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Abstract
Postsynaptic density (PSD)-93, a neuronal scaffolding protein, binds to and clusters N-methyl-D-
aspartate receptor (NMDAR) subunits NR2A and NR2B at cellular membranes in vitro. However,
the roles of PSD-93 in synaptic NR2A and NR2B targeting in the central nervous system and
NMDAR-dependent physiologic and pathologic processes are still unclear. We report here that
PSD-93 deficiency significantly decreased the amount of NR2A and NR2B in the synaptosomal
membrane fractions derived from spinal cord dorsal horn and forebrain cortex but did not change
their levels in the total soluble fraction from either region. However, PSD-93 deficiency did not
markedly change the amounts of NR2A and NR2B in either synaptosomal or total soluble fractions
from cerebellum. In mice deficient in PSD-93, morphine dose-dependent curve failed to shift
significantly rightward as it did in wild type (WT) mice after acute and chronic morphine challenge.
Unlike WT mice, PSD-93 knockout mice also showed marked losses of NMDAR-dependent
morphine analgesic tolerance and associated abnormal sensitivity in response to mechanical,
noxious thermal, and formalin-induced inflammatory stimuli after repeated morphine injection. In
addition, PSD-93 knockout mice displayed dramatic loss of jumping activity, a typical NMDAR-
mediated morphine withdrawal abstinence behavior. These findings indicate that impaired
NMDAR-dependent neuronal plasticity following repeated morphine injection in PSD-93 knockout
mice is attributed to PSD-93 deletion-induced alterations of synaptic NR2A and NR2B expression
in dorsal horn and forebrain cortex neurons. The selective effect of PSD-93 deletion on synaptic
NMDAR expression in these two major pain-related regions might provide the better strategies
for the prevention and treatment of opioid tolerance and physical dependence.

Introduction
Opioid drugs such as morphine are a class of powerful
analgesics used for treating many forms of acute and

chronic pain. However, their chronic use has been limited
by undesirable side effects such as tolerance, abnormal
pain sensitivity, and physical dependence [1,2]. These

Published: 14 October 2008

Molecular Pain 2008, 4:45 doi:10.1186/1744-8069-4-45

Received: 11 September 2008
Accepted: 14 October 2008

This article is available from: http://www.molecularpain.com/content/4/1/45

© 2008 Liaw et al; licensee BioMed Central Ltd. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), 
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Page 1 of 11
(page number not for citation purposes)

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&db=PubMed&dopt=Abstract&list_uids=18851757
http://www.molecularpain.com/content/4/1/45
http://creativecommons.org/licenses/by/2.0
http://www.biomedcentral.com/
http://www.biomedcentral.com/info/about/charter/


Molecular Pain 2008, 4:45 http://www.molecularpain.com/content/4/1/45
undesirable symptoms are believed to be related to neuro-
nal plasticity in the central nervous system (CNS). Several
lines of research have shed light on molecular and cellular
mechanisms that underlie the development of opioid
analgesic tolerance and dependence [3-5]. Pharmacologi-
cal blockade of NMDA receptors (NMDARs) or targeted
disruption of NMDAR subunit NR2 genes significantly
attenuates symptoms of opioid tolerance and physical
dependence, implicating involvement of NMDARs in the
development of opioid-induced neuronal plasticity [6-8].
However, the molecular mechanisms underlying
NMDAR-dependent synaptic plasticity during the devel-
opment of opioid tolerance and physical dependence are
unclear.

PSD (post synaptic density)-93, also named chapsyn
(channel-associated protein of synapses)-110, is one of a
growing superfamily of PDZ-domain-containing proteins
shown to physically link proteins together into macromo-
lecular structures [9,10]. PSD-93 was identified to have
structural similarity with three other PDZ-domain-con-
taining proteins, PSD-95/SAP (synapse-associated pro-
tein) 90 [11,12], SAP102 [12,13], and SAP97/hdlg
[14,15]. These proteins are generically referred to as mem-
brane-associated guanylate kinases (MAGUKs) and con-
tain three tandem PDZ domains (PDZ1-3) at the N-
terminal side, an Src homology region 3 domain in the
middle, and a guanylate kinase-like domain at the C-ter-
minal end. PDZ domains of MAGUKs are motifs of ~90
amino acid repeats that have recently been recognized to
mediate protein-protein interactions. Studies using the
yeast two-hybrid system revealed that the PDZ domains of
PSD-93 specifically bind to the C-termini of NMDAR sub-
units NR2A and NR2B [10]. The deletion of PDZ domains
from PSD-93 not only disrupts interaction between
NR2A/NR2B and PSD-93, but also reduces NMDAR clus-
tering at cellular membranes in vitro [10]. Targeted disrup-
tion of the PSD-93 gene reduces NMDAR-mediated
postsynaptic function in dorsal horn and forebrain cortex
and attenuated NMDAR-mediated persistent pain [16].
However, a recent study reported that PSD-93 knockout
(KO) mice displayed normal NMDAR-mediated postsyn-
aptic response in hippocampal neurons [17]. It appears
that the roles of PSD-93 in synaptic NMDAR targeting and
NMDAR-dependent physiologic and pathologic processes
in the CNS are still unclear.

In the present study, we examined whether PSD-93 defi-
ciency affected synaptic NR2A and NR2B expression in
two major pain-related regions [18,19], spinal cord and
forebrain cortex, and a motor and coordination-related
region [20], cerebellum, of the CNS. Furthermore, we
examined whether PSD-93 was required for NMDAR-
dependent development of neuronal plasticity during
morphine tolerance and physical dependence.

Materials and methods
Animals
The PSD-93 KO mice (C57BL/6 genetic background) were
generated as described previously [21]. Male PSD-93 KO
mice and wild type (WT) littermates (10–12 weeks) were
obtained by interbreeding PSD-93 heterozygous mice. All
animal experiments were carried out with the approval of
the Animal Care and Use Committee at Johns Hopkins
University. The experimenter was blind to the genotype of
the mice in all studies.

Tail-flick assay
A tail-flick apparatus (Model 33B Tail Flick Analgesy
Meter, IITC Life Science, Woodland Hills, CA, USA) with
a radiant heat source connected to an automatic timer was
used to assess the analgesic response. A cut-off time
latency of 10 s was used to avoid tissue damage to the tail.
Tail-flick latencies were measured as the time required to
induce a tail flick after applying radiant heat to the skin of
the tail. The antinociceptive effects were expressed as the
percentage of maximal possible analgesic effect (%
MPAE): % MPAE = [(response latency - baseline latency)/
(cut-off latency - baseline latency)] × 100%.

Morphine-induced tolerance studies
Acute morphine tolerance was induced by two subcutane-
ous (s.c.) injections of 100 mg/kg morphine (WT: n = 10;
KO: n = 10) or saline (control; WT: n = 10; KO: n = 10)
given 12 h apart [22,23]; chronic morphine tolerance was
induced by s.c. injections of morphine (10 mg/kg) (WT: n
= 10; KO: n = 10) or saline (control; WT: n = 10; KO: n =
10) given every 12 h for 6 days [8]. On day 2 after induc-
tion of acute morphine tolerance or day 7 after induction
of chronic morphine tolerance, cumulative dose-response
curves were determined as described previously [24]. Mice
received a very low morphine dose (1 mg/kg, s.c.) and
analgesia was assessed 30 min later by the tail-flick assay.
Mice that were not analgesic at the first dose then received
a second dose (cumulative dosing increase by a 0.3 log
unit) and were tested 30 min afterward. This procedure
was repeated until either the mice did not move their tail
within the cut-off time or no further increase in tail-flick
latency was noted from one dose to the next.

To observe whether repeated morphine injection pro-
duced a time-dependent and NMDAR-dependent reduc-
tion in morphine analgesic effects, WT and KO mice
received s.c. injections of morphine (10 mg/kg) or saline
twice daily (12-h intervals) with intraperitoneal (i.p.)
injection of saline or 0.3 mg/kg MK-801 once daily for 6
days. WT and KO mice were divided into four paired
groups (n = 10 WT and 10 KO per group): s.c. saline + i.p.
saline, s.c. morphine + i.p. saline, s.c. saline + i.p. MK-801,
and s.c. morphine + i.p. MK-801. Tail-flick latencies were
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determined prior to drug injection and 1 h after the first
injection of morphine on days 1, 3, 5, and 7.

Morphine-induced abnormal pain hypersensitivity studies
To determine whether NMDAR-dependent mechanical
allodynia occurs in morphine-tolerant mice, paw with-
drawal response to mechanical stimuli was measured as
described previously [16,25]. Mice received s.c. injections
of morphine (20 mg/kg) or saline twice daily with i.p.
injection of 0.3 mg/kg MK-801 or saline once daily for 6
days. WT and KO mice were divided into four paired
groups (n = 6 WT and 6 KO per group): s.c. saline + i.p.
saline, s.c. morphine + i.p. saline, s.c. saline + i.p. MK-801,
and s.c. morphine + i.p. MK-801. Mechanical behavioral
testing was performed before drug injection (baseline)
and on days 1, 2, and, 4 after morphine withdrawal. Each
mouse was placed in a Plexiglas chamber on an elevated
mesh screen. Two calibrated von Frey filaments (0.24 and
1.47 mN; Stoelting Co., Wood Dale, IL, USA) were
applied to the hind paw for approximately 1 s, and each
stimulation was repeated 10 times to both hind paws. The
occurrence of paw withdrawal in each of these 10 trials
was expressed as a percent response frequency [(number
of paw withdrawals/10 trials) × 100 = % response fre-
quency], and this percentage was used as an indication of
the amount of paw withdrawal.

To determine whether NMDAR-dependent thermal
hyperalgesia occurs in morphine-tolerant mice, paw with-
drawal response to noxious heat stimulation was meas-
ured as described previously [16,25]. WT (n = 24) and KO
(n = 24) mice were divided into four paired groups and
given drug treatments according to the same protocol as
for the mechanical test. Thermal behavioral testing was
carried out before drug injection (baseline) and on days 1,
2, and 4 after morphine withdrawal. Mice were placed in
a Plexiglas chamber on a glass plate. A radiant heat from
Model 336 Analgesic Meter (IITC Inc./Life Science Instru-
ments, Woodland Hills, CA, USA) was applied by aiming
a beam of light through a hole in the light box through the
glass plate to the middle of the plantar surface of each
hind paw. When the animal lifted its foot, the light beam
was turned off. The length of time between the start of the
light beam and the foot lift was defined as the paw with-
drawal latency. Each trial was repeated five times at 5-min
intervals for each side. A cut-off time of 20 s was used to
avoid tissue damage to the hind paw.

The formalin test was performed as described previously
[26]. Briefly, mice received s.c. injection of morphine (20
mg/kg) or saline twice daily for 6 days. On day 7, WT (n =
12; 6 for saline and 6 morphine) and KO (n = 12) mice
received a 10-μl intraplantar injection of 1% formalin.
After the formalin injection, the duration of paw licking
was recorded in 5-min periods for 60 min. We defined the

first phase response as the total time spent licking during
the first 10 min and the second phase response as the
duration of licking that occurred 10–60 min after forma-
lin injection.

Naloxone-precipitated withdrawal symptoms
Among naloxone-precipitated withdrawal symptoms,
jumping is reliably observed in mice, although other
symptoms, such as forepaw tremor and rearing, are some-
times observed [27]. To examine an NMDAR-dependent
morphine physical dependence, the number of jumps was
analyzed quantitatively. Briefly, WT and KO mice (10/
genotype/treatment) were injected twice daily with mor-
phine (10 mg/kg, i.p.) and once daily with 0.3 mg/kg MK-
801 or saline for 6 days and on the seventh day challenged
with naloxone (2 mg/kg, i.p.) 2 h after a final s.c. injection
of morphine (10 mg/kg). Immediately after naloxone
treatment, each mouse was placed into a transparent
acrylic quadribox (20 × 30 cm), and jump frequency was
tallied over the next 15 min.

Subcellular fractionation of proteins
Biochemical fractionation was carried out according to
previous studies with minor modification [28,29]. WT (n
= 12) and KO (n = 12) mice were sacrificed and lumbar
enlargement spinal cord, forebrain cortex, and cerebellum
collected. The dorsal part of the spinal cord was separated
from the ventral part. The tissues were homogenized in
homogenization buffer [10 mM Tris-HCl (pH 7.4), 5 mM
NaF, 1 mM sodium orthovanadate, 320 mM sucrose, 1
mM EDTA, 1 mM EGTA, 0.1 mM phenylmethylsulfonyl
fluoride, 1 mM leupeptin, and 2 mM pepstatin A] and
centrifuged at 1,000 × g for 20 min at 4°C. The superna-
tant (S1, total soluble fraction) was collected and the pel-
let (P1, nuclei and debris fraction) discarded. After
measurement of the protein concentration, 20% of S1 was
removed for detecting protein expression in the total sol-
uble fraction. The remaining S1 (80%) was centrifuged at
10,000 × g for 20 min to produce a pellet (P2) and super-
natant (S2). The P2 was lysed hypo-osmotically in water
and centrifuged at 25,000 × g to produce pellet 3 (P3). The
P3 was considered to be the crude synaptosomal mem-
brane fraction [28,29].

Western blot analysis
The samples were heated for 5 min at 99°C and then
loaded onto 4% stacking/7.5% separating SDS-polyacry-
lamide gels. The proteins were eletrophoretically trans-
ferred onto nitrocellulose membrane. The blotting
membrane was blocked with 3% non-fat dry milk for 1 h
and incubated overnight at 4°C with rabbit anti-PSD-93
(1:1,000; Alomone Labs Ltd, Jerusalem, Israel), rabbit
anti-N-cadherin (1: 1,000; BD Biosciences, Palo Alto, CA),
rabbit anti-NR2A (1: 200, Upstate/CHEMICON, Temec-
ula, CA), rabbit anti-NR2B (1:500, Upstate/CHEMICON),
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or monoclonal mouse anti-β-actin (1:10,000; Santa Cruz
Biotechnology, Inc., Santa Cruz, CA). N-cadherin was
used as a loading control and marker for crude synapto-
somal fraction, whereas β-actin was used as a loading con-
trol for total soluble fraction. The proteins were detected
with anti-rabbit or anti-mouse secondary antibody and
visualized with the chemiluminescence reagents provided
with the ECL kit (Amersham Pharmacia Biotech, Piscata-
way, NJ) and exposure to film. The intensity of blots was
quantified with densitometry. The blot density from naïve
animals was set as 100%.

Statistical analysis
Data are expressed as mean ± SEM. The effective dose that
resulted in a 50% reduction of control response (ED50)
and 95% confidence intervals (CIs) were calculated by
using a least-squares linear regression method according
to the formulae given by Tallarida and Murray (1987).
Statistical significance was determined by student's t tests
or one-way and two-way analysis of variance followed by
the post hoc Tukey tests. Significance was set at P < 0.05.
The statistical software package SigmaStat (Systat, Port
Richard, CA) was used to perform all statistical analyses.

Results
3.1. Effect of PSD-93 deletion on the expression of NR2A 
and NR2B in total soluble and synaptosomal membrane 
fractions
Immunoblot analysis showed that PSD-93 deletion did
not alter expression of NR2A and NR2B in total soluble
fractions from dorsal horn, forebrain cortex, or cerebel-
lum of mice (Fig. 1A), a finding consistent with those in
previous studies [16,21,30]. However, PSD-93 deletion
significantly reduced the levels of NR2A and NR2B in the
synaptosomal membrane fractions from dorsal horn and
forebrain cortex, but not cerebellum, of mice (Fig. 1B). In
the dorsal horn of KO mice, the amounts of NR2A and
NR2B were decreased by 55% (P < 0.01) and 56% (P <
0.01), respectively, compared to those in WT mice. In the
cortex of KO mice, the amounts of NR2A and NR2B were
reduced by 60% (P < 0.01) and 58% (P < 0.01), respec-
tively, compared to those in WT mice. In the cerebellum
of KO mice, the levels of NR2A and NR2B were 103% (P
> 0.05) and 104% (P > 0.05), respectively, of those in WT
mice.

3.2. Effect of PSD-93 deletion on acute and chronic 
morphine tolerance
We first examined the role of PSD-93 in acute morphine
tolerance. Baseline tail-flick latencies were similar in KO
(4.84 ± 0.26; n = 19) and WT (4.40 ± 0.20; n = 20) mice
(P > 0.05). In the control (saline-treated) groups, the ED50
of the dose-response curve of morphine in KO mice
(ED50: 2.32 mg/kg; 95% CI: 1.89–2.99 mg/kg) was signif-
icantly lower than that in WT mice (ED50: 3.75 mg/kg;

95% CI: 2.87–5.43 mg/kg), although the analgesic effect
induced by the first dose of morphine in KO mice was
similar to that in WT mice (Fig. 2A and 2B). After acute
morphine challenge, the morphine dose-response curve
was shifted significantly to the right in the WT, but not
KO, mice (Fig. 2A). The morphine ED50 value (and 95%
CI) was 6.08 mg/kg (5.29–7.15 mg/kg) in the WT mice
and 2.40 mg/kg (2.29–2.52 mg/kg) in the KO mice.

We then investigated the effect of PSD-93 deletion on
chronic morphine tolerance. Chronic morphine challenge
produced a rightward shift in the morphine dose-
response curve in both WT and KO mice (Fig. 2B). How-
ever, the ED50 of the dose-response curve of morphine in
KO mice was significantly smaller than that in WT mice
(Fig. 2B). The morphine ED50 value (and 95% CI) was
8.92 mg/kg (7.47–11.08 mg/kg) in the WT mice and 3.55
mg/kg (2.05–13.05 mg/kg) in the KO mice. Chronic mor-
phine challenge also produced a time-dependent reduc-
tion in morphine analgesic effects in the WT, but not KO,
mice (Fig. 2C). In the WT mice that received repeated
injections of s.c morphine plus i.p. saline, the MPAEs on
days 3, 5, and 7 were reduced by 18.9% (P > 0.05), 38.3%
(P < 0.01), and 60.2% (P < 0.01), respectively, from the
value on day 1 (100%). These reductions were markedly
reversed in the WT mice that received i.p. MK-801 rather
than saline (Fig. 2C). In contrast, no significant changes in
the MPAEs were observed among these four time points in
the KO mice that received s.c. morphine plus i.p. saline or
MK-801 (Fig. 2C). In addition, repeated injections of i.p.
MK-801 at the dose used did not affect basal tail-flick
latency in either the WT or KO mice that received s.c saline
(data not shown).

3.3. Effect of PSD-93 deletion on morphine-induced 
abnormal pain hypersensitivity
Consistent with previous studies [31], mechanical allody-
nia and thermal hyperalgesia developed after morphine
withdrawal in the WT mice that received repeated injec-
tions of s.c. morphine plus i.p. saline (Fig. 3). Paw with-
drawal frequencies were significantly increased by 3 fold
(P < 0.01) and 2.8 fold (P < 0.01) from baseline on left
and right hind paws, respectively, in response to a low-
intensity mechanical stimulation (0.24 mN) on day 1
after morphine withdrawal (Fig. 3A and 3B). Paw with-
drawal frequencies were also markedly increased by 2.9
fold (P < 0.01) and 2.4 fold (P < 0.01) from baseline on
left and right hind paws, respectively, on day 1 after mor-
phine withdrawal and by 2.4 fold (P < 0.01) and 2.1 fold
(P < 0.01) from baseline on left and right hind paws,
respectively, on day 2 after morphine withdrawal in
response to a moderate mechanical stimulation (1.47
mN; Fig. 3C and 3D). Paw withdrawal latencies in
response to heat stimulation were significantly decreased
by 27% (P < 0.05) and 32% (P < 0.05) from the baseline
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on left and right hind paws, respectively, on day 1 after
morphine withdrawal (Figs. 3E and 3F). Both mechanical
allodynia and thermal hyperalgesia were completely
blocked in the WT mice that also received i.p. MK-801
(Figs. 3A–3F). In contrast, the KO mice that received
repeated injections of s.c. morphine plus i.p. saline or MK-
801 did not exhibit significant changes in paw withdrawal

frequencies or latencies (Fig. 3). In addition, repeated
injections of i.p. MK-801 at the dose used did not affect
basal paw withdrawal frequency and latency in either WT
or KO mice that received s.c saline (data not shown).

We also examined whether PSD-93 deletion affected mor-
phine-induced behavioral sensitivity in response to for-

Expression of NR2A and NR2B in total soluble (A) and synaptosomal membrane (B) fractions from dorsal horn, forebrain cor-tex, and cerebellum in wild type (WT) and PSD-93 knockout (KO) miceFigure 1
Expression of NR2A and NR2B in total soluble (A) and synaptosomal membrane (B) fractions from dorsal 
horn, forebrain cortex, and cerebellum in wild type (WT) and PSD-93 knockout (KO) mice. (A) Top: representa-
tive Western blots showing the levels of PSD-93, NR2A, and NR2B in the total soluble fraction. Bottom: statistical summary of 
the densitometric analysis expressed relative to the corresponding loading control (β-actin). (B) Top: representative Western 
blots showing the amounts of PSD-93, NR2A, and NR2B in the synaptosomal membrane fraction. Bottom: statistical summary 
of the densitometric analysis expressed relative to the corresponding loading control (N-cadherin). **P < 0.01 vs the corre-
sponding naïve WT mice.
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Effect of targeted disruption of PSD-93 gene on morphine analgesic toleranceFigure 2
Effect of targeted disruption of PSD-93 gene on morphine analgesic tolerance. (A) The cumulative dose-response 
curves of morphine in WT and PSD-93 KO mice following acute morphine (M) analgesic tolerance induced by two subcutane-
ous injections of morphine (100 mg/kg, 12 h apart). Control groups received saline (S) injection on the same schedule. (B) The 
cumulative dose-response curves of morphine in WT and PSD-93 KO mice following chronic morphine analgesic tolerance 
induced by subcutaneous injections of morphine (10 mg/kg) twice daily for 6 days. Control groups received saline injections on 
the same schedule. (C) Time course of morphine-induced analgesia and effect of MK-801 in WT and PSD-93 KO mice follow-
ing subcutaneous injections of 10 mg/kg morphine twice daily plus intraperitoneal injection of saline or 0.3 mg/kg MK-801 once 
daily for 6 days. ** P < 0.01 vs the corresponding value on day 1.
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Effect of targeted disruption of PSD-93 gene on mechanical allodynia and thermal hyperalgesia after repeated morphine injec-tionFigure 3
Effect of targeted disruption of PSD-93 gene on mechanical allodynia and thermal hyperalgesia after repeated 
morphine injection. WT and PSD-93 KO mice were injected twice daily with subcutaneous morphine (M, 20 mg/kg) and 
once daily with intraperitoneal saline (S) or 0.3 mg/kg MK-801 for 6 days. (A-D) Withdrawal responses of left (A and C) and 
right (B and D) hind paws to 0.24 mN (A and B) and 1.47 mN (C and D) intensity mechanical stimuli on days 1, 2, and 4 after 
morphine withdrawal. **P < 0.01 vs the corresponding baseline. (E and F) Withdrawal response of left (E) and right (F) hind 
paws to thermal stimulation on days 1, 2, and 4 after morphine withdrawal. *P < 0.05 vs the corresponding baseline.
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malin-induced noxious inflammation [26,31]. As
expected, an intraplantar injection of 1% formalin pro-
duced characteristic biphasic licking behaviors in the mice
(Fig. 4A). The first phase behavioral response of the for-
malin test was similar in all groups of WT and KO mice
(Fig. 4). The second phase response was greatly enhanced
in the morphine-treated WT mice (Fig. 4). Duration of
paw licking was increased by 1.8 fold of the value in the
saline-treated WT mice (P < 0.01). However, durations of
paw licking in the saline- and morphine-treated KO mice
were significantly reduced by 47% (P < 0.01) and 39% (P
< 0.01), respectively, compared to that in the saline-
treated WT mice. No significant difference was observed
in the second phase response between the saline- and
morphine-treated KO mice (Fig. 4).

3.4. Effect of PSD-93 deletion on naloxone-induced 
withdrawal symptoms
Consistent with previous studies [8,27], repeated injec-
tions of s.c. morphine plus i.p. saline produced striking
jumping activity, one of naloxone-precipitated with-
drawal symptoms, in the WT mice (Fig. 5). This jumping
activity was significantly blocked in the WT mice that
received s.c. morphine plus i.p. MK-801 (P < 0.01; Fig. 5).
The KO mice that received repeated injections of s.c. mor-
phine plus i.p. saline or MK-801 jumped significantly less
than the WT mice (Fig. 5). The number of jumps was
98.5% less in the KO than in the WT mice that received s.c
morphine plus i.p. saline (P < 0.01).

Discussion
An important observation in the present study is that
PSD-93 deficiency produces distinct effects on synaptic
NMDAR expression in different regions of the CNS. Evi-
dence from in vitro studies shows that PSD-93 clusters and
anchors NMDARs at synapses through interaction of its
PDZ domains with seven C-terminal amino acids of
NR2A and NR2B [9,10]. Our quantitative Western blot
analysis showed that PSD-93 deficiency significantly
reduced the levels of NR2A and NR2B proteins in the syn-
aptosomal membrane fractions of dorsal horn and fore-
brain cortex but did not affect their expression in the total
soluble fractions of these two regions. This finding is con-
sistent with our previous in vitro study, which showed that
surface NR2A and NR2B expression is dramatically
reduced in cultured dorsal horn neurons of KO mice [16].
The data suggest that PSD-93 is required for synaptic
expression and localization of NR2A and NR2B in dorsal
horn and forebrain cortex. However, PSD-93 deficiency
did not markedly change the amounts of NR2A and NR2B
in either synaptosomal or total soluble fractions from cer-
ebellum. Hippocampus neurons in PSD-93 KO mice may
also express normal levels of NR2A and NR2B at synapses
because PSD-93 deletion does not alter NMDAR-medi-
ated excitatory postsynaptic currents and potentials in
hippocampus neurons [17]. It appears that the effect of
PSD-93 deletion on NR2A and NR2B synaptic expression
may be tissue specific in the CNS, although the detailed
mechanisms underlying these events are still unclear.

Formalin-induced licking behaviors on day 1 after morphine withdrawal in WT and KO mice that received subcutaneous injec-tions of 20 mg/kg morphine (M) or saline (S) twice daily for 6 daysFigure 4
Formalin-induced licking behaviors on day 1 after morphine withdrawal in WT and KO mice that received sub-
cutaneous injections of 20 mg/kg morphine (M) or saline (S) twice daily for 6 days. (A) Time course of formalin-
induced licking behaviors. *P < 0.05 or **P < 0.01 vs the values in the saline-treated WT mice at the corresponding time point. 
(B) Summary of licking duration in the first and second phases. **P < 0.01 vs the saline-treated WT mice in the second phase.
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PSD-95 and SAP102, two members of the MAGUK family
of proteins, also interact with NR2A and NR2B [13,32]. It
is very likely that PSD-95 and SAP102 compensate for the
deficiency of PSD-93 to anchor and target NMDARs at
synapses in hippocampus and cerebellum neurons of
PSD-93 KO mice.

Spinal cord and forebrain cortex are two major pain-
related regions in the CNS [18,19]. Our previous studies
demonstrated that PSD-93, NR2A, and NR2B are highly
expressed in the superficial dorsal horn of spinal cord
[16]. Under electron microscopy, the sections from super-
ficial dorsal horn and the anterior cingular cortex of fore-
brain exhibited double labeling for PSD-93 and NR2A/
NR2B in the postsynaptic density [16]. Furthermore, by
co-immunoprecipitation, we found that both NR2A and
NR2B were immunopreciptated by PSD-93 antibody in
the postsynaptic density fractions of the spinal cord and
forebrain cortex [16]. These findings demonstrate PSD-93
binding to NMDARs in the spinal cord and forebrain cor-
tex in vivo. Electrophysiological recordings showed that
PSD-93 deletion reduced NMDAR-mediated postsynaptic
responses in these two regions of adult mice [16]. Behav-
ioral study revealed that mice lacking PSD-93 exhibited
blunted NMDAR-dependent persistent pain induced by
peripheral nerve injury or injection of Complete Freund's
Adjuvant, although they displayed intact nociceptive
responsiveness to acute pain [16]. The present study
showed that PSD-93 deficiency significantly inhibited

acute and chronic morphine analgesic tolerance, enhanc-
ing formalin-induced pain behaviors, and withdrawal-
induced jumping following repeated morphine injection.
Morphine-induced tolerance, abnormal pain hypersensi-
tivity, and physical dependence are considered to be
related to NMDAR-dependent neuronal plasticity in the
CNS [6-8]. Thus, it is very likely that these impaired mor-
phine analgesic tolerance and physical dependence in
PSD-93 KO mice is attributed to PSD-93 deletion-induced
reduction in postsynaptic expression and function of
NMDARs in dorsal horn and forebrain cortex neurons.
Hippocampal NMDARs play a critical role in neuronal
plasticity underlying learning and memory [33], whereas
cerebellar NMDARs are involved in the modulation of
motor learning and coordination [20]. Because PSD-93
deletion does not affect synaptic NMDAR expression and
NMDAR-mediated postsynaptic functions in these two
non-pain-related regions [17], PSD-93 deletion does not
produce hippocampal and cerebellar dysfunctions, but
does attenuate the development of persistent pain and
morphine tolerance and physical dependence. Thus, tar-
geted disruption of PSD-93 or perturbing NMDAR-PSD-
93 interaction might be a better strategy for prevention
and/or treatment of persistent pain and opioid tolerance
and physical dependence in clinic.

It should be noted that PSD-93 also functions as a scaf-
folding protein to assemble a specific set of signaling pro-
teins around the NMDARs. These signaling proteins, such
as neuronal nitric oxide (NO) synthase (nNOS), partici-
pate in downstream signaling by the NMDARs. The PDZ
domain of nNOS interacts with the PDZ domains of PSD-
93 [9]. Deleting the PDZ domain from PSD-93 reduces
NOS activity [9]. Our previous study showed that targeted
disruption of PSD-93 gene significantly attenuates the
NMDA-stimulated increase in cyclic guanosine 3', 5'-
monophosphate in the cultured forebrain cortex neurons
[30]. Given that inhibition of nNOS attenuates the devel-
opment of persistent pain and morphine analgesic toler-
ance and physical dependence [34,35], it is very likely that
the dissociation of NMDARs from NO signaling caused by
PSD-93 deletion is also involved in the mechanism under-
lying impairing persistent pain and morphine analgesic
tolerance and physical dependence in the KO mice.
Besides NMDARs and nNOS, PSD-93 binds to other post-
synaptic membrane proteins, such as potassium channels
[9,10], δ2 glutamate receptors [36], and the microtubule-
associated protein 1A [36,37]. Therefore, the detailed
mechanism through which PSD-93 deficiency affects the
development of neuronal plasticity in persistent pain and
morphine tolerance and physical dependence remains to
be explored.

In conclusion, the present study was the first to demon-
strate that PSD-93 deletion has distinct effects on synaptic
NMDAR expression in the CNS. Blunted NMDAR-

Effect of targeted disruption of PSD-93 gene on physical dependence induced by repeated morphine injectionsFigure 5
Effect of targeted disruption of PSD-93 gene on phys-
ical dependence induced by repeated morphine injec-
tions. WT and KO mice were given morphine injections (10 
mg/kg, s.c.) twice daily for 6 days plus a once-daily intraperi-
toneal injection of either saline or 0.3 mg/kg MK-801. Bars 
represent mean number of jumps in the 15-min period fol-
lowing a single naloxone injection (2 mg/kg) that was given 2 
h after a final 10-mg/kg subcutaneous morphine injection. **P 
< 0.01 vs the saline + morphine group.
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dependent neuronal plasticity following repeated mor-
phine injection in PSD-93 KO mice is attributed to PSD-
93 deletion-induced alterations of NR2A and NR2B post-
synaptic expression in dorsal horn and forebrain cortex
neurons, but not in cerebellar neurons. Our findings sug-
gest that PSD-93 might be a potential biochemical target
for the treatment of opioid tolerance and physical
dependence.
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