hz, AS-
fiber) and 100.8 + 4.2 pA (5 Hz, C-fiber). To characterize
spinal pain transmission through each fiber, representa-
tive antagonists, namely, the substance P (NK1) receptor
antagonist CP-99994, the competitive and non-competi-
tive NMDA receptor antagonists AP-5 and MK-801,
respectively, and the non-selective antagonist of AMPA/
kainate (non-NMDA) receptors CNQX, were intrathecally
administered 10 min prior to electrical stimulation.
Antagonists or vehicle (aCSF or 3.3% DMSO solution)
alone induced no change in locomotion behavior, but
short-lasting scratching behavior was observed only
immediately after the administration of CNQX (10
nmol). In accordance with findings from the EPF test [1],
which is the prototype for the electrical stimulation-
induced paw withdrawal (EPW) test, the threshold at
2000 Hz was increased only by pretreatment with CNQX
(3 and 10 nmol), but not by CP-99994, AP-5 or MK-801
(3 nmol and 10 nmol), as shown in Figure 1a. On the
other hand, the threshold at 250 Hz was increased by both
AP-5 and MK-801, but not by CP-99994 or CNQX, while
the threshold at 5 Hz was increased by CP-99994, AP-5
and MK-801, but not by CNQX (Figure 1b and 1c). These
results are also consistent with the previous findings in the
EPF test [1].

Altered spinal pain transmission through AS-fibers in
nerve-injured mice

The EPW test was performed with mice that had received
partial sciatic nerve ligation, according to the method of
Malmberg and Basbaum [10]. In the present study we
used a dose of each antagonist to produce a maximal
effect in naive mice (see Figure 1a-c). As shown in Figure
1d, the threshold at 2000 Hz was significantly decreased
in these injured mice. Although the intrathecal injection
of CP-99994 (3 nmo], i.t.) at 10 min prior to the EPW test
did not affect this injury-induced decrease in the thresh-
old at 2000 Hz, both MK-801 (10 nmol, i.t.) and AP-5 (10
nmol, i.t.) completely reversed this decrease. However,
pretreatment with CNQX (10 nmol, i.t.) did not affect the
threshold. Similar sensitization was also observed with
250 Hz stimuli, but the spinal antagonism remained
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Pharmacological plasticity in the spinal antagonism of Ap-, AS-, and C-fiber stimulation-mediated nociceptive
behaviors in nerve-injured mice. The threshold represents the minimum intensity (LA) required to produce a paw with-
drawal response to electrical stimulation with 2000 Hz (AB-fiber) (a, d), 250 Hz (Ad-fiber) (b, €), and 5 Hz (C-fiber) (c, f). Vehi-
cle or drugs were administrated intrathecally to naive (a-c) or nerve-injured mice (d-f), |0 min prior to the electrical
stimulation. Vehicle (Veh; aCSF or 3.3% DMSO), CP-99994 (CP), MK-801 (MK). *: p < 0.05 vs. vehicle (aCSF or 3.3% DMSO in
a-c) or sham operation (d-f). #: p < 0.05 vs. injury-vehicle. Data represent the means * S.E.M. from experiments using at least 6

mice.

unchanged in injured mice (Figure le). As previously
reported with the EPF test [1], the threshold with 5 Hz
stimuli in the EPW test was increased by nerve injury (Fig-
ure 1f).

Distinct spinal neurotransmission is involved stimuli-
induced spinal ERK phosphorylation in different fibers
ERK has been reported to be immediately phosphorylated
after noxious stimulation in the neurons of dorsal root
ganglions (DRGs) and the spinal dorsal horn in a stimu-
lus intensity-dependent manner [3,4]. Therefore, we used
phosphorylated ERK (pERK) as a biochemical marker of
activated neurons to visualize pain-signaling pathways.
The higher current intensities (2000 Hz, 1000 pA; 250 Hz,
2000 pA; 5 Hz, 2000 pA; 1 min) of electrical stimulation
was used to evaluate pERK signals, since a relatively high-
intensity noxious stimulation is required for ERK activa-

tion [3,4]. As expected, no significant pERK signal was
observed by stimulation of the threshold at which paw
withdrawal response was induced in the EPW test (Data
not shown). We took special care to select the current
intensity (1000 pA) for AB-fiber stimulation, since Af spe-
cificity is only observed below 1300 pA of 2000 Hz stim-
ulation in electrophysiological studies involving
intracellular recordings from DRG neurons [6]. However,
the 2000-Hz stimulation caused no significant pERK sig-
nal in the spinal dorsal horn, although 250- and 5-Hz
stimuli produced significant signals, mainly in the super-
ficial spinal dorsal horn (lamina I-II), as shown in Figure
2a. The pERK signals induced by 250-Hz stimuli were
more concentrated in the outer layer of the dorsal horn
(lamina I), while 5 Hz-induced signals were found in
slightly broader (lamina I and II) regions. In addition to
these signals in spinal neurons, there were significant dif-
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Figure 2

Pharmacological characterization of the activation of dorsal horn neurons by AB-, Aj- and C-fiber electrical
stimulations. The activation was evaluated by the immunoreactivity for pERK. (a) Representative pictures of pERK signals in
the ipsilateral spinal dorsal horn after electrical stimulation to the right hind paw (see Methods). The figures in the bottom of
each picture indicate pERK signals, which were used for pERK quantification (see Methods). Representative pictures of spinal
antagonism of the pERK signals induced by 250 or 5 Hz stimuli (b), and the results of pERK quantification (c).: vehicle (Veh;
aCSF), CP-99994 (CP) (10 nmol), MK-801 (MK) (30 nmol), AP-5 (30 nmol), CNQX (10 nmol). *: p < 0.05 vs. no stimulus, #: p
< 0.05 vs. vehicle. Data represent the means £ S.E.M. from experiments using at least 4 mice. Scale bar = 100 pum.
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fuse signals induced in the superficial dorsal horn by 250
and 5 Hz stimuli, but not by 2000 Hz stimuli. These seem
to be due to the activation of central terminals of primary
fibers and dendrites of spinal neurons. Some pERK-posi-
tive cells were also observed in deeper regions of the dor-
sal horn (lamina II1-V), induced by both 250 and 5 Hz
stimuli. No pERK signal was observed without anti-pERK
antibodies (data not shown).

In order to characterize spinal antagonisms in terms of
nerve fiber-specific ERK activation, we used the following
antagonists: CP-99994 (10 nmol, i.t.), MK-801 (30 nmol,
i.t.), AP-5 (30 nmol, i.t.) and CNQX (10 nmol, i.t.). None
of these antagonist treatments produced specific pERK sig-
nals. As shown in Figure 2b and 2c¢, the 250 Hz stimuli-
induced pERK signals in spinal neurons were significantly
inhibited by MK-801 or AP-5, but not by CP-99994 or
CNQX. However, these antagonists did not completely

a No stimulus
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inhibit the diffuse signals, and this is possibly why the
substantial activation of primary afferent central terminals
remains unchanged. Similarly the 5 Hz stimuli-induced
signals in neurons were significantly inhibited by CP-
99994, MK-801 and AP-5, but not by CNQX, while the
diffuse signals partially remained.

Altered A/-fiber-induced spinal ERK phosphorylation in
nerve-injured mice

Sham operation or sciatic nerve injury alone induced no
specific pERK signals in spinal dorsal horn neurons 7 days
later, as shown in Figure 3a, b. In sham-operated mice, the
2000-Hz stimulation induced no significant pERK signal
in the spinal dorsal horn, similar to the result in naive
mice (Figure 3a, b). By contrast, the significant and spe-
cific 2000-Hz stimuli-induced signals were newly
observed in neurons in the superficial dorsal horns (lam-
ina I-1II) of nerve-injured mice, but not in neurons in the
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Figure 3

Altered pERK signals in the spinal dorsal horn induced by Ap-, Ad-, and C-fiber electrical stimulation in nerve-
injured mice. (a) Representative pictures of pERK signals in the ipsilateral spinal dorsal horn after electrical stimulation to the
right hind paw. (b) Results of pERK quantification in the spinal dorsal horn. *: p < 0.05 vs. sham. Data represent the means *
S.E.M. from experiments using at least 6 mice. Scale bar = 100 pum.
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deeper regions of the dorsal horn (lamina III-V). On the
other hand, the number of pERK-positive spinal neurons
observed after 250 Hz stimuli was increased in injured
mice, while the number of 5 Hz stimuli-induced pERK-
positive spinal neurons was decreased (Figure 3a, b).

In addition, we further examined the spinal antagonism
of AB-fiber-mediated pERK signals newly observed in

a
Injury - 2000Hz (AB-fiber)

http://www.molecularpain.com/content/4/1/25

nerve-injured mice. These signals were significantly inhib-
ited by MK-801 (30 nmol) or AP-5 (30 nmol), but not by
CP-99994 (10 nmol) or CNQX (10 nmol), which had
been intrathecally administered 10 min prior to electrical
stimulation (Figure 4a, b). All of these pERK-positive sig-
nals in dorsal horn neurons in injured mice were colocal-
ized with NeuN signals, suggesting that they can be
attributed to the activation of spinal neurons (Figure 4c).
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pERK

Altered spinal antagonisms of pERK signals induced by Ap-fiber stimuli in nerve-injured mice. Representative pic-
tures of spinal antagonisms of pERK signals induced by 2000 Hz stimuli (a) and the results of pERK quantification (b).: vehicle
(Veh; aCSF), CP-99994 (CP) (10 nmol), MK-801 (MK) (30 nmol), AP-5 (30 nmol), CNQX (10 nmol). *: p < 0.05 vs. sham-vehi-
cle or injury-no stimulus. #: p < 0.05 vs. injury-vehicle. Data represent the means + S.E.M. from experiments using at least 4
mice. (c) Double-immunostaining images for pERK (green) and the neural marker NeuN (red) after AB-fiber stimuli in the spi-
nal cords of nerve-injured mice. Scale bar = 100 um for (a) and 20 pum for (c).
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The specificity of electrical stimulation in terms of ERK
phosphorylation in DRG neurons.

As 2000-Hz stimuli caused an unexpected activation of
spinal neurons in nerve-injured mice, we further exam-
ined the specific activation of dorsal root ganglion (DRG)
neurons in sham-operated and injured mice. Control
treatment (Figure 5a) and sciatic nerve injury alone (data
not shown) did not induce specific pERK signals in the
DRG. As shown in Figure 5a, b, the 2000 Hz stimuli-
induced pERK positive signals were similarly distributed
in medium/large-sized DRG neurons compared with 250
Hz-induced ones (>24 pm), but there were fewer pERK-
positive neurons in the former preparation than in the lat-
ter one (2000 Hz: 1.16 + 0.23%, 250 Hz: 4.82 + 0.60%).
The distribution of pERK-positive DRG neurons following
5 Hz stimulation was distinctly restricted to small-diame-
ter cells (<24 um) and the number of pERK-positive neu-
rons was more abundant (Figure 5a, b). In nerve-injured
mice, there was no change in the distribution profile or
the number of pERK-positive neurons induced by 2000
and 250 Hz stimuli. However, the smaller DRG neurons
(<18 pum) in nerve-injured mice lost pERK signals follow-
ing stimulation at 5 Hz.

Discussion

We recently developed a novel test to classify sensory fib-
ers in terms of their EPF responses to different frequencies
of electrical stimuli using a Neurometer® [1]. This Neu-
rometer® device has been validated by many clinical stud-
ies as a useful tool in the clinical evaluation and
management of neurologic disorders [11-13]. Wallace et
al. [9] reported that the patient described the 2000 Hz
stimuli as a "light tickle", the 250 Hz stimuli as a "prickly
feeling" and the 5 Hz stimuli as a deep warmth or cool-
ness. Therefore, the flexor responses (EPF test) or the with-
drawal responses (EPW test) observed in mice seem to be
the result of escape from the unpleasant (but not nocice-
ptive) 2000 Hz stimuli, or the nociceptive 250 and 5 Hz
stimuli. Recently, Koga et al. [6] reported that these three
different frequencies of electrical stimuli applied with a
Neurometer® selectively activate AB-, A3- or C-fibers in an
electrophysiological study using rats. The fiber-specificity
of the Neurometer® was supported by the present study, in
which spinal transmission was pharmacologically charac-
terized in terms of nociceptive behavior and phosphoryla-
tion of extracellular signal-regulated kinase (pERK) in the
spinal dorsal horn. The 250 Hz (Ad-fiber) stimuli induced
PERK signals in medium/large-sized DRG neurons and in
neurons of the lamina I layer of the dorsal horn. The
intrathecal treatments with NMDA receptor antagonists
largely inhibited both the pERK signals in the dorsal horn
and nociceptive behavior. The 5 Hz (C-fiber) stimuli
induced pERK signals in small-sized DRG neurons and in
lamina I and II neurons. Both NK1 receptor antagonist
and NMDA receptor antagonists blocked spinal pERK sig-

http://www.molecularpain.com/content/4/1/25

nals and nociceptive behavior. On the other hand, the
2000 Hz (AB-fiber) stimuli also induced pERK signals in
less abundant medium/large-sized DRG neurons, but not
in the spinal dorsal horn. The lack of pERK signals
induced by 2000 Hz stimuli was consistent with the
report by Ji et al. [3], who demonstrated that no pERK sig-
nals were observed in the dorsal horn following AB-fiber
stimulation, which was verified electrophysiologically.
This finding is contrast with our behavioral study, in
which 2000-Hz stimuli caused significant paw withdrawal
responses that were blocked by intrathecally administered
CNQX, an AMPA/kainate antagonist. From the report that
rapid pERK signals are caused by an increase in cellular
Ca2+ concentration [2,14], the lack of pERK signals in spi-
nal neurons after AB-fiber stimulation might be explained
by the fact that AMPA/kainate receptors have lower Ca2+
permeability than NMDA receptors [15]. AMPA/kainate
receptor antagonist-sensitive AP-fiber-mediated neuro-
transmission is also supported by previous reports
[16,17]. Although there is an inconsistency in the current
intensities and in the duration of electrical stimulation
between the behavioral EPW test and the pERK experi-
ment, the fiber-specificity seems to be conformed, since
the pharmacological characterization of C-(5 Hz) and Ag-
fiber stimuli (250 Hz)-induced pERK signals is consistent
with the behavioral studies in the present study. Further-
more, as Koga et al. [6] reported that AB-specificity is
retained in DRG electrophysiological studies as far as the
current intensity of 2000 Hz below 1300 pA is used, the
AB-fiber specificity by 2000 Hz, 1000 pA stimuli in the
present study also seems to be retained, though this stim-
ulation failed to induce ERK activation in naive mice.
Therefore, it is evident that analysis using pERK as a bio-
chemical marker is useful for the characterization of spi-
nal pain transmission.

It should be noted that the CNQX-insensitive but NMDA
or NK1 receptor antagonists-sensitive spinal pain trans-
mission was observed in the present study, since many
electrophysiological studies show predominant contribu-
tion of AMPA/kainate receptor in the generation of EPSC
in spinal neurons [17,18]. In the study by Miller and
Woolf [17], CNQX reduced the fast component (AB) of
EPSC to ~30%, while did the slow component (Ad +C)
only to ~50%. As NMDA receptor antagonist inhibited the
slow (Ad +C), but not fast (AB) component of EPSC, it is
suggested that there exists the CNQX-insensitive NMDA-
receptor-mediated slow component (A8 +C) in the pain
transmission. This view is further supported by the find-
ing that the addition of NMDA elicited an inward current
at holding potentials of -60 mV in the presence of Mg+
[19]. Although the machinery underlying CNQX-insensi-
tive NMDA current remains to be determined, there is a
possibility for the predominant NMDA receptor activa-
tion. Takasu et al. [20] reported that CNQX-insensitive
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Figure 5

The specificity of electrical stimulation in terms of ERK phosphorylation in the DRG. (a) Representative pictures of
pERK in the ipsilateral DRG after electrical stimulation to the right hind paw. Arrowheads indicate pERK-positive DRG neu-
rons. (b) The size distribution of pERK-positive DRG cells (left panel) and its relative comparison to the total number of cells
(right panel) in sham-operated and nerve-injured mice. *: p < 0.05 vs. sham. Data represent the means + S.E.M. from experi-
ments using at least 4 mice. Scale bar = 50 um.
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NMDA receptor-mediated Ca2+ influx in the presence of
ephrinB2-EphB2 activation, which activates NMDA recep-
tor through a Src-mediated phosphorylation. In nerve-
injured mice, the EPW thresholds in response to 2000 and
250 Hz stimuli were significantly decreased (hypersensi-
tized), while the threshold in response to a 5 Hz stimulus
was increased (hyposensitized). These results are also con-
sistent with our previous study using the algogenic-
induced paw flexion (APF) test, showing that prostaglan-
din I, (PGI,) agonist-induced A-fiber responses were
hypersensitization and that substance P-induced C-fiber
responses were diminished in nerve-injured mice [21-23].
It should be noted that the 2000 Hz stimuli-induced
hypersensitization in injured mice was completely abol-
ished by intrathecal administration of NMDA receptor
antagonists, but not by CNQX. This fact suggests that non-
nociceptive information transmitted through AB-fibers
via AMPA/kainate receptor-mediated spinal neurotrans-
mission is converted into NMDA receptor-sensitive nocic-
eptive information in nerve-injured mice. By contrast, A3-
fiber-mediated nociceptive responses were also hypersen-
sitized, but the spinal antagonism remained unchanged.

Consistent with the C-fiber hypoalgesia and the Ag-fiber
hyperalgesia observed in the EPW test, the numbers of
pERK-positive neurons throughout C-fibers and Aé-fibers
were decreased and increased, respectively, in nerve-
injured mice. It is interesting that pERK-signals in smaller
DRG neurons (<18 pm) were selectively lost following
nerve injury, but the underlying machineries remain to be
determined. By contrast, the number of Ad-fiber stimuli-
induced pERK-signals in spinal neurons was increased in
injured mice, although no significant change was
observed in DRG neurons. The selective activation of spi-
nal neurons in terms of pERK-signals may be explained by
the up-regulation of the voltage-dependent calcium chan-
nel a,8-1 (Caa,3-1) subunit [24,25], which enhances spi-
nal neurotransmission, leading to an activation of post-
synaptic neurons.

The important finding in this study is that AB-fiber-
induced ERK activation, which is not observed in the
naive state, was detected in the neuropathic pain state, sig-
nificantly, in the superficial laminae of the dorsal horn,
which normally receive nociceptive neural projections.
The results obtained using transcutaneous AB-fiber stimu-
lation by the Neurometer® are highly consistent with pre-
vious studies using low-threshold electrical stimulation to
the sciatic nerves of nerve-injured rats [26,27]. In the
present study, we succeeded in the pharmacological char-
acterization of AB-fiber-induced ERK activation caused by
nerve injury. The AB-fiber-induced pERK activation in spi-
nal neurons of nerve-injured mice was blocked by NMDA
receptor antagonists (AP-5 and MK-801), but not by an
AMPA/kainate receptor antagonist (CNQX), consistent
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with the present findings that AB-fiber hypersensitization
was blocked by NMDA antagonists in the EPW test. These
results strongly suggest that the AB-fiber stimulation may
activate spinal neurons that were originally innervated by
nociceptive C-fibers or Ad-fibers. As nerve injury causes
hyposensitivity to C-fiber stimulation, the interaction
between AB-fibers and Ad-fibers seems to be more impor-
tant for the neural plasticity observed in the neuropathic
pain state. There is an alternative possibility that AB-fibers
become hypersensitive through an alteration of gene
expression, but such a mechanism can not explain the
plasticity, since the present study showed no significant
ERK activation in laminae I11-V, which are expected to be
innervated by A-fibers in naive animals [28].

Regarding the mechanisms underlying the neural plastic-
ity in neuropathic pain, there are reports that ephaptic dis-
charges, that is, abnormal neural sensitization in pre-
synaptic neurons or neural sprouting in the spinal dorsal
horn, occurs [29-31]. From the recent finding that demy-
elination of A-fibers and allodynia occur through mecha-
nisms associated with the lysophosphatidic acid receptor
in the dorsal roots of nerve-injured mice [25], we have
proposed that demyelination-induced loss of insulation
may cause abnormal cross-talk among A-fibers and
sprouting, resulting in a functional switch of innocuous
stimulus to painful perception [8,23].

Conclusion

The present study demonstrates that nerve injury causes a
pharmacological switch from AMPA/kainate receptor to
NMDA receptor neurotransmission through Ap-fibers.
The present findings may provide the molecular mecha-
nisms underlying the clinical findings that systemic and
intrathecal treatments with NMDA-receptor antagonists
cure neuropathic allodynia and hyperalgesia [32,33].

Methods

Animals

Male ddY mice weighing 20-24 g were used after adapta-
tion to laboratory conditions: 22 + 2°C, 55 + 5% relative
humidity and a 12-hour light/dark cycle with food and
water ad libitum. All procedures were approved by the
Nagasaki University Animal Care Committee and com-
plied with the recommendations of IASP [34].

Drugs and treatment

The following drugs were used: D-2-amino-5-phosphono-
valeric acid (AP-5) (Tocris Cookson, USA), (+)-5-methyl-
10,11-dihydro-5H-dibenzo [a,d]cyclohepten-5,10-imine
hydrogen maleate (MK-801) (Sigma, USA) and 6-cyano-
7-nitroquinoxaline-2,3-dione (CNQX) (Research Bio-
chemicals International, USA). CP-99994 was generously
provided by Pfizer Pharmaceuticals (Sandwich, Kent,
UK). All drugs except CNQX were dissolved in artificial
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cerebrospinal fluid (aCSF) comprising 125 mM NaCl, 3.8
mM KCl, 2.0 mM CaCl,, 1.0 mM MgCl,, 1.2 mM KH,PO,,
26 mM NaHCO; and 10 mM D-glucose (pH 7.4). CNQX
was initially dissolved in DMSO at 300 nmol/5 pL and
further diluted in aCSF for intrathecal injection. As a con-
trol (vehicle), DMSO was diluted with aCSF in the same
proportion as in the CNQX solution. All drugs were given
intrathecally in a volume of 5 pl, 10 min before electrical
stimulation.

Partial ligation of sciatic nerve

Partial ligation of the sciatic nerves of mice was performed
under pentobarbital (50 mg/kg, i.p.) anesthesia, follow-
ing the method of Malmberg and Basbaum [10]. Briefly,
the common sciatic nerve of the right hind limb was
exposed at high thigh level through a small incision and
the dorsal half of the nerve thickness was tightly ligated
with a silk suture. A sham-operation was performed simi-
larly except without touching the sciatic nerve. The exper-
iments in the present study were carried out 7 days after
nerve ligation or sham-operation, as maximum thermal
hyperalgesia and mechanical allodynia were observed at
this time-point [22,25].

Electrical stimulation-induced paw withdrawal (EPW) test
The EPW test was performed as described previously [35].
Briefly, electrodes (Neurotron Inc., Baltimore, MD) were
fastened to the right plantar surfaces and the insteps of
mice. Transcutaneous nerve stimuli (sine-wave pulses of
2000, 250 or 5 Hz) were applied using a Neurometer CPT/
C (Neurotron Inc.). The minimum intensity (nA) at which
each mouse withdrew its paw was defined as the current
threshold. All behavioral experiments were carried out by
investigators blinded to the drug treatment.

Stimulation for ERK phosphorylation experiments

For the spinal antagonism experiment, sham-operated or
nerve-injured mice were intrathecally treated with drugs
or aCSF, and deeply anesthetized with sodium pentobar-
bital (50 mg/kg, i.p). The electrodes were fastened with
tape to the operated right plantar surface and instep. After
10 min, nerve stimuli (2000, 250 and 5 Hz) were applied.
The current intensities of the 2000, 250 and 5 Hz stimuli
were 1000 pA, 2000 pA and 2000 pA, respectively, and the
duration of stimulation was 1 min. As ERK activation
requires relatively high-intensity noxious stimulation
[3.4], we adopted thresholds that were higher than the
behavioral withdrawal threshold determined in the EPW
test. Control treatment was performed similarly, except
without electrical stimulation. Two min after electrical
stimulation, mice were immediately perfused with ice-
cold PBS, followed by cold 4% paraformaldehyde solu-
tion. The L4-5 spinal cord and DRGs were isolated, post-
fixed for 3 hours, and cryoprotected overnight in 25%
sucrose solution. The tissues were fast-frozen in cryo-
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embedding compound on a mixture of ethanol and dry
ice and stored at -80° C until use. The ventral horn contral-
ateral to the stimulation was marked with a small cut so
that the ipsilateral side of spinal cord could be identified
after sectioning. DRGs were cut on a cryostat at a thickness
of 10 um, thaw-mounted on silane-coated glass slides,
and air-dried overnight at room temperature (RT). Spinal
cords were cut on a cryostat at a thickness of 30 pm, col-
lected in PBS solution containing 0.1% sodium azide, and
processed as free-floating sections.

Immunostaining for phosphorylated ERK (pERK)

To perform DAB immunostaining for pERK, slide-
mounted DRG sections and free-floating spinal cord sec-
tions were incubated in 1% H,O, for 30 min and washed
with TBS. The sections were incubated with blocking
buffer containing 3% BSA in TBST (0.1% Triton X-100 in
TBS) and subsequently reacted overnight at 4 °C with anti-
pERK antibodies (anti-phospho-p44/42 MAP kinase anti-
bodies, 1:500; Cell Signaling Technology, MA) in block-
ing buffer. After thorough washing, the sections were
incubated with biotinylated anti-rabbit IgG secondary
antibody (1:500; Vector, CA) for 60 min at RT, and subse-
quently with ABC complex (Vector, CA) at RT for 60 min.
The pERK immunoreactivities were visualized by incuba-
tion with a solution containing 0.02% 3,3'-diaminoben-
zidine tetrahydrochloride (DAB; Dojindo, Japan),
0.0051% H,0, in 0.05 M Tris-HCI buffer (pH 7.6) until
brown reaction products appeared. The reaction was
stopped by washing with TBS. Sections were dehydrated
through a series of ethanol solutions, cleaned in xylene,
and coverslipped. For double immunostaining, we used
the following antibodies: a mouse monoclonal antibody
against neuron-specific nuclear protein (anti-NeuN,
1:500; Chemicon, CA), Alexa Fluor 594-conjugated anti-
mouse IgG and Alexa Fluor 488-conjugated anti-rabbit
IgG (1:300; Molecular Probes, CA). All sections were eval-
uated by microscopy (Keyence, Tokyo, Japan).

Measurements of the number of pERK-positive cells in the
L4-5 spinal dorsal horn and the diameters of pERK-posi-
tive DRG cells were carried out using BZ Image Measure-
ment software (Keyence, Tokyo, Japan). To assess the
immunoreactivity of spinal dorsal horn neurons, we
counted only those immunoreactive cells with an S/N
ratio of 3.0 or more and a diameter of >5 um. For the
background activity, we assessed the intensities in the
gracile fasciculus regions of white matter. The quantifica-
tion of positive cells was performed using 5-6 sections per
mouse. To assess the total number of DRG cells and the
diameters of pERK-positive cells, considering the biases
introduced by the stereological approach, we used only
those cells stained by Methylgreen pyronin using adjacent
sections. Quantification of positive cells was performed
using 5-6 sections per mouse.
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Statistical analysis

Differences between multiple groups were analyzed using
a one-way ANOVA and a Tukey-Kramer multiple compar-
ison post-hoc analysis. Changes in the number of pERK-
positive cells, between sham-operated and nerve-injured
mice, were analyzed using an unpaired Student's t-test.
The criterion of significance was set at p < 0.05. All results
are expressed as means + S.E.M.

List of abbreviations

EPW: electrical stimulation-induced paw withdrawal; EPF:
electrical stimulation-induced paw flexion; DRG: dorsal
root ganglion; ERK: extracellular signal-regulated kinase;
pERK: phosphorylated extracellular signal-regulated
kinase; aCSF: artificial cerebrospinal fluid.
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