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Abstract

Both presynaptic and postsynaptic alterations are associated with plastic changes of brain circuits,
such as learning and memory, drug addiction and chronic pain. However, the dissection of the
relative contributions of pre- and postsynaptic components to brain functions is difficult. We have
previously shown peripheral inflammation caused both presynaptic and postsynaptic changes and
calcium-stimulated cyclic AMP (cAMP) pathway in the anterior cingulate cortex (ACC) is critical in
the synaptic plasticity and behavioral sensitization to pain. It remains to be elucidated whether
presynaptic or postsynaptic modulation by cAMP in the ACC could be sufficient for enhancing
inflammatory pain. In order to address this question, we took advantage of a novel transgenic
mouse model, heterologously expressing an Aplysia octopamine receptor (Ap oa,). This receptor
is G protein-coupled and selectively activates the cAMP pathway. We found that activation of Ap
oa, by octopamine enhanced glutamatergic synaptic transmission in the ACC by increasing
presynaptic glutamate release in vitro. Bilateral microinjection of octopamine into the ACC
significantly facilitated behavioral responses to inflammatory pain but not acute pain. The present
study provides the first evidence linking enhanced presynaptic glutamate release in the ACC to
behavioral sensitization caused by peripheral inflammation.

Background

Central synaptic plasticity, including long-term potentia-
tion (LTP) and long-term depression (LTD), is thought to
be a cellular basis for multiple brain functions, such as
learning and memory, drug addition, and persistent pain
[1-3]. Both enhancement of presynaptic glutamate release

and increased postsynaptic glutamate receptor-mediated
responses have been reported to contribute to LTP of exci-
tatory synapses and plasticity-related behavioral conse-
quences. For example, conditional fear memory is
reported to trigger LTP in lateral amygdala [4], where both
recruitment of AMPA receptor and enhanced glutamate
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release are involved [5,6]. In ventral tegmental area -
nucleus accumbens pathway, drug of abuse induced post-
synaptic and/or presynaptic plasticities [7,8]. Similarly, in
the anterior cingulate cortex (ACC), a brain area related to
persistent pain, peripheral inflammation caused func-
tional alterations in postsynaptic NMDA receptors and
presynaptic glutamate release [9,10]. However, the dissec-
tion of the relative contributions of pre- and postsynaptic
components to these plasticity-related brain functions is
difficult. Although presynaptic enhancement of glutamate
release is associated with these plastic changes in brain
function, there is no study available to directly address the
physiological or pathological significance of presynaptic
plasticity.

Among many possible candidate molecules, cyclic AMP
(cAMP) is a key second messenger for synaptic plasticity
and different forms of memory across different species,
from invertebrates to vertebrates, including Aplysia, Dro-
sophila, mice and rats [11-13]. Presynaptically, CAMP and
cAMP-dependent protein kinase A (PKA) could target to
presynaptic ion channels, such as potassium channels and
the hyperpolarization-activated cation channel, or to pre-
synaptic exocytosis machinery [14-16]. Postsynaptically,
cAMP-PKA pathway is involved in AMPA receptor traffick-
ing and activation of gene transcription that required for
the late-phase of LTP [1,17,18]. Behaviorally, the role of
cAMP in learning and memory also has been well docu-
mented. Genetic mutants lacking adenylyl cyclases (ACs),
PKA, or cAMP response element binding protein (CREB)
exhibit memory defects [11,19-21].

It has been proposed that chronic pain and long-term
memory share some common synaptic mechanisms [22-
24]. Consistent with this notion, plasticity in sensory syn-
apses located at pain-processing brain regions was shown
to contribute to chronic pain [25,26]. For example, in the
ACC, cAMP pathway was demonstrated to be critical for
synaptic plasticity and behavioral sensitization to pain.
We found impaired LTP in the ACC [27] and attenuated
behavioral sensitization in various chronic pain models in
mice lacking calmodulin-stimulated AC1 and ACS8
[28,29]. Moreover, both postsynaptic and presynaptic
alterations in the ACC after chronic pain are shown to be
mediated by cAMP pathway [9,10,30]. However, genetic
approaches and pharmacological approaches did not
address the contribution of presynaptic vs postsynaptic
mechanisms in the cortex to behavioral persistent pain. It
is unclear if changes in the ACC, or even changes in pres-
ynaptic glutamate release may be sufficient to cause
behavioral nociceptive responses.

While genetic and pharmacological approaches have been
useful in examining the role of the cAMP pathway in pain,
a combination of these approaches provides unique
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chance for us to investigate synaptic mechanisms related
to inflammatory pain by using transgenic mice with het-
erologously expressed receptors impacting the cAMP
pathway. We took advantage of transgenic mice heterolo-
gously expressing an Aplysia octopamine receptor (Ap 0a,)
[31]. This G protein coupled receptor selectively activates
the cAMP pathway after binding of its natural ligand,
octopamine [32], in forebrain. Our results show that acti-
vation of Ap o0a, in the ACC enhanced glutamatergic syn-
aptic transmission by increasing presynaptic glutamate
release in vitro and enhanced responses to inflammatory
pain in vivo by bilateral microinjection of octopamine.
The current study provides direct evidence that increased
presynaptic glutamate release by cAMP pathway in the
ACC is sufficient for chronic pain.

Methods

Animals

Both WT mice and Ap 0a, transgenic mice were described
in a recent report [31]. Experiments were performed in
mice aged between 8-12 weeks old. All mice were main-
tained on a 12 h light/dark cycle with food and water pro-
vided ad libitum. The Animal Studies Committee at the
University of Toronto approved all experimental proto-
cols.

Brain slice preparation

Adult male WT or transgenic mice (8-12 weeks old) were
anesthetized with 1-2% halothane. Coronal brain slices
(300 um) containing the ACC were prepared using stand-
ard methods [33]. Slices were transferred to a submerged
recovery chamber with oxygenated (95% O, and 5% CO,)
artificial cerebrospinal fluid (ACSF) containing (in mM):
124 NaCl, 2.5 KCl, 2 CaCl,, 2 MgSO,, 25 NaHCO;, 1
NaH,PO,, 10 glucose at room temperature for at least 1 h.

Whole-cell patch clamp recordings in adult ACC slices

After one hr recovery, slices were placed in a recording
chamber on the stage of an Olympus BX51WI microscope
(Tokyo, Japan) with infrared DIC optics for visualization
of whole-cell patch clamp recordings. Excitatory postsyn-
aptic currents were recorded from layer II/III neurons with
an Axon 200B amplifier (Molecular Devices, CA) in ACC
and stimulations were delivered by a bipolar tungsten
stimulating electrode placed in layer V of the ACC.
Recording electrodes (2-5 MQ) contained a pipette solu-
tion composed of (in mM): K-gluconate, 120; NaCl, 5;
MgCl, 1; EGTA, 0.5; Mg-ATP, 2; Na;GTP, 0.1; HEPES, 10;
pH 7.2; 280-300 mOsmol. To examine the voltage
dependence of EPSCs, Cs-MeSO; was used to replace the
K-gluconate. To record miniature EPSCs (mEPSCs), TTX
(1 uM) was added in the bath solution. Access resistance
was 15-30 MQ and was monitored throughout the exper-
iment. In cases of experiments related to comparison
between control and injected mice, stimulation intensity
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was adjusted to produce similar magnitude of EPSC
responses. Data were discarded if access resistance
changed more than 15% during an experiment. The mem-
brane potential was held at -70 mV throughout the exper-
iment. When recording NMDA EPSCs, a holding potential
of -30 mV was used as indicated.

Drugs were applied to the perfusion solution. All drugs
were purchased from Sigma Aldrich. In some experi-
ments, a picopump (WPI pneumatic picopump, Sarasota,
FL) was used for local application of glutamate [34].
Before establishing whole-cell recording, the drug applica-
tion pipette was moved beside the neuron using a micro-
manipulator (Sutter MP-285, Novato, CA). The tip of the
pipette was about 5-10 um away from the neuron
recorded. The diameter of the drug application pipette tip
was about 3-4 um. The pressure and duration of the puff
was 15 psi and 100 ms, respectively.

Brain Cannulation surgery

Mice were anesthetized with isoflurane (1-3%, as
needed) inhalation with 30% oxygen balanced with
Nitrogen. The scalp was shaved and then cleaned with
iodine (Triadine) and alcohol. The head of the mouse was
fixed into a stereotaxic adapter (GENEQ Inc. Model
463013, Montreal, Quebec City, CA) mounted on a stere-
otaxic frame (Kopf Model 962, Tujunga, CA, USA) and
lubricant (Artificial Tears) was applied to the eyes. An inci-
sion was made over the skull and the surface exposed.
Two small holes were drilled above the ACC and the dura
was gently reflected. Guide cannula were placed so that
the final coordinates of the microinjection would be 0.7
mm anterior to Bregma, 0.3 mm lateral to the midline,
and 1.75 mm ventral to the surface of the skull [28].

Microinjection of Octopamine and behavioral tests

Mice were restrained in a plastic cone (Braintree Scien-
tific) and a small whole was cut in the plastic overlying the
microinjection guides. The dummy cannula was removed
and the microinjection cannula was inserted into the
guide. For microinjection, a 30 gauge injection cannula
was used which was 0.8 mm lower than the guide. Micro-
injection was conducted using a motorized syringe pump
(Razel Scientific Instruments Inc., Stamford, Connecticut)
and a Hamilton syringe. Octopamine (1 mM), dissolved
in saline, was delivered to left and right ACC (500 nL in 1
minute) through the cannula. The volume delivered was
confirmed by watching the movement of the meniscus
down a length of calibrated polyethylene (PE10) tubing.
Following delivery to each side of the brain, the injection
cannula was left in place for 1 minute to help prevent any
solution from flowing back up the guide. The cannula was
then retracted and inserted into the opposite side of the
brain.
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After the last microinjection, formalin (5%, 10 pl) was
injected subcutaneously into the dorsal side of the left
hindpaw. The total time between the first microinjection
and the formalin injection was at most 6 minutes. Follow-
ing hind paw injection, the animals were immediately
delivered to a clear plastic cylinder for behavioral observa-
tion. The total time spent licking or biting the injected
hindpaw was recorded for each 5 min interval over the
course of 2 hr. Upon completion of experiments, animals
were deeply anesthetized and perfused transcardially with
saline, followed by 4% paraformaldehyde. Brains were
dehydrated overnight in a 30% sucrose solution for cryo-
protection. Brains were serially sectioned on a cryostat at
(30 um) and were mounted on glass slides. The sections
were then stained with Hematoxylin-Eosin (H&E) and
observed under microscope to confirm the site of injec-
tion.

For acute pain tests, mice were gently restrained in a plas-
tic cone for bilateral microinjection of 1 mM octopamine
(as described above). 1 minute after the last microinjec-
tion the tail-flick reflex of the mouse was tested. The spi-
nal tail-flick reflex was evoked by focused radiant heat
applied to the underside of the tail. A photocell timer
measured the latency to reflexive removal of the tail away
from the heat. Following the tail-flick reflex test the ani-
mal was removed from the plastic cone and placed in its
home cage for 5 minutes. The animals were then tested on
the hotplate test. For this test, mice were placed on a ther-
mally controlled metal plate (Columbia Instruments,
Columbus, Ohio). The time between the placement of a
mouse on the plate and licking or lifting of a hind paw
was measured with a digital timer. The temperature of the
hotplate was set to 55.0°C. Mice were removed from the
hot plate immediately from the first response.

Data analysis and statistics

Miniature EPSCs were detected and analyzed using an
event detection program (Mini Analysis Program; Synap-
tosoft, Inc., Decatur, GA). The threshold for detecting
mEPSCs was set as 1.5 time of the noise level. Results were
analyzed by t-test, paired t-test, or two-way ANOVA fol-
lowed by post-hoc Student-Newman-Keuls test to identify
significant differences. All data are expressed as mean +
S.E.M. In all cases, P < 0.05 was considered statistically sig-
nificant.

Results

We have previously shown that inflammatory pain caused
synaptic alterations in the ACC. For example, presynaptic
glutamate release is enhanced while postsynaptic NMDA
NR2B subunit is upregulated in the ACC pyramidal neu-
rons after peripheral inflammation [9,10]. In addition,
forebrain overexpression of NR2B is sufficient for
enhancement of inflammatory pain [35]. However, there
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is no study on the regional and temporal manipulations
in synaptic transmission in the ACC and chronic pain.
Octopamine is a trace amine and its endogenous level is
far below those of the classical neurotransmitters [36].
Using transgenic mice heterologously expressing Ap oa;,
we could selectively activate cAMP pathway in the ACC
and examine its effect in the synaptic transmission and
behavior sensitization. The same mice were also reported
to exhibit enhanced hippocampal synaptic plasticity and
fear memory [31].

Normal neuronal excitability and glutamatergic excitatory
neurotransmissions in the ACC pyramidal neurons in
transgenic mice

To examine whether heterologous expression of Ap oa,
affects neuronal and synaptic properties of ACC neurons,
we compared the neuronal excitability and basal synaptic
transmissions in wild-type (WT) and transgenic mice.
Conventional whole-cell patch clamp recordings were
performed in pyramidal neurons from layer II/III of the
ACC. Pyramidal neurons in the ACC were selected by their
morphology and spike properties [33]. We found that
there was no difference in the resting membrane potential
of ACC pyramidal neurons between WT (-65.1 + 2.1 mV,
n = 25 neurons/15 mice) and Ap oa; mice (-64.3 + 1.8 mV,
n = 22 neurons/8 mice). No difference was found in the
number of spikes in neurons from wild-type and trans-
genic mice with current injections of either 100 pA or 200
PA (n = 22 neurons/8-12 mice for each group) (Figure 1A
and 1B).

Glutamatergic transmissions in the ACC were then exam-
ined in Ap oa, mice. AMPA receptor-mediated excitatory
postsynaptic currents (EPSCs) were recorded in layer II/111
pyramidal neurons by stimulating layer V in the ACC. In
the presence of GABA, antagonist, picrotoxin (100 uM)
and NMDA receptor antagonist, AP5 (50 uM), AMPA
EPSCs were isolated. The input-output relationship of
AMPA receptor-mediated EPSCs was examined. Different
stimulation intensities were applied and the amplitude of
EPSCs was compared between WT and transgenic mice.
We found there was no difference in the input-output
curve of AMPA EPSCs in between two groups (Figure 1C).
To examine the voltage dependence of AMPA EPSCs, we
recorded the current over a range of membrane potentials
from -85 mV to +55 mV. No difference was found in the
current-voltage (I-V) curve of AMPA EPSCs in WT and
transgenic mice (Figure 1D).

NMDA receptor in the ACC is critical for synaptic plastic-
ity and chronic pain [9,35,37]. Therefore, we want to
know whether the NMDA receptor-mediated EPSCs were
normal in the transgenic mice. NMDA EPSCs were iso-
lated in the presence of picrotoxin (100 uM) and non-
NMDA receptor antagonist, CNQX (20 puM). Similarly,
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No difference in neuronal excitability or excitatory
neurotransmissions in ACC pyramidal neurons from
WT and Ap oa; mice. (A) Diagram illustrating the experi-
mental design and procedures. Ap oa, receptor is a Gs-cou-
pled receptor from Aplysia. Transgenic mice expressing Ap
oa, receptors were used for slice electrophysiology and
inflammatory pain behaviors. (B) Representative traces and
pooled results showing neuronal responses to current injec-
tions from -200 pA to 200 pA with 100 pA step for 400 ms.
Action potentials were induced in neurons from both WT
and transgenic mice. (C) Sample trances and pooled results
showing no difference in input-output curve of AMPA recep-
tor-mediated EPSCs between WT and Ap oa, mice. (D) No
difference in |-V curve of AMPA receptor-mediated EPSCs
between WT and transgenic mice.

the input-output relationship and I-V curve were com-
pared between two groups. We found that there was no
significant difference in either input-output or I-V curve in
ACC neurons from WT and transgenic mice (Figure 2A
and 2B).

Octopamine enhanced glutamatergic transmission in
transgenic mice

It is well known that Ap oa, is selectively coupled to Gs
protein [38] and activation of heterologous expression of
Ap 03, in HEK293 cells selectively stimulated cAMP syn-
thesis after octopamine application [32]. Next, we wanted
to test the function of exogenous Ap oa, in ACC pyramidal
neurons in transgenic mice. AMPA EPSCs were isolated
and octopamine (50 uM) was then bath applied after sta-
ble EPSCs were obtained. In most neurons tested (8 of 11
neurons/8 mice), octopamine significantly increased the
amplitude of EPSCs 10 minutes after the drug application
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Normal NMDA receptor-mediated EPSCs in Ap oa,
mice. (A)No difference in input-output curve of NMDA
receptor-mediated EPSCs between WT and Ap oa, mice. (B)
No difference in |-V curve of NMDA receptor-mediated
EPSCs between WT and Ap oa; mice.

(127.5 + 6.8% of control, n = 11, P < 0.01, Figure 3A-C).
The enhanced EPSCs by octopamine is long lasting, only
showing partial recovery after 10 minutes washout of
octopamine. In the WT mice, however, octopamine had
no significant effect on the amplitude of EPSCs (96.5 +
5.2% of control, n = 5, P = 0.57, Figure 3C). Therefore,
octopamine exerts their stimulatory effect on glutamater-
gic neurotransmission via octopamine receptors in the
transgenic mice.

The enhanced amplitude of EPSCs by octopamine in Ap
0a, mice may be due to increased function of postsynaptic
AMPA receptor or presynaptic glutamate release. To
address the issue, we tested pair-pulse ratio, a commonly
used criteria to study the presynaptic release [10], in ACC
pyramidal neurons by octopamine in transgenic mice.
Paired stimuli with 50 ms intervals were applied and pair-
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Figure 3

Enhancement of EPSCs by octopamine in transgenic
but not WT mice. (A) Sample traces showing EPSCs
before and after application of octopamine (50 pM) in Ap oa,
mice. (B) The time course of octopamine's effect on EPSCs in
a neuron shown in A. (C) Pooled data showing octopamine
significantly increased EPSCs in transgenic but not WT mice.
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pulse facilitation (PPF) was calculated before and after
application of octopamine in transgenic mice (Figure 4A).
We found that bath application of octopamine (50 uM)
significantly decreased PPF from 1.48 + 0.09 to 1.28 +
0.06 (n = 14, P < 0.05, paired t-test, Figure 4A). Therefore,
the results demonstrate the enhanced presynaptic gluta-
mate release after activation of Ap oa, by application of
octopamine.

Octopamine had no effect on the glutamate receptor-
mediated currents in transgenic mice

The enhanced amplitude of EPSCs and decreased PPF sug-
gests that octopamine may increase the presynaptic gluta-
mate release but not the function of postsynaptic AMPA
receptor. To confirm the idea, glutamate was locally
applied by puff to induce glutamate receptor-mediated
currents and then octopamine was bath-applied in trans-
genic mice. Glutamate (100 uM) induced inward currents
in ACC pyramidal neurons, which may be mainly medi-
ated by AMPA receptors (Figure 4B). Glutamate was
applied every 30 s and bath application of octopamine
(50 uM) for 10 minutes has no effect on the glutamate
receptor-mediated currents (95.9 + 4.8% of control, n = 5,
P =0.91, Figure 4B). These results confirm that activation
of octopamine receptor by octopamine has no effect on
the channel function of glutamate receptors.

Octopamine increase mEPSC frequency but not amplitude
in transgenic mice

The results have indicated that octopamine targeted to
presynaptic neurons to increase glutamate release in the
ACC in transgenic mice. To further examine the pre- or
postsynaptic effect of octopamine, we tested the effects of
octopamine on mEPSCs in ACC pyramidal neurons in Ap
oa, mice. We found that bath-applied octopamine (50
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Figure 4

Presynaptic action of octopamine in transgenic mice.
(A) Representative traces (upper) and pooled results (lower)
showing that octopamine significantly decreased pair-pulse
facilitation in transgenic mice. (B) Octopamine (50 uM) had
no effect on puff-applied glutamate-induced current in trans-
genic mice.
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puM) significantly increased the frequency of mEPSCs
from 3.9+ 09 Hzto5.6+ 1.1 Hz (n=8, P <0.01, paired
t-test, Figure 5A and 5B). However, there is no significant
change in the amplitude of mEPSCs before and after
octopamine application (from 10.5 + 1.5 pAto 9.6 + 1.8
pPA, n = 8, P = 0.29, Figure 5A and 5C). These results fur-
ther supported the idea that activation of octopamine
receptor by exogenous octopamine increased presynaptic
glutamate release in the ACC in Ap oa, mice.

Microinjection of octopamine into the ACC increases
behavioral responses to inflammatory pain

We have previously shown that inflammatory pain caused
synaptic alterations in the ACC. For example, presynaptic
glutamate release is enhanced while postsynaptic NMDA
NR2B subunit is upregulated in the ACC pyramidal neu-
rons after peripheral inflammation [9,10]. However, there
is no study on the regional and temporal manipulations
in synaptic transmission in the ACC and persistent pain.
Since endogenous octopamine is very low [36], we could
selectively activate CAMP pathway through local bilateral
ACC microinjection of octopamine while testing behavio-
ral response to the inflammation. In a mouse model of
inflammatory pain (the formalin test), we found that
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Enhancement of mEPSC frequency by octopamine in
transgenic mice. (A) Sample traces showing the effect of
octopamine (50 uM) on mEPSCs in Ap oa; mice. (B) The
cumulative probability plot for inter-event intervals showing
that octopamine increased the frequency of mEPSCs in a
neuron shown in A. The inset is the pooled data showing
that frequency of mEPSCs was significantly increased. (C) No
significant change in the amplitude of mEPSCs after
octopamine application in transgenic mice.
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there was a significant effect of bilateral octopamine (1
mM) injection into the ACC in the formalin test (F(; 555)=
5.46, P < 0.037, two-way ANOVA, Figure 6A). Similarly,
when data were grouped according to the phase of the for-
malin test there was a significant effect of octopamine
treatment (F(; 35)= 5.89, P < 0.032, two-way ANOVA) and
the effect occurred exclusively in the intermediate inflam-
matory phase (Phase 2) (q = 5.36, P < 0.001, Figure 6B).
By contrast, the acute phase 1 (0-10 min) (Figure 6A) was
apparently unaltered, indicating that the enhancement is
selective for late phase responses. This finding is consist-
ent with our previous studies that Phase 2 inflammatory
responses were selectively reduced in genetic knockout of
AC1 or 8 mice [28]. Finally, we also examined the effects
of ACC octopamine microinjection on acute nociceptive
responses including the tail-flick and hot-plate tests. We
found that octopamine at the ACC did not effect tail-flick
(t=10.38, P =0.716, Figure 6C), or hot-plate (t=1.29, P =
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Figure 6

Microinjection of octopamine at the ACC in Ap oa,
mice enhances inflammatory pain. (A) Behavioral nocic-
eptive responses to hindpaw formalin injection, plotted in 5
minute intervals. Wild-type mice are plotted as filled circles
(n =7) while Ap oa; mice are plotted as open circles (n = 6).
Arrow shows the time for octopamine microinjection. Ml:
microinjection. (B) Data were grouped into 3 phases: early
(acute), intermediate (inflammatory), and late phases. (C)
Bilateral microinjection of | mM octopamine into the ACC
of Ap oa; mice (n = 5) did not alter hotplate (left) or tail-flick
(right) responses compared to wild-type control (n = 3). (D)
Location of lesion sites from all animals included in the study
(left). Open circles represent injection sites of wild-type mice
while filled circles represent injection sites of Ap oa, mice.
The right panel showed the example of lesion site location in
the ACC of an H&E stained brain section. The injection sites
are indicated by *, and the scale bar is 300 um.
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0.243, Figure 6C) responses. Taken together, we suggest
that the octopamine at the ACC acting on octopamine
receptors enhanced inflammatory pain but not acute
pain.

Discussion

In the present study, we used novel transgenic mice heter-
ologously expressing Ap 0a, receptors to examine the role
of cAMP pathway in synaptic transmission and chronic
pain in the ACC. The use of exogenous receptors is an
innovative method that applies the precision of molecular
biological techniques to studies on neuronal network. We
found that activation of Ap oa, receptors in the ACC
enhanced presynaptic glutamate release (Figure 7) as well
as behavioral responses to chronic pain. This is the first
attempt to directly address the G protein-coupled cAMP
pathway in synaptic transmission and its functional sig-
nificance in the ACC. Our results suggest that increasing
presynaptic glutamate release in the ACC is sufficient for
enhanced chronic pain.

octopamine

¢

presynaptic

Figure 7

Proposed model for presynaptic Ap oa, in the syn-
apse in the ACC from transgenic mice. Diagram show-
ing that activation of presynaptic Ap oa, leads to the
production of cAMP. cAMP-related signaling pathways facili-
tate the glutamate release from presynaptic terminal. cAMP
produced by activation of Ap oa, in the presynaptic terminal
may mimic the effects of cAMP produced by activation of
presynaptic calcium-stimulated ACI [30]. The released gluta-
mate then acts on postsynaptic glutamate receptors, such as
AMPA receptors (AMPAR) and NMDA receptors
(NMDAR), and trigger the downstream signaling pathways. In
the transgenic mice, Ap oa, is preferentially expressed in the
presynaptic terminal in the ACC.
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Since Ap 0a, receptor expression is driven by CaMKIla
promoter, the receptor is selectively expressed in forebrain
neurons. Therefore, CAMP pathway coupled to Ap oa,
receptor could be spatially activated. Although it has been
shown the role of cAMP in spinal dorsal horn in chronic
pain [39,40], here we demonstrate that elevation of CAMP
in the ACC is sufficient to enhance the behavioral sensiti-
zation by using the unique mice. In addition, up-regula-
tion of cAMP mainly happens in neurons rather than glial
cells, in which cAMP pathway is also activated by AC acti-
vator [41,42]. Another advantage for using the transgenic
mice is that Ap oa, receptor is Aplysia Gs protein-coupled
receptor and is thus not activated endogenously. There-
fore, exogenous application of octopamine will be the
only way of activating Ap oa, receptor and the associated
cAMP pathway. Consistently, we have shown here that
heterologous expression of Ap o0a, receptor does not affect
neuronal excitability and basal synaptic transmission.
Hence, unlike conventional knockout mice or application
of drugs like forskolin [28,29], the Ap oa, transgenic mice
provide the unique tool to study functions of G protein-
coupled cAMP pathway at cellular and behavioral levels.

Mechanisms for enhancement of excitatory synaptic
transmission by activation of Ap oa, receptor
Electrophysiological experiments have shown that excita-
tory synaptic transmission in the ACC is primarily gluta-
matergic and mediated by NMDA, AMPA and kainate
receptors [9,43] (Figure 7). Heterologous expression of Ap
0a, receptor in mice forebrain is not affecting either
NMDA or non-NMDA receptor-mediated synaptic trans-
mission, suggesting no endogenous activation of Ap oa,
receptor. However, exogenous application of octopamine,
which is known to selectively activate Ap oa, and subse-
quently increase cAMP level [32,44], significantly
enhanced the amplitude of EPSCs. Three lines of evidence
showed that the facilitation is due to increased presynap-
tic release of glutamate. First, paired-pulse ratio is
decreased after application of octopamine, indicating the
presynaptic component in the modulation. Second,
octopamine did not affect the glutamate-induced current
in the ACC pyramidal neuron, showing minor postsynap-
tic regulation on the function of glutamate receptors.
Third, the frequency but not amplitude of mEPSCs is
increased by bath application of octopamine, consistently
suggesting the enhanced presynaptic glutamate release
rather than postsynaptic receptor functions. Given that Ap
0a, receptor is coupled to Gs protein and elevation of
CcAMP [32], our results is consistent with the well-known
role of cAMP pathway in modulation of neurotransmitter
release [14-16]. Taken together, we found that exogenous
activation of Ap oa, facilitates excitatory synaptic trans-
mission via increasing presynaptic glutamate release.
Thus, these heterologous receptors are probably expressed
in presynaptic terminals modulating vesicle release. It will
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be of interest to determine how Ap oa, receptors traffic
and function in these synaptic terminals. However, since
the exact anatomic location of the expressed octopamine
receptors is unknown, it is important to know whether
octopamine has any effect on other membrane conduct-
ance and channels (other than glutamate receptors) that
would alter postsynaptic excitability.

We found that activation of Ap oa, receptor did not mod-
ulate postsynaptic function. The results is surprising,
given that cAMP-PKA pathway is known to modulate
AMPA receptor phosphorylation and trafficking [18,45].
Currently, we have no clear explanation as to why activa-
tion of postsynaptic Ap oa, receptor and following cAMP
pathway is not effective in enhanced postsynaptic AMPA
receptor function. One possibility is the washout of intra-
cellular molecules by conventional whole-cell patch
clamp recordings. This could explain the pre- but not
postsynaptic effect by Ap oa, activation in modulating of
synaptic transmission. Another possibility is that the
cAMP-PKA pathway is important for AMPA trafficking to
extrasynaptic but not synaptic sites [46]. If this is the case,
activation of Ap oa, receptor may facilitate LTP induction
in the ACC. Our previous results have shown that Ca2+
stimulated AC1&8 is critical in cingulate LTP [27], it will
be noteworthy to know how elevation of cAMP by G-pro-
tein receptor will affect synaptic plasticity in the ACC.

Functional significance of cAMP pathway and presynaptic
glutamate release in the ACC

Our knowledge of the pain pathway and transmission has
significantly improved over the last decade; however, the
cellular mechanisms of chronic pain remained to be elu-
cidated. Previously, we have shown genetic elimination of
behavioral sensitization in AC1&8 knockout mice
[28,29]. AC1&8 is coupled to NMDA receptor-induced
cytosolic Ca2+ increases to cAMP signaling pathways [19].
Our previous results, therefore, indicate that Ca2+-
stimualted cAMP pathway is necessary for chronic pain
behaviors. In the current study, we extend the aforemen-
tioned findings showing that selective elevation of cCAMP
is sufficient to enhance chronic pain. Most remarkably,
using the unique transgenic mice, we provide the first evi-
dence that (1) Selective activation of G protein-coupled
receptors and its cCAMP pathway in the ACC can enhance
behavioral sensitization to pain; and (2) increased presy-
naptic glutamate release by activation cAMP pathway in
the ACC is sufficient for the chronic pain phenotype. In
support of the notion that cAMP and glutamate release are
critical for chronic pain, our recent study found that
enhanced glutamate release in the ACC after chronic pain
is also mediated by cAMP pathway [10].

In addition to its role in chronic pain, the cAMP signaling
pathway is well-known to be involved in different forms

http://www.molecularpain.com/content/4/1/40

of memory, such as spatial and emotional memory
[11,13]. The ACC has diverse functions, including emo-
tion, memory and pain [23,37,47]. Therefore, future
experiments will be performed to address the role of the
cAMP pathway in ACC-related functions like emotion and
memory other than chronic pain using these novel trans-
genic mice.
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