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Abstract

Background: ATP-sensitive potassium (K,1p) channels in neurons regulate excitability, neurotransmitter release and
mediate protection from cell-death. Furthermore, activation of K,rp channels is suppressed in DRG neurons after painful-
like nerve injury. NO-dependent mechanisms modulate both K,1p channels and participate in the pathophysiology and
pharmacology of neuropathic pain. Therefore, we investigated NO modulation of K,ip channels in control and
axotomized DRG neurons.

Results: Cell-attached and cell-free recordings of K,1p currents in large DRG neurons from control rats (sham surgery,
SS) revealed activation of K,rp channels by NO exogenously released by the NO donor SNAP, through decreased
sensitivity to [ATP]i.

This NO-induced K,qp channel activation was not altered in ganglia from animals that demonstrated sustained
hyperalgesia-type response to nociceptive stimulation following spinal nerve ligation. However, baseline opening of K,p
channels and their activation induced by metabolic inhibition was suppressed by axotomy. Failure to block the NO-
mediated amplification of K,1p currents with specific inhibitors of sGC and PKG indicated that the classical sGC/cGMP/
PKG signaling pathway was not involved in the activation by SNAP. NO-induced activation of K,1p channels remained
intact in cell-free patches, was reversed by DTT, a thiol-reducing agent, and prevented by NEM, a thiol-alkylating agent.
Other findings indicated that the mechanisms by which NO activates K,1p channels involve direct S-nitrosylation of
cysteine residues in the SURI subunit. Specifically, current through recombinant wild-type SURI/Kir6.2 channels
expressed in COS7 cells was activated by NO, but channels formed only from truncated isoform Kir6.2 subunits without
SURI subunits were insensitive to NO. Further, mutagenesis of SUR| indicated that NO-induced K,1p channel activation
involves interaction of NO with residues in the NBD| of the SURI subunit.

Conclusion: NO activates K,pp channels in large DRG neurons via direct S-nitrosylation of cysteine residues in the
SURI subunit. The capacity of NO to activate K,1p channels via this mechanism remains intact even after spinal nerve
ligation, thus providing opportunities for selective pharmacological enhancement of K1p current even after decrease of
this current by painful-like nerve injury.
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Background

Nitric oxide (NO) is a pivotal signaling molecule involved
in many diverse developmental and physiological proc-
esses in the mammalian nervous system [1,2]. The influ-
ences of NO upon nociceptive transmission are opposing
and complex [3-8], and the exact sites and mechanisms of
these actions remain controversial. For example, within
the spinal cord, high concentrations of NO exaggerate
pain sensitivity [6], and pharmacological inhibition or
genetic deletion of nNOS diminish pain behavior in sev-
eral animal pain models [3,4,6,8,9]. Furthermore, expres-
sion of nNOS in sensory neurons is up-regulated
following peripheral nerve injury [3,5,10], suggesting a
contribution of NO to neuropathic pain. There is also evi-
dence that NO has analgesic effects. Specifically, NO
donors produce peripheral antinociceptive effects in
inflammatory pain [11]. Also, low concentrations of NO
acting at spinal sites attenuate allodynia following nerve
injury [7,11,12]. These divergent findings reflect the site-
specific complexity of NO-dependent signaling in the reg-
ulation of pain generating processes. Additionally, the
NO-signaling pathway contributes to the anti-nociceptive
effect of drug action at peripheral transduction sites,
including that of opioids, NSAIDs, and the NO-releasing
derivative of gabapentin NCX 8001 [13-16]. Some drugs
produce peripheral analgesia via NO-dependent activa-
tion of ATP-sensitive potassium (K,rp) channels [15,17-
19].

K,rp channels, widely represented in metabolically active
tissues, are hetero-octamers composed of four regulatory
SUR subunits (SUR1, SUR2A, or SUR2B) and four ATP-
sensitive pore-forming inwardly rectifying potassium
channel (Kir6.x) subunits (Kir6.1 or Kir6.2) [20]. Because
their opening is determined by the cytosolic ADP/ATP
ratio, K,p channels act as metabolic sensors, linking
cytosolic energetics with cellular functions in various tis-
sues [21,22]. In the central and peripheral nervous system,
widely distributed K, channels [20,23-25] regulate neu-
ronal excitability, neurotransmitter release, ligand effects,
and cell survival during metabolic stress [21,22,24,26,27].

NO regulates K,pp channels that control various physio-
logical functions, including NO-associated protection
from cell death, vasodilatation, and modulation of trans-
mitter secretion [21,22,24,26]. Therefore, we hypothe-
sized that NO activates K, currents in peripheral sensory
neurons.

Altered sensory function contributes to the pathogenesis
of neuropathic pain via hyperexcitability in injured axons
[28-30] and the corresponding somata in the DRG
[29,31], increased synaptic transmission at the dorsal
horns [32], and loss of DRG neurons [33,34]. We have
recently identified loss of K,pp currents in large DRG
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somata from rats that demonstrated sustained hyperalge-
sia-type response to nociceptive stimulation after axot-
omy [25,35]. Thus, reduced K,p currents may be a factor
in generating neuropathic pain through increased excita-
bility, amplified excitatory neurotransmission, and
enhanced susceptibility to neuronal cell death. Therefore,
we also hypothesized that altered NO regulation may
account for the decreased K,p channel opening following
axotomy that mediates the injury effect.

Since somata of injured DRG neurons are a site of perti-
nent phenotypic changes, reduced K, currents may con-
tribute to neuropathic pain by increasing excitability,
excitatory neurotransmission, and susceptibility to neuro-
nal cell death. The established regulation of excitability by
K, rp currents raises the hypothesis that decreased NO reg-
ulation may account for the decreased K, channel open-
ing following axotomy that leads to neuropathic pain.
Ionic channel modulation by NO can be produced either
indirectly through the classical pathway of sGC activation
and generation of cGMP, or directly through a pathway
involving S-nitrosylation of target proteins [1]. S-
nitrosylation regulates Na+ channels and acid-sensing ion
channels in DRG neurons [36,37], but effects on DRG
neuronal K, p channels have not been examined. It is also
controversial whether the classical NO/sGC/cGMP/PKG
pathway functions in DRG neurons. Specifically, pharma-
cological studies in vivo imply that K, channels in
peripheral sensory neurons may be activated indirectly via
the NO/cGMP/PKG pathway [38-40]. Also, the PDE
inhibitor sildenafil increases cytosolic cGMP producing
peripheral analgesia via activation of the NO/cGMP/PKG
pathway [41]. Molecular constituents of this classical indi-
rect pathway have been identified in mammalian DRG
neurons, including NOS [3,5,10], sGC [42,43], cGMP
[44] and PKG [45]. However, other published reports
failed to find cGMP activity in DRG neurons, even after
the up-regulation of NOS following axotomy or perfusion
with NO donors [46]. Also a recent study failed to demon-
strate sGC in mouse DRG neurons [45]. Because of these
various controversies, we designed additional experi-
ments to identify the pathway by which NO regulates K,p
channels in DRG neurons, using specific pharmacological
tools at different levels of the cascades.

Results

In recordings of native K,p channels, we used 91 male
rats: 48 controls (SS) that showed 0% probability of
hyperalgesia response, and 43 rats with 46.1 + 18% prob-
ability of hyperalgesia response (p < 0.001 vs. SS) in the
ipsilateral paw after SNL (SNL). From these rats, we stud-
ied 218 control (SS) neurons with diameter 43.5 + 4.1
um, that did not differ from the diameter of 196 axot-
omized (SNL) neurons (44.7 + 6.5 pm; p = 1.0 vs. SS).
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Single channel characteristics of K,rp channels in large
DRG neurons dissociated from SS and SNL rats

Single channel currents from either SS or SNL neurons
were measured at -60 mV membrane holding potential,
using cell-attached and inside-out patch clamp configura-
tions. In cell-attached recordings, infrequent but signifi-
cant spontaneous channel activity was observed in both
control (SS) and SNL neurons (Figure 1A, baseline). How-
ever, this baseline activity was decreased in SNL neurons
(NPo = 0.06 + 0.02) compared with SS neurons (NPo =
0.12 + 0.03; p = 0.006 vs. SNL; n = 8 in each group). Bath
application of the uncoupler of mitochondrial ATP syn-
thesis DNP (100 uM) gradually activated these baseline
currents in both groups. However, DNP-induced channel
opening was significantly reduced in SNL (NPo = 0.208 +
0.16) compared to SS (NPo =0.442 + 0.26; p = 0.04 vs. SS;
n = 8 in each group; Figure 1B). Addition of glybencla-
mide 1 puM, a specific K,pp channel inhibitor, almost com-
pletely blocked DNP-induced currents in both groups,
indicating that these currents are conveyed via K,p chan-
nels (p < 0.001 for each group). In inside-out patches,
DNP (100 puM) had no direct effect on K, channels (p =
1.0 vs. baseline, n = 5 in each group).

In order to investigate the relative contribution of the
intracellular milieu to regulation of channel properties,
we next examined the K,pchannel behavior in excised
inside-out membrane patches. When inside-out patch
recordings at a holding potential of -60 mV were obtained
in ATP-free solution, intense channel activity was
observed in both groups. This channel activity was revers-
ibly blocked by 1 mM of ATP (Figure 1C). The ATP sensi-
tivity, tested by various intracellular ATP concentrations,
was not significantly different between SS (IC;, = 14.7
uM; n =5) and SNL (IC55=18.1 uM; n=5; p = 1.0 vs. SS).
In addition, single channel conductance in the presence of
100 uM ATP was not significantly different between SS
(69.8 £ 12 pS; n=>5)and SNL (73.2+7.1pS;n=5;p =
1.0 vs. SS). These results suggest that axotomy by SNL does
not affect directly the properties of the K, channels.

NO donor SNAP activates K,rp channels in large DRG
neurons dissociated from control or SNL rats

We tested the effects of NO donor SNAP on K, channel
activity during cell-attached recordings from large DRG
neurons dissociated from SS or SNL rats (Figure 2A). Bath
application of SNAP (100 puM) significantly activated
potassium currents in both SS and SNL neurons to a sim-
ilar degree at steady state. Despite baseline difference,
NPo steady-state values 10 minutes after application of
SNAP were 0.27 + 0.07 in SS and 0.31 + 0.09 in SNL (p =
0.364; n = 7 in each group; Figure 2B). Oxidized SNAP
(100 uM), which no longer releases NO [47], produced
no significant activation of any potassium current either
in SS (NPo =102.3 + 9.2% from baseline) or in SNL group
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(NPo = 97.0 + 7.9% from baseline; n = 4 in each group).
This discrepancy between regular and oxidized SNAP indi-
cates that SNAP-induced current activation is dependent
on release of NO from SNAP. SNAP-induced channel
activity was blocked by subsequent addition of 1 uM gly-
benclamide in both neuronal groups, identifying the
underlying conductance as K, current. The unitary chan-
nel amplitude was not different in any experimental con-
dition in either neuronal group, indicative of unaltered
channel conductance (Figure 2A). Effects of SNAP were
reversible after washout periods of 2-5 min (data not
shown). In addition to SNAP, another NO donor, SNP
(10 uM), produced similar activation of K,p channels in
both SS and SNL neuronal populations. Specifically, NPo
values 10 minutes after application of SNP were 0.24 +
0.03inSS (n=3)and 0.26 + 0.12in SNL (n = 3) (p = 1.0).

SNAP gradually activated K,;p channels in both groups, in
comparable time courses (Figure 2B). In the absence of
SNAP, K,pp channel activity was stable over time in cell-
attached configuration (data not shown). In both neuro-
nal groups, SNAP activation of K, channels was concen-
tration dependent, reaching a saturating plateau at a
concentration of 100 uM or greater (Figure 2C).

Axotomy increases the excitability of DRG neurons, which
consequently may change metabolic status of neurons. In
addition, NO decreases intracellular ATP levels by inhibi-
tion of mitochondrial respiration in several cell types
[48,49]. Therefore, we investigated whether axotomy or
SNAP might alter the intracellular ATP concentrations in
DRG neurons. Specifically, baseline intracellular ATP con-
centration did not differ between SS neurons (0.50 + 0.10
nmol/g protein; n = 6) and SNL neurons (0.48 + 0.13
nmol/g protein; n = 6; p = 1.00 vs. SS) (Figure 2D). SNAP
also had no effect on intracellular ATP concentration 10
minutes after stimulation in DRG neurons of either SS rats
(0.48 + 0.14 nmol/g protein; n = 5; p = 1.00) or SNL rats
(0.47 £ 0.19 nmol/g protein; n = 6; p = 1.00) (Figure 2D).
These data suggest that SNAP-induced K, channel acti-
vation occurs independently of changes in intracellular
ATP concentration induced by either axotomy or SNAP
itself in DRG neurons.

Endogenous NO does not daffect baseline activity of K,rp
channels

In normal adult mammals, nNOS is expressed in a few
small- and medium-diameter rat lumbar DRG neurons
[50]. However, nNOS expression is substantially
increased after peripheral nerve axotomy [51]. Although
the distribution and role of nNOS in large DRG neurons
remain unclear, endogenous NO produced via nNOS may
affect baseline activity of K,p channel in this cell popula-
tion. Therefore, we investigated the effect of endogenous
NO on channel activity using L-NAME, an endogenous
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Single-channel characteristics of K,1p channel in DRG neurons dissociated from SS and SNL rat. (A) Represent-
ative current traces of K,1p channels in SS or SNL neurons recorded in cell-attached configuration at a holding potential of -60
mV. In SS and SNL neurons, bath application of DNP (100 nM) activated K,1p channel, and this channel activity was inhibited by
glybenclamide (I uM). The changes of NPo values are summarized in (B). Values are shown as mean + SD (n = 8 each). (C)

Representative K 1p current traces in SS or SNL neurons recorded in inside-out configuration at a holding potential of -60 mV.

ATP (I mM) was added to the intracellular solution as indicated by the horizontal solid bar. Arrows indicate closed channel
state.
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Effects of SNAP on K,1p channel activity and intracellular ATP concentrations in DRG neurons. (A) Representa-
tive current traces in SS or SNL neurons recorded in cell-attached configuration at a holding potential of -60 mV. In SS and SNL
neurons, bath application of NO donor, SNAP (100 uM), activated K,1p channels. This channel activity was inhibited by glyben-
clamide (I pM), a specific K,1p channel blocker. Arrows indicate closed channel state. (B) Time-dependent changes of SNAP-
induced channel activity (NPo) in cell-attached recording, indicating the elapsed time to peak effect. Each point represents
measurements from 8 patches (mean * SD). (C) The concentration-dependent K,1p channel activation (NPo enhancement)
induced by increasing SNAP concentrations in SS (open circle) and SNL (closed circle) neurons. Each point represents meas-
urements from 8-9 patches (mean * SD). (D) Intracellular ATP concentration measured by a luciferin-luciferase assay. Cells
were stimulated for 10 min in the presence or absence of SNAP. Values are shown as mean + SD (n = 5-6).
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NOS inhibitor. Pretreatment with L-NAME (100 uM) for
20 minutes had no significant effect on baseline activity of
K,rp channels compared to control (vehicle only, without
L-NAME) in either SS (NPo after pretreatment with L-
NAME = 0.114 + 0.06 vs. 0.105 + 0.02 after vehicle; p =
0.95; n = 7 in each group) or SNL neurons (NPo after L-
NAME = 0.06 + 0.04 vs. 0.04 + 0.03 after vehicle; p=0.78;
n = 7) (Figure 3). In inside-out patches, L-NAME had no
direct effect on Kp channels (n = 4, p = 0.975 vs. base-
line). These results indicate that endogenous NO, possibly
produced by nNOS in DRG neurons, does not affect basal
Kyrp channel activity in either SS or SNL neurons.

8-Br-cGMP activates K,1p channels, but fails to mimic
completely the activation induced by NO

Kyrp channels in cardiomyocytes, vascular or non-vascular
smooth muscle cells, and pancreatic 3 cells are modulated
by NO [52-56], indirectly via a classical cGMP-dependent
pathway [52,53]. To investigate this pathway in large DRG
neurons, we examined the effect of a membrane permea-
ble cGMP analogue, 8-Br-cGMP, on neuronal K, chan-
nel activity in cell-attached patch recordings. Similar to
SNAP, bath application of 8-Br-cGMP (100 uM) signifi-
cantly activated K,pp channels in either SS neurons (NPo
value 5 min after application of 8-Br-cGMP = 0.22 + 0.08;
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n = 8; p = 0.002 vs. baseline) or SNL (NPo = 0.17 + 0.06;
n=7; p =0.001 vs. baseline) neurons. Subsequent addi-
tion of glybenclamide (1 uM) almost completely inhib-
ited these currents (Figure 4A). Steady-state activation
could be observed within only 2-3 minutes after exposure
to 8-Br-cGMP (Figure 4B). When 8-Br-cGMP was applied
after SNAP-induced steady-state activation had occurred
(at least 5 min after SNAP), additional further channel
opening was observed, both in SS neurons (n = 5; p = 0.02
vs. SNAP alone) and in SNL neurons (n = 5; p = 0.04 vs.
SNAP alone) (Figure 4D). These data imply that NO does
not activate K,rpchannels via a cGMP-dependent PKG
pathway, but via an alternative pathway. In order to exam-
ine the role of endogenous cGMP in activating K,p chan-
nels, we also tested the effect of zaprinast, a specific PDE
inhibitor, in cell-attached recordings. In these experi-
ments, zaprinast had no effect on K,p channel activity
either in control neurons (n = 5; p = 0.88 vs. baseline), or
in SNL neurons (n = 4; p = 1.0 vs. baseline) (data not
shown).

Effects of inhibitors of the NO/cGMPIPKG pathway on
NO-induced K,p channel activation

To further investigate whether NO activates K, currents
via the classical NO/sGC/cGMP/PKG signaling pathway,

|:| Control

Bl Pretreatment with L-NAME

p=0.95
0.2 - —
0.15 - I
o i
o 0.1 -
Z
.05
SS
Figure 3

SNL

Effects of endogenous NO on baseline K,p channel activity in DRG neurons. Baseline K,1p channel activity (NPo)
was recorded 20 min after pretreatment with or without L-NAME (100 uM), a non-selective endogenous NO synthetase
inhibitor. Each vertical barrepresents measurements from 6—7 cell-attached patches at a holding potential of -60 mV (mean %

SD). NS = no significant.
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Effects of 8-Br-cGMP on K,p channel activity in DRG neurons. (A) Representative current traces in SS and SNL neu-
rons recorded from cell-attached configuration at a holding potential of -60 mV. Bath application of 8-Br-cGMP, a membrane-
permeable analogue of cGMP, increased K,p current in either SS or SNL neurons. Arrows indicate closed channel state. (B)
Time dependent of 8-Br-cGMP-induced channel activation (NPo) during cell-attached recording, indicating the elapsed time to
peak effect. Each point represents 8 SS and 7 SNL neurons. (C) Additional effect of 8-Br-cGMP on SNAP (100 uM)-induced
steady-state K 7p currents in SS neurons. Changes of NPo values in either SS or SNL neurons are summarized in (D). Each ver-
tical bar represents measurements from 5 patches (mean * SD).
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we tested the effects of ODQ, a selective inhibitor of sGC,
or the effects of KT 5823, a selective inhibitor of PKG, on
SNAP-induced K,pp channel activity in large SS or SNL
DRG neurons, using the cell-attached patch-clamp config-
uration.

Pretreatment with ODQ (10 uM) for 20 min failed to
inhibit SNAP-induced K, channel activation in both SS
neurons (NPo 10 min after SNAP = 0.25 + 0.09; n=6; p =
1.0 vs. control) and SNL neurons (NPo 10 min after SNAP
=0.27 +0.16; n = 6; p = 1.0 vs. control; Figure 5A, B). Sim-
ilarly, pretreatment with KT 5823 (1 uM) for 20 min did
not block SNAP-induced K, p channel activation in either
SS neurons (NPo 10 min after SNAP = 0.14 + 0.17; n = 5;
p = 1.0 vs. control) or SNL neurons (NPo 10 min after
SNAP = 0.26 + 0.19; n = 6; p = 1.0 vs. control; Figure 5A,
B). These results suggest that NO activates K,p channels
via mechanism(s) other than the NO/cGMP/PKG path-
way. Pretreatment with KT 5823 significantly reduces 8-
Br-cGMP-induced K,pp channel activation in both SS neu-
rons (n = 8; p < 0.001 vs. control) and SNL neurons (n =
6; p <0.001 vs. control). These findings indicate that 8-Br-
cGMP activates K,p channels in both SS and SNL neurons
via the activation of PKG. In inside-out patches, neither
ODQ nor KT 5823 had any direct effect on K, channels
(n=4;p=0.823 orn = 4; p =0.295 vs. control, respec-
tively).

Direct effect of NO on K,1p channels in excised inside-out
patches

To test the possibility of a direct effect of NO on K, chan-
nels in large DRG neurons, we next examined its effects of
SNAP in excised inside-out patches under cell-free condi-
tions (Figure 6A). When the patch was excised into a
nucleotide-free solution, marked current activity was
observed. This current was inhibited by [ATP]i 1 mM or 10
uM in a concentration-dependent fashion. In the presence
of 1 mM [ATP]i, subsequent application of SNAP (100
puM) gradually activated K,;p channel (n = 6; p = 0.02 vs.
baseline). However, in the presence of 10 uM [ATP]i,
SNAP did not produce any significant channel activation
(n = 6; p = 0.88 vs. baseline). These results indicate that
direct K,rp channel activation by NO is [ATP]i-dependent.

We next tested the reciprocal interaction by testing
whether NO-donor SNAP alters the ATP-sensitivity of Kyp
channels. In the presence or absence of SNAP, various ATP
concentrations (0 — 1000 pM) were applied in excised
patches whereupon K, channel was suppressed in varia-
ble degrees (Figure 6B). [ATP]i, at concentrations = 100
UM, was less able to suppress Kypp channel activation in
the presence of SNAP. Altered ATP sensitivity was evident
by the five-fold rightward shift of the IC;, value for [ATP]i
from 12.8 uM (n =7) to 54.4 uM (n = 7). Baseline current
amplitude and conductance of channels in SS neurons
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remained unchanged during patch exposure to 100 pM
SNAP (n = 5 each, p = 0.59; Figure 6C). Similar direct
effects of SNAP on ATP sensitivity and current amplitude/
voltage relationship were also observed in SNL neurons
(data not shown).

A known alternative pathway for biological effects of NO
is by direct S-nitrosylation of the critical cysteine thiol
group(s) of target proteins [1]. To test whether this path-
way is involved in direct modulation of K, channels by
NO, we examined the effects of DIT, a thiol-specific
reducing agent that reduces the nitrosylation by NO, on
direct K, p channel activation by SNAP. SNAP-induced
K,rp channel activation in SS neurons in the presence of 1
mM [ATP]i was completely reversed by subsequent bath
application of DTT (5 mM) (n = 7, p = 0.009; Figure 7A).
In inside-out patches, DTT alone had no direct effect on
Kyrp channel (n = 5, p = 1.0 vs. baseline). Similar results
were also observed in SNL neurons (n =7, p=0.01; Figure
7B).

To further test the possibility of S-nitrosylation by NO, we
next tested the effects of NEM, which is known to cova-
lently modify protein sulphhydryl groups making them
incapable of nitrosylation, on SNAP-induced K,p chan-
nel activation. Bath application of NEM (5 mM) to inside-
out patches in the presence of 1 mM [ATP]i significantly
decreased the basal channel activity (n = 6, p = 0.03 vs.
baseline; Figure 7C). Presence of NEM completely elimi-
nated the activating effect of SNAP on K, p channels (n =
6, p = 1.0 vs. before SNAP; Figure 7D). Similar results were
also observed in SNL neurons (n = 6, p = 1.0 vs. before
SNAP; Figure 7D). These findings suggest that SNAP
effects are most probably mediated via a redox switch,
involving direct S-nitrosylation of K, channels. Further-
more, these direct actions of SNAP on K,p channels were
not altered by SNL, suggesting that the ability for S-
nitrosylation to K, p channel is preserved following nerve

injury.

Site of action of NO on recombinant K,p channels
expressed in COS7 cells

To determine the site of action of NO on K, channels,
we investigated the effect of SNAP in inside-out recordings
from cloned SUR1/Kir6.2 channels, the predominant K,p
channel in DRG neurons [57], heterologously expressed
in COS7 cells. Transfected cells were identified by GFP co-
transfection.

We first investigated whether the effect of NO on cloned
SUR1/Kir6.2 mimicked the NO effect on native K, chan-
nels in large DRG neurons. When the patch was excised
into a low [ATP]i (0.1 uM) solution, recombinant SUR1/
Kir6.2 channels showed marked current increases (Figure
8A; upper trace), that were strongly inhibited by 1 mM
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Figure 5

Effects of NO/cGMP/PKG pathway inhibitors on NO-induced K, p channel activity in DRG neurons. (A) Repre-
sentative traces of K,1p currents in cell-attached patches at -60 mV holding potential from SS or SNL neurons. SNAP (100 uM)
activated channel opening (upper traces). Activating effect of SNAP was not inhibited by pretreatment for at least 20 min with
neither ODQ (10 uM), a specific sGC inhibitor (middle traces), or KT5823 (I uM), a PKG inhibitor (lower traces), in either SS
or SNL neurons. Arrows indicate closed channel state. (B) Changes of NPo values obtained during baseline, after application of
SNAP (100 uM), or 8-Br-cGMP (100 uM) with or without pretreatment of inhibitor in SS or SNL neurons. Each vertical bar
represents measurements from 5-6 patches (mean * SD).
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Direct effects of NO on K,1p channel activity in SS DRG neurons. (A) Representative current traces of K,1p channel
activity in inside-out patches at -60 mV holding potential excised from SS neurons. Bath application of SNAP (100 puM) acti-
vated K ,rp channel only in the presence of | mM, but not 10 uM [ATP]Ji. Arrows indicate closed channel state. (B) Concentra-
tion-response relationship between [ATP]i (0—1000 M) and relative NPo in the presence or absence of SNAP in inside-out
patches. The relative NPo values were calculated by dividing the channel activity (expressed as NPo) in the presence of various
[ATP]i with the activity in the absence of ATP. Each point represents measurements from 5-6 patches (mean + SD). *: indicate
significant difference from control. (C) Current-voltage relations were plotted from inside-out recordings of single K,1p cur-
rents in the presence or absence of SNAP (100 ptM) at membrane potentials between -60 and +60 mV (n = 5 each). Applica-

tion of SNAP to patches did not affect single channel conductance.
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Effects of thiol-modifying agents on NO-induced K,;p channel activation. (A) Representative current traces in
inside-out patches at -60 mV holding potential in the presence of | mM [ATP]i in large SS neurons. SNAP (100 uM) and DTT
(5 mM), a thiol-reducing agent, were added to bath solution as indicated by the horizontal solid bars. Arrows indicate closed
channel state. The changes of NPo values are summarized in (B). Values are shown as mean + SD (n = 7 in each group). (C)
Representative current traces in inside-out patches at -60 mV holding potential in the presence of | mM [ATP]Ji in large SS neu-
rons. NEM (5 mM), a thiol alkylating agent, and SNAP (100 pM) were added to bath solution as indicated by the horizontal
solid bars. Arrows indicate closed channel state. The changes of NPo values are summarized in (D). Values are shown as mean
% SD (n = 6 in each group).
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Figure 8 (see previous page)

Direct effect of NO on wild-type SURI/Kiré.2 and truncated Kir6.2AC36 channels expressed in COS-7cells. (A)
Representative current traces of wild-type SURI/Kir6.2 currents in inside-out patches at -60 mV holding potential. In the pres-
ence of | mM [ATP]i, bath application of SNAP (I mM) activated wild-type SURI/Kir6.2 channel. Activation was suppressed by
the subsequent application of the thiol-reducing agent, DTT (5 mM). Arrows indicate closed channel state. (B) The concentra-
tion-dependent wild-type SURI/Kir6.2 channel activity (NPo) on SNAP. Each point represents measurements from 7 patches
(mean + SD) *: indicate significant difference from baseline. (C) Representative traces of current via truncated Kir6.2AC36
channels in inside-out patches at -60 mV holding potential. In the presence of | mM [ATP]i, bath application of SNAP (I mM)
did not significantly activate truncated Kir6.2AC36 currents (in contrast to wild type SURI/Kir6.2 currents shown in Figure
8A). Arrows indicate closed channel state. (D) Summary of SNAP effects on relative channel activity of wild-type SUR1/Kir6.2
currents and truncated Kir6.2AC36 channels, derived from experiments shown in Figure 8A and C. Each vertical bar repre-

sents measurements from 6—7 patches (mean + SD).

[ATP]i, confirming expression of functional K, chan-
nels. Subsequent addition of SNAP 1 mM into the bath
significantly activated SUR1/Kir6.2 channels (n = 7, p <
0.001) in a concentration-dependent fashion (Figure 8B).
These currents were almost completely suppressed by DTT
(5 mM) (p <0.001).

We next explored whether the site at which NO interacts
with the K,p channel lies on the regulatory (SUR1) or the
pore-forming (Kir6.2) subunit, using a truncated isoform
of Kir6.2 (Kir6.2AC36) that produces functional channels
independently of SUR1 [58]. SNAP 1 mM fails to activate
Kir6.2AC36 currents (n = 6, p = 1.0) in the presence of 1
mM [ATP]i (Figure 8C and 8D). This observation, in con-
trast to activation of wild type SUR1/Kir6.2 channels,
indicates that NO interacts with the SUR1 subunit, rather
than the Kir6.2 subunit.

Effects of cysteine mutation within nucleotide-binding
domain of SURI

The [ATP[i-dependent modulation of native K, channel
by NO (Figure 6B) suggests that cysteine residues reacting
with NO might be located at ATP-binding sites of SUR1
subunit; specifically within NBD1 and/or NBD2. In addi-
tion, the highly conserved Walker A (ATP-binding) motifs
of SUR1 contain one single cysteine residue, at position
717 (C717) in NBD1. The ability of a thiol-modifying
(alkylating) agent, NEM, (which inhibits native K, chan-
nels), to prevent ATP binding at NBD1 is abolished by
mutation of C717 [59]. This implies that cysteine at posi-
tion C717 may be redox-active. We therefore focused on
this cysteine residue, and examined the effect of mutating
C717 to serine (C717S) on the sensitivity of the cloned
SUR1/Kir6.2 channel to NO.

A patch containing recombinant SUR1-C717S/Kir6.2
channels, also showed marked current increases when
excised into a low [ATP]i (0.1 uM) solution (Figure 9A).
These currents were strongly inhibited by 1 mM [ATP]i (n
=7,p<0.001). The ATP-sensitivity of SUR1-C717S/Kir6.2
channels (IC5,=13.1 uM, n = 7) was not significantly dif-

ferent from that of wild type SUR1/Kir6.2 channels (ICs,
= 11.6 uM, n = 7). Similar to the response of wild type
SUR1/Kir6.2 channels, bath application of 1 mM SNAP
significantly activated the SUR1-C717S/Kir6.2 channel in
the presence of 1 mM [ATP]i. However SNAP was signifi-
cantly less potent in activating the SUR1-C717S/Kir6.2
channel compared with the wild-type SUR1/Kir6.2 chan-
nel (n = 8, p < 0.02 vs. wild type; Figure 9C). SNAP-
induced SUR1-C717S/Kir6.2 channel activation was
reversed by DTT (5 mM) (n = 7).

In addition to C717S, we further examined the activating
effects of NO after mutating the cysteine residues within
NBD1 and NBD2 to serine, including those cysteine resi-
dues adjacent to C717 within NBD1 (C806S), and all
three cysteine residues within NBD2 (C1378, C1446,
C1491). All these mutated channels showed similar ATP-
sensitivity (Figure 9D, controls). Among these mutants,
only SUR1-C717S/Kir6.2 channels significantly affected
NO-sensitivity compared with wild type SUR1/Kir6.2
channels.

Discussion

Our findings demonstrate that NO activates K, p channels
in mammalian sensory neurons. We additionally showed
that inhibition of sGC and PKG fails to block the activa-
tion by NO, indicating that NO signaling is not through
the classical indirect pathway (Figure 10). NO-induced
activation of K,p channels also occurs in cell-free patches,
showing that cytosolic elements are not needed for NO
action. However, NO activation of K,p current is inhib-
ited by thiol-reducing or thiol-alkylating agents, which
demonstrates that S-nitrosylation is needed for NO action
(Figure 10). Since NO fails to activate current conveyed by
Kir6.2 channels that lack SUR1, the NO effect must be
sited on the SUR1 subunit. Mutagenesis of cysteine resi-
dues within SUR1 limits NO-induced K,p channel activa-
tion, confirming SURT1 as the site of S-nitrosylation. Taken
together, these novel findings prove that NO activates
K,rp channels via S-nitrosylation of one or more cysteine
residues on the SUR1 subunit (Figure 10).
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Figure 9 (see previous page)

Effects of mutations within nucleotide-binding domain of SURI on channel activation by NO. (A) Representative
traces of currents via SURI-C717S/Kir6.2 channels in inside-out patches at -60 mV holding potential. Bath application of ATP
(I mM) inhibited SURI-C717S/Kir6.2 channels. Arrows indicate closed channel state. (B) Concentration-response relationship
curves between [ATP]i and relative NPo values for wild-type SURI/Kir6.2 or SURI-C717S/Kir6.2 channels. The relative chan-
nel activities were calculated by dividing the channel activity in the presence of various [ATP]i with the activity in the absence
of ATP. Each point represents measurements from 7 patches (mean + SD). (C) Representative current traces of SURI-C717S/
Kir6.2 channel currents in inside-out patches at -60 mV holding potential. In the presence of | mM [ATP]i, bath application of
SNAP (I mM) activated SURI-C717S/Kir6.2 channel, but less than wild-type SURI/Kir6.2 channels. Activation of these cur-
rents was suppressed by the subsequent application of a thiol-reducing agent, DTT (5 mM). Arrows indicate closed channel
state. (D) Summary of ATP-sensitivity and SNAP effects on relative NPo values of wild-type (control) and mutated SURI/
Kir6.2 currents. The relative channel activities were calculated by dividing the channel activity in the presence or absence (|
mM [ATP]i only) of SNAP (100 nM) with the activity in the absence of ATP. Each horizontal bar represents measurements

from 7-8 patches (mean + SD).

Although the sGC/cGMP/PKG pathway mediates NO reg-
ulation of K, channels in cardiomyocytes, vascular and
non-vascular smooth muscle cells, and pancreatic § cells
[52-56], this is not the case in DRG neurons. Our finding
that NO/sGC/cGMP is inactive in DRG cells is consistent
with reports indicating the absence of sGC in mice [45]
and cGMP in rat DRG neurons [46] using immunohisto-
chemical techniques. However, our data show that an
exogenous membrane permeable ¢cGMP analogue still
activates K,pp channels via a PKG-dependent mechanism,
as in other tissues [53,60]. The presence of PKG in DRG
neurons that lack an up-stream NO/sGC/cGMP pathway
suggests an alternative pathway of activation, perhaps via
natriuretic peptide receptor-B stimulation [45]. PKG
expression is not altered by axotomy [61], possibly
explaining our findings of similar PKG-dependent 8-Br-
c¢GMP actions in both control and axotomized neurons.

As an alternative to the indirect cGMP-signaling pathway,
NO can also directly modify proteins by S-nitrosylation,
through which S-nitrosothiols (SNOs) are formed by cov-
alent addition of an NO moiety (formally as NO+) to
cysteine residues. S-nitrosylation signaling underlies NO
modification of many ion channels, including the NMDA
receptor-channel complex, Ca2+-activated K+ channels,
Na+ channels in baroreceptors, cardiac Ca2+ release chan-
nels, and olfactory cyclic nucleotide-gated channels [1,62-
65]. Changes in the thiol-redox status of cysteine residues
by thiol-group-modifying substances are also involved in
NO modulation of K, channels in pancreatic 3 cells, car-
diomyocytes, and skeletal muscle cells [66-68]. Our new
observation adds sensory neurons as a site at which S-
nitrosylation of cysteines on the K,p channel activates the
Ky p currents.

In contrast to our findings, NO has no direct effect on
native cardiac and pancreatic K,pp channels [53,55].
Although the mechanisms determining susceptibility to S-
nitrosylation by NO remain unknown, access of NO to

available cysteine targets is determined by peptide tertiary
structures and associated proteins [1]. Also, the number
and location of cysteines may vary between K, channels
of different subunit compositions [20].

As in native K,;p channels, we showed that NO directly
activates cloned SUR1/Kir6.2 channels expressed in COS7
cells, although this effect is approximately 3-fold less
potent than in native channels. Compared to SUR1/Kir6.2
expressed in DRG neurons [57], the decreased sensitivity
of channels in COS7 cells to NO may reflect differences in
technique (inside-out recordings from cloned channels,
cell-attached from native K, channels), or variations in
the redox status of the cytosolic environment, and differ-
ent protein conformation in the two experimental mod-
els. Despite these differences, we observed direct
modulation of K, channels by NO in both settings.

Previous studies using mutagenesis have revealed that
thiol-reagents modify K,p channel activity by interacting
with a single cysteine residue at either Kir6.2 or SURI1.
Oxidizing agents pCMPS and MTSET interact with a spe-
cific single cysteine residue on Kir6.2, whereas the alkylat-
ing agent NEM interacts with a cysteine residue on SUR1
[59,69,70]. In the present study, NO failed to modulate
Kir6.2 channels lacking SUR1, indicating that NO does
not act on a thiol oxidizing-sensitive site on Kir6.2, but
that the critical cysteine residue is on the SUR1.

Nucleotides regulate K,;p channel activity in a complex
fashion. The channel is inhibited by ATP binding to
Kir6.2, whereas the channel is activated by Mg-nucle-
otides (MgATP, MgADP) interacting with the two NBDs
on SUR1 [20-22]. Thus [ATP]i-dependence of activation
of native K,p channels by NO suggests that the target
cysteine is located at the NBDs within SUR1. Furthermore,
our site-directed mutagenesis demonstrated that only
mutation of cysteine residue at position 717 (C717)
within NBD1 significantly inhibited the activation by NO.
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Possible pathways involved in K, p channel activation
by NO and sites of action of modulators. SNAP exoge-
nously releases NO that might have activated sGC by diffu-
sion into the cytosol. sGC in other tissues generates
endogenous cGMP, which may further activate PKG in order
to produce downstream effects on the channel. However,
the results of this study imply that sGC is not active in DRG
neurons. Dashed arrows indicate also that the indirect NO/
sGC/cGMP/PKG pathway is not active in DRG neurons,
because ODQ, a specific sGC inhibitor, and KT 5823, a spe-
cific PKG inhibitor, fail to block it (red arrows). In contrast,
exogenous membrane permeable 8-Br-cGMP (blue arrow)
activates K,1p channels via PKG. Solid arrow indicates that
NO most likely activates K 1p channels via S-nitrosylation on
the NBDI within the SURI subunit. This direct pathway is
prevented by thiol-alkylating, or reversed or thiol-reducing
agents (NEM or DTT, respectively; red arrow).

Cys717 is the sole cysteine residue located on the highly
conserved Walker A (ATP-binding) motifs of SURL
Because the alkylating agent NEM directly interacts with
this residue [59], it is likely that cysteine nitrosylation by
NO modulates nucleotides-SUR1 interaction, resulting in
allosteric activation of the K,;p channel. Mutation of
Cys717 did not completely inhibit the NO-induced chan-
nel activation, suggesting that other cysteine residues
besides those in the NBD may be involved in NO action
via poly-nitrosylation, as has been shown in cardiac cal-
cium release channel [65].

The significance of the K,p channel activation by NO in
DRG neurons is presently unknown. If DRG neurons lack
sGC and the capacity to mobilize the NO/sGC/cGMP
pathway, it is likely that S-nitrosylation is the only mech-

http://www.molecularpain.com/content/5/1/12

anism by which NO activates K,p channels in these cells.
nNOS expression in DRG neurons is markedly up-regu-
lated after injury, especially in the small and medium
sized neuronal population, enabling these neurons to
produce endogenous NO [50,51]. Additionally, glial sat-
ellite cells also produce and release NO. Since this mole-
cule is highly diffusible, NO from this sources may
influence K,;p channels predominantly expressed in large
DRG neurons. The direct S-nitrosylation pathway requires
higher NO levels and responds more slowly than the indi-
rect pathway, and thereby producing a threshold effect by
which K,p channels would respond only to intense NO
stimuli and only in a prolonged temporal domain [1].

Our present data confirm our previous findings of K,p
current loss following nerve injury [25,35]. Since axotomy
does not alter the channel biophysical properties or sensi-
tivity to modulators, loss of K,p current may be the result
of regulatory shifts that reduce K,p channel opening. An
implication of our findings is that decreased channel
opening after axotomy may be driven by diminished NO
levels, but this needs to be confirmed by further studies.
Our results also suggest that K, channel modulation by
S-nitrosylation signaling is not altered by injury. Our
present data show that activation by NO restores the K,p
current in axotomized neurons. Since K,pp currents
decrease neuronal excitability and diminish excitatory
neurotransmission, it is likely that elevation of channel
opening by NO may produce analgesic effects even in con-
ditions in which there is no preceding deficit of K, cur-
rents. We did not directly assess any attenuation in
neuronal excitability mediated by increased activity of
Kyp channels following application of NO, and this may
be a limitation of this study. However, NO-regulation
explains why some drugs exert peripheral analgesic effects
via NO-related pathways that activate peripheral neuronal
K,rp channels [15,17-19,39]. Our findings, along with
previous studies, demonstrate that NO mediated activa-
tion of K, ;p channels might be employed as a pathway for
therapy against pain.

Conclusion

NO exogenously released by the NO donor SNAP acti-
vates K,p channels in DRG neurons. This activation is not
altered by painful-like nerve injury. Effects mediated by
NO do not involve the indirect sGC/cGMP/PKG signaling
pathway, but may be the consequence of direct S-
nitrosylation of cysteine residue(s) on SUR1 subunits
associated with ATP-binding site.

Methods

Approval of experimental procedures

All procedures in this study were approved by the Institu-
tional Animal Care and Use Committee (IACUC) of the
Medical College of Wisconsin, Milwaukee, Wisconsin.
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Animal Surgery

For all experiments, we used Male Sprague-Dawley rats
(125-160 g), 6 weeks old and weighing 125-160 g, which
were obtained from a single vendor (Taconic Inc., Ger-
manville, NY). We randomly assigned rats to a surgical
axotomy group using the spinal nerve ligation (SNL)
model [71], or to a control group that received sham skin
operation (SS). We anesthetized rats with isoflurane (1.5-
3% in oxygen) by spontaneous ventilation. We exposed
the right lumbar paravertebral area through a lumbar inci-
sion, accessed the fifth (L5) and sixth (L6) lumbar nerves,
which we ligated with 6-0 silk ligature, and transected dis-
tal to the ligature. We then closed the lumbar fascia with
4-0 absorbable vicryl polyglactin suture, and the skin with
three to five surgical staples. Unlike the originally
described method [71], we did not excise the paraspinous
muscles or the adjacent articular processes. In control rats,
we performed sham operation by lumbar skin incision
and closure by staples only.

Behavioral testing

We selected rats that successfully developed neuropathic
pain behavior using a previously validated [72] and
reported method [73] that identifies hyperalgesia after
SNL with high specificity. We tested animals on the 10th,
12th, and 14th postoperative days onto a 0.25 in. wire
grid. Briefly, after 30 min's rest, we touched the hind paws
randomly using a 22-gauge spinal needle with pressure
adequate to indent but not penetrate the skin (to a total of
ten applications per session). Rats subjected to SS opera-
tion exhibited normal, brief reflexive withdrawal
responses and were used as controls. Rats that displayed a
probability of hyperalgesia-type response (> 2 s sustained
lifting, licking, chewing, or shaking of the paw) at least
20% averaged over 3 test days, and normal contralateral
responses after SNL, were considered as responders with
neuropathic behavior after SNL. Behavioral testing was
repeated on the day of study to confirm the presence of
hyperalgesia. We further included only these responding
rats in our study, in comparison with controls.

Cell isolation and plating

We harvested control (L4 and L5) or axotomized (L5)
ganglia, from control (SS) or hyperalgesic rats (SNL)
respectively, between the 17t and 28th postoperative days.
We sacrificed animals by decapitation under deep isoflu-
rane anesthesia, excised ganglia through a lumbar inci-
sion, and at the same time confirmed accuracy of initial

surgery.

For patch-clamp recordings, we placed excised DRG into
separate 35 mm Petri dishes containing cold, oxygenated,
Hanks Balanced Salt Solution (Gibko, Invitrogen, Grand
Islan, NY), and minced them with iris scissors. We disso-
ciated ganglia enzymatically in a solution containing 0.25
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ml 0.05% w:v liberase blendzyme 2 (Roche Diagnostics
Corp., Indianapolis, IN) and 0.25 ml DMEM/F12 with
glutaMAX (Dulbecco's modified Eagle's medium F12;
Gibco, Invitrogen Corp., Carlsbad, CA) in an incubator at
37°C for 30 min. We then removed the supernatant after
centrifugation and re-incubated cells at 37 °C for another
30 min in 0.2 ml 0.0625% trypsin (Sigma, St. Louis, MO)
and 0.0125% deoxyribonuclease 1 (150,000 U, Sigma, St.
Louis, MO) in 0.25 ml DMEM. We then isolated cells by
centrifugation (600 rpm for 5 min) after adding 0.25 ml
trypsin inhibitor 0.1% w:v (Sigma St. Louis, MO), and re-
suspended them in a culture medium consisting of 0.5
mM glutamine, 0.02 mg/ml gentamicin (Gibco, Invitro-
gen Corp., Carlsbad, CA), 100 ng/ml nerve growth factor
7S (Alomone Labs, Jerusalem, Israel), 2% (vol/vol) B-27
supplement (Gibco, Invitrogen Corp., Carlsbad, CA), and
98% (vol/vol) neural basal medium A (Gibco, Invitrogen
Corp., Carlsbad, CA). Finally, we plated cells onto poly-l-
lysine-coated 12-mm  glass coverslips (Deutsche
Spiegelglas; Carolina Biologic Supply, Burlington, NC),
kept them in a humidified incubator at 37 °C with 95% air
and 5% CO,, and studied them within 3-8 h of dissocia-
tion.

Molecular Biology and Transfection

K,rp channel-deficient COS7 cells were plated at a density
of 3 x 105/dish (35 mm in diameter) and cultured in Dul-
becco's modified Eagle's medium supplemented with
10% fetal calf serum. Rat Kir6.2 (GenBank X97041) and
rat SUR1 (GenBank X97279) cDNAs were used for expres-
sion study. A truncated form of Kir6.2 lacking the last 36
amino acids at the C-terminus was obtained by polymer-
ase chain reaction amplification. Polymerase chain reac-
tion products were cloned into the pCR3.1 vector by using
the TA cloning system (Invitrogen Corp., Carlsbad, CA,
USA) and then cloned into the pcDNA3.1 (-) vector (Inv-
itrogen Corp.) for mammalian expression. Point muta-
tion of cysteine at position 717 (C717), C806, C1378,
C1446, and C1491 within SUR1 to serine (C717S, C806S,
C1378S, C1446S, and C1491S) was performed by using
the Site-Directed Mutagenesis system (Invitrogen Corp.).
All cDNA products were sequenced by using the BigDye
terminator cycle sequencing kit and an ABI PRISM 377
DNA sequencer (Applied Biosystems, Foster City, CA) to
confirm the sequence. A full-length Kir cDNA and a full-
length SUR ¢cDNA were subcloned into the mammalian
expression vector pcDNA3.1 (-). For electrophysiological
recordings, either wild-type or mutated pcDNA3.1 (-)
Kir6.2 alone (1 pg), or pcDNA3.1 (-) Kir6.2 (1 pg) plus
pcDNA3.1 (-) SURI (3 pg) were transfected into COS7
cells with green fluorescent protein cDNA as a reporter
gene by using lipofectamine and Opti-MEN 1 reagents
(Life Technologies Inc., Rockville, MD) according to the
manufacturer's instructions. After transfection, cells were
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cultured at 37°C with 95% air and 5% CO, for 48-72 h
before being subjected to electrophysiological recordings.

Measurement of intracellular ATP concentration

For measuring intracellular ATP concentration, we
extracted intracellular ATP (JATP]i) using ATP extraction
kit (Toyo Ink, Tokyo, Japan). After preincubation in HBS
for 30 min, we incubated DRG neurons in the presence or
absence of 100 uM SNAP for 10 minutes. We quantita-
tively measured the [ATP]i level using the luciferin-luci-
ferase assay solution (Toyo Ink), according to protocols
provided by the manufacturer.

Electrophysiological recordings

We visualized plated neurons using an inverted Nikon
Diaphot 300 microscope with Hoffman modulation optic
system. We selected only large diameter neuronal somata
(240 pm in diameter) because we have previously shown
that only these develop K,p current alterations [35], as
well as changes indicative of increased excitability after
painful-like nerve injury by SNL [74]. Large neuronal
somata, roughly correspond to large, myelinated AP fib-
ers.

We recorded current passing through single channels in
inside-out or cell-attached patch configurations. In cell-
attached patches, both bath and pipette (extracellular)
solutions were composed of the following: 140 mM KClI,
10 mM HEPES, 5.5 mM dextrose, and 1 mM EGTA. In
inside-out patches, the bath (intracellular) solution con-
tained 140 mM KCI, 1.2 mM MgCl,, 10 mM HEPES, 1.5
mM EGTA and 5.5 mM dextrose. The pipette (extracellu-
lar) solution was of the same composition as that used in
cell-attached recordings. The pH of all solutions was
adjusted to 7.4 with KOH. Osmolality was adjusted
approximately to 300 mOsm/I by adding sucrose if neces-
sary. We pulled patch micropipettes from borosilicate
glass capillaries using a Flaming/Brown micropipette
puller, model P-97 (Sutter, San Rafael, CA) and flame pol-
ished them with a microforge polisher (Narishige, Tokyo,
Japan) prior to use. Their resistance ranged between 3 and
6 MQ when filled with the internal solution, and placed
into the recording solutions.

We recorded single channel currents at room temperature
(20-25°C) using an Axon CNS Multiclamp 700B ampli-
fier, digitized them using an analog-to-digital converter
(Axon CNS DigiData 1440A; Axon Instruments, Foster,
CA), and stored them into a PC. Sampling frequency of
single-channel data was 5 KHz with a low-pass filter (1
KHz). We used pClamp version 10.2 software (Axon
Instruments) for data acquisition and analysis. We
applied a conventional 50% current amplitude threshold
level criterion to determine open events. Channel open
probability (Po) was determined from the ratios of the
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area under the peaks in the amplitude histograms fitted by
a Gaussian distribution. We calculated channel activity as
NPo (where N is the number of observed channels in the
patch) from data samples of either 30 s (in inside-out
recordings), or 60 s (in cell-attached recordings), in the
steady state. In inside-out recordings, NPo of the K,pp
channels was normalized to the baseline NPo value
obtained before test drugs at bathing solution without
ATP (indicating relative channel activity).

Drugs

SNAP, SNP, glybenclamide, L-NAME, zaprinast, ODQ,
KT5823, 8-Br-cGMP, DTT, and NEM were purchased from
Sigma, St. Louis, MO, USA. SNAP was stored at -20°C as
a 30 mM stock solution in methanol. The solution of
SNAP was prepared 15 min before being tested experi-
mentally, and was not used thereafter for longer than 2
hours. It was also continuously kept protected from light.
Glybenclamide (10 mM) and ODQ (20 mM) were
stocked in DMSO. SNP, L-NAME, DTT, and NEM were
prepared asa 1 M, 10 mM, 0.5 M, and 50 mM stock solu-
tion in distilled water, respectively. All drugs were diluted
in perfusate as indicated. Oxidized SNAP, that no longer
generates NO, was prepared as described previously, by
allowing SNAP dissolved in DMSO, to decompose at
room temperature for 48 hours [47]. When added to the
bathing solution, the maximal concentrations of either
methanol (0.01%) or DMSO (0.01%) alone did not exert
any affect, nor modify the KATP channel activity of the
preparation. Glybenclamide [75], L-NAME [76], zaprinast
[60], ODQ [77], KT5823 [60], DTT [62], and NEM [78]
were applied at concentrations that have been previously
reported as effective in inhibiting their respective targets.

Data Analysis and Statistics

Data are expressed as means + SD. The effect of bath
changes, indicative of various drug effects, was evaluated
using repeated measures ANOVA to identify main effects,
followed by Bonferoni post hoc tests whenever appropri-
ate. Student's t-tests were also used for pair-wise compari-
sons, whenever needed. Significance was accepted at P <
0.05. Concentration-response curves were plotted by non-
linear regression using sigmoidal concentration-response
(variable slope) equations (Y = bottom/(1+10”(logEC50-
X)*Hill slope), and statistically compared using the Prism
software. The SPSS statistical software was used for statis-
tical analysis.

Abbreviations

K,pp: ATP-sensitive; DRG: dorsal root ganglion; NO: nitric
oxide; SNL: spinal nerve ligation; SS: sham surgery;
[ATP]I: intracellular ATP concentration; sGC: soluble gua-
nylate cyclase; SUR: sulfonylurea receptor; Kir6.2:
inwardly-rectifying potassium channel 6.2; NBD: nucle-
otide binding domain; nNOS: neuronal nitric oxide syn-
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thase; DNP: 2,4-Dinitrophenol; SNAP: S-nitroso-N-
acetylpenicillamine; SNP: sodium nitroprusside; L-
NAME: NG-nitro-L-arginine methyl ester; ODQ: 1H-[1, 2,
4] oxadiazolo [4, 3-a] quinoxalin-1-one; 8-Br-cGMP: 8-
bromo-cGMP sodium salt; DTT: di-thiothreitol; NEM: N-
ethylmaleimide; DMSO: dimethyl sulfoxide.
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