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Abstract
Background: Substance P (SP), which mainly exists in a subtype of small-diameter dorsal root
ganglion (DRG) neurons, is an important signal molecule in pain processing in the spinal cord. Our
previous results have proved the expression of SP receptor neurokinin-1 (NK-1) on DRG neurons
and its interaction with transient receptor potential vanilloid 1 (TRPV1) receptor.

Results: In this study we investigated the effect of NK-1 receptor agonist on Nav1.8, a
tetrodotoxin (TTX)-resistant sodium channel, in rat small-diameter DRG neurons employing
whole-cell patch clamp recordings. NK-1 agonist [Sar9, Met(O2)11]-substance P (Sar-SP)
significantly enhanced the Nav1.8 currents in a subgroup of small-diameter DRG neurons under
both the normal and inflammatory situation, and the enhancement was blocked by NK-1 antagonist
Win51708 and protein kinase C (PKC) inhibitor bisindolylmaleimide (BIM), but not the protein
kinase A (PKA) inhibitor H89. In particular, the inhibitor of PKCε, a PKC isoform, completely
blocked this effect. Under current clamp model, Sar-SP reduced the amount of current required to
evoke action potentials and increased the firing rate in a subgroup of DRG neurons.

Conclusion: These data suggest that activation of NK-1 receptor potentiates Nav1.8 sodium
current via PKCε-dependent signaling pathway, probably participating in the generation of
inflammatory hyperalgesia.

Background
Substance P (SP), a member of tachykinin family, is a
well-known pain-related neuropeptide in the spinal cord.
It is released by unmyelinated primary afferent fiber ter-
minals of small-diameter dorsal root ganglion (DRG)
neurons and participates in the spinal transmission of
nociceptive signals [1-3]. It is well documented that the SP
receptor neurokinin-1 (NK-1) is densely distributed in the
superficial dorsal horn and involved in the development

of chronic pain and central sensitization after intense nox-
ious stimulation and tissue/nerve injury [4-7].

In addition to the expression of the NK-1 on the postsyn-
aptic neurons of superficial spinal dorsal horn, increasing
evidence strongly suggested the presynaptic expression of
NK-1 in DRG neurons. The immunohistochemical evi-
dence revealed that the NK-1 was expressed by the unmy-
elinated axons of the glabrous skin [8], and the DRG
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neuron soma in rats [9]. By means of intracellular and
whole-cell patch clamp recordings, SP was shown to be
able to induce the depolarization of DRG or trigeminal
ganglion neurons in the different species [10-13] and
potentiated the TRPV1 currents [9]. However, the func-
tion of DRG-expressed NK-1 receptor needs to be further
understood.

The Nav1.8, which is a TTX-resistant sodium channel and
mainly expressed in small-diameter DRG neurons
[14,15], is a major contributor to the upstroke of action
potential in these neurons [16]. In the Nav1.8-null mice or
Nav1.8 knockdown mice by antisense oligodeoxynucle-
otides, both the physiological and pathological pain was
alleviated [17-20]. Accumulative evidence showed that
the Nav1.8 current was regulated by various inflammatory
mediators, such as prostaglandin E2 (PGE2), serotonin,
NGF etc. through a PKA or PKC signaling pathway [21-
24]. 

In the present study, we investigated the effects of the NK-
1 agonist on dynamics of Nav1.8 currents in isolated
small-diameter DRG neurons using whole-cell patch
clamp recording. Also, the role of PKC signal pathway in
the cross-talk between NK-1 and Nav1.8 was examined.

Results
Recording of Nav1.8 currents in DRG neurons
With existence of TTX (500 nM) in external solution, TTX-
resistant sodium currents were recorded in most (166 out
of 205) of the small-diameter DRG neurons (<25 μm).
The membrane potential was hold to -60 mV. Under this
recording condition, TTX-resistant sodium currents were
mainly mediated by Nav1.8 channels due to inactivation
of Nav1.9 [25,26]. The family of Nav1.8 sodium currents
was generated with a voltage-clamp protocol (depolariz-
ing steps from -55 mV to 40 mV, 50 ms, 5 mV increments,
Figure 1A). In accordance with the current-voltage rela-
tionship (Figure 1B), -10 mV was chosen to elicit Nav1.8
currents in most of the recordings (Figure 1C). As reported
by Saab et al. [27], fluoride-based pipette solution also
caused slow stabilization of the amplitude of Nav1.8 cur-
rent after rupture of cell membrane in our experiments.
We measured the peak amplitude of the Nav1.8 current at
5 min, 10 min and 15 min after whole-cell mode was per-
formed. As shown in Figure 1D, the peak amplitude was
relatively stable from 5 min to 15 min (n = 16). All of our
subsequent recordings were performed in this time
course.

Increase in peak amplitude of Nav1.8 current by Sar-SP
Following the perfusion with Sar-SP (1 μM, 1 min), a
selective NK-1 agonist, Nav1.8 currents were increased in
13 out of 30 DRG neurons tested (Figure 2A, B and 2C).
The maximal enhancement of the peak amplitude

occurred at 3 min after Sar-SP perfusion, and reduced
slowly to control level thereafter (Figure 2A). As shown in
Figure 2C, normalized currents were increased signifi-
cantly by Sar-SP (116.2 ± 2.9%, n = 13) compared with
the control (99.2 ± 0.5%, n = 16, p < 0.001). Higher con-
centration of Sar-SP (10 μM) failed to induce more pow-
erful action (117.1 ± 1.4%, n = 6, p < 0.001, Figure 2C),
suggesting a "ceiling effect" at 1 μM. The Sar-SP-induced
potentiation was blocked by co-incubation of Win51708,
a selective NK-1 antagonist (5 μM, 98.5 ± 0.6%, n = 15,
Figure 2D). To exclude the influence of fluoride, we also
test the effect of Sar-SP by using chloride-based pipette
solution. Cesium fluoride was changed to cesium chlo-
ride. The effect of Sar-SP wasn't changed significantly
(data not shown).

The effect of Sar-SP on Nav1.8 current was also examined
under peripheral inflammation condition. Complete Fre-
und's adjuvant (CFA, 100 μl) was bilaterally injected into
rat hind paws. DRG neurons was tested three days after
CFA treatment, Nav1.8 currents were enhanced by Sar-SP
(1 μM) in 60.9% of DRG neurons (n = 23). In the saline
treated control rats, 38.1% of DRG neurons (n = 21)
exhibited potentiation of Nav1.8 current (Figure 2E). In
rats with CFA treatment, the peak Nav1.8 current in DRG
neurons was enhanced to 123.2 ± 1.8% (n = 14) following
application of Sar-SP, whereas enhanced to 117.4 ± 1.5%
(n = 8) in saline treated control rats (Figure 2F, p < 0.05).
Given inflammation-induced increase in expression of
NK-1 [9], it is suggested that such modulation of NK-1
may be more beneficial for controlling inflammatory
chronic pain.

Sar-SP shifted the activation and steady-state inactivation 
curves of Nav1.8 in a hyperpolarizing direction
As described above, a voltage-clamp protocol consisted of
50 ms depolarizing steps from -55 mV to 40 mV (5 mV
increments) was used to determine the activation of
Nav1.8 channels. Sar-SP caused a left shift of the activation
curve (Figure 2G). Half-maximal activation potential (V1/

2activation) was shifted to -20.03 ± 0.23 mV from that of
control condition (-14.24 ± 0.25, n = 6) after Sar-SP per-
fusion. The k value was not changed by Sar-SP (kcontrol =
4.89 ± 0.27, kSar-SP = 4.77 ± 0.45). Steady-state inactivation
was determined at a series of membrane potentials from -
60 mV to 15 mV (5 mV increments) for 500 ms and a fol-
lowing test potential of 20 mV. Similar to the activation
curve, the steady-state inactivation curve was also shifted
in a hyperpolarized direction after Sar-SP perfusion (Fig-
ure 2H). The V1/2 of voltage dependence of steady-state
inactivation was -19.31 ± 0.23 mV (n = 6) using vehicle
alone, and -25.55 ± 0.14 mV after Sar-SP treatment (n =
6). The k value was also not changed by Sar-SP (kcontrol =
5.39 ± 0.37, kSar-SP = 5.09 ± 0.32).
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Sar-SP-induced potentiation of Nav1.8 via PKC, but not 
PKA
Activation of NK-1, a G-protein coupled receptor, triggers
several intracellular signal pathways, such as PKA and
PKC pathway [28]. Given modulation of Nav1.8 by PKC
[23,24,29], here we used bisindolylmaleimide (BIM), a
PKC inhibitor, to examine its effect on the Sar-SP-induced
potentiation of Nav1.8 currents. In all DRG neurons (n =
24) incubated with BIM (1 μM) for 30 min before Sar-SP

perfusion, Sar-SP failed to potentiate Nav1.8 currents, sug-
gesting a PKC-dependent mechanism in the interaction of
NK-1 and Nav1.8 (Figure 3A and 3B).

Nav1.8 currents were also reported to be regulated by PKA
[22,23,30]. While the cells were incubated with the PKA
inhibitor H89 (1 μM) for 30 min, Sar-SP (1 μM) still fully
enhanced Nav1.8 currents in 9 of 24 DRG neurons (Figure
3C and 3D, control = 99.2 ± 0.5%, Sar-SP = 115.6 ± 2.1%,

Recording of Nav1.8 currents in rat DRG neuronsFigure 1
Recording of Nav1.8 currents in rat DRG neurons. A: representative I-V curve family of currents recorded in the pres-
ence of 500 nM TTX is shown, using a protocol (inset) where cells were depolarized to a variety of potentials (-55 to +40 mV) 
from a holding potential of -60 mV to elicit Nav1.8 currents. B: I-V curve of Nav1.8 currents shown in (A). C: representative 
traces of Nav1.8 current elicited by a single pulse of -10 mV which was used in most of the recordings. D: peak amplitudes of 
Nav1.8 currents elicited by -10 mV pulse at 5 min, 10 min and 15 min after whole-cell mode was performed. The currents were 
stable during the recording time in all the cells (n = 16).
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p < 0.001), suggesting that the PKA pathway did not par-
ticipate in the interaction of NK-1 and Nav1.8.

Further, PMA (phorbol 12-myristate 13-acetate), a PKC
activator, was used to mimic the effect of Sar-SP. As shown
in Figure 4, PMA (300 nM) significantly enhanced the
Nav1.8 currents by 19.5 ± 3.2% in 10 out of 13 recorded
neurons (p < 0.001, Figure 4A and 4B). Notably, perfusion
with Sar-SP (1 μM) failed to further enhance PMA-
induced potentiation of Nav1.8 currents (118.3 ± 2.2%, p
< 0.001, Figure 4A and 4B). After PMA perfusion, the acti-
vation and steady-state inactivation curves were also
shifted in a hyperpolarizing direction (Figure 4C and 4D).
Half-maximal activation potential (V1/2 activation) was
shifted to -18.97 ± 0.28 mV from that of control condition
(-14.37 ± 0.18 mV, n = 6). The half-maximal inactivation
potential (V1/2 inactivation) was shifted to -24.48 ± 0.10 mV
from -19.41 ± 0.18 mV (control, n = 6). These results fur-

ther confirmed that Sar-SP modulated Nav1.8 channels in
a PKC-dependent pathway. In consistent with Sar-SP,
PMA didn't change the k value in the activation and inac-
tivation curves (activation: kcontrol = 4.59 ± 0.26, kPMA =
4.64 ± 0.68; inactivation: kcontrol = 5.39 ± 0.37, kPMA = 5.14
± 0.36).

PKCε: a pivotal factor for potentiation of Nav1.8 by NK-1 
activation
As reported, there are five isoforms of PKC expressed in
DRG neurons [31]. Among these isoforms, PKCε is highly
expressed in small-diameter DRG neurons and involved
in NK-1 activation-induced potentiation of TRPV1 and
the development of hyperalgesia [9,31-33]. Therefore, to
explore the effect of PKCε on Sar-SP-induced potentiation
of Nav1.8, εV1-2 (200 μM), a specific PKCε inhibitor, was
delivered intracellularly via recording electrodes. The
potentiation of Nav1.8 currents was completely blocked

Effect of NK-1 agonist Sar-SP on Nav1.8 currentsFigure 2
Effect of NK-1 agonist Sar-SP on Nav1.8 currents. A: time course of the potentiation effect of Sar-SP. The maximal 
increase in the peak amplitude was at 3 min after Sar-SP perfusion, and reduced slowly to control level thereafter. B: typical 
traces illustrating the Nav1.8 current recorded in a neuron pre- (dashed line, control) and post- (solid line, Sar-SP) perfusion of 
1 μM Sar-SP. C: histogram showing the effect of 1 μM and 10 μM Sar-SP. The normalized peak current was enhanced to 116.2 
± 2.9% and 117.1 ± 1.4% 3 min after perfusion of 1 μM and 10 μM Sar-SP, respectively (***p < 0.001, versus control, Kruskal-
Wallis one-way ANOVA, n = 16 for control, 13 for 1 μM, and 6 for 10 μM). D: NK-1 antagonist Win51708 (5 μM) completely 
blocked the effect of Sar-SP in all 15 neurons tested (p > 0.05, t-test). E: The rate of the Sar-SP-responsive cells was increased 
after CFA-treatment. F: The effect of Sar-SP was also increased after peripheral CFA-treatment (* p < 0.05, t-test, n = 8 for 
saline and 14 for CFA-treated). G and H: Sar-SP shifted the activation (G) and steady-state inactivation (H) curve in a hyperpo-
larizing direction.
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by εV1-2 (n = 15), but not by its negative control (control
peptide) (n = 8, Figure 5A and 5B).

Effect of Sar-SP on excitability of DRG neuron
Nav1.8 is the main contributor to the upstroke of action
potentials in small-diameter DRG neurons [16]. There-
fore, modulation of this channel by Sar-SP should influ-
ence excitability of the DRG neuron. We detected the
effect of Sar-SP on the threshold for evoking action poten-
tial in DRG neurons. To evoke action potentials, 5 ms step
depolarizing current pulses were applied to neurons
before and after exposure to Sar-SP (Figure 6A and 6B). In
6 of 17 neurons tested, Sar-SP significantly decreased the
injected current threshold to evoke action potentials.
Under the control condition, the current threshold was

116.7 ± 7.6 pA. After exposure to Sar-SP, this threshold
was reduced to 80.0 ± 5.2 pA (Figure 6C, n = 6, p < 0.01).

In addition, during injection of supramaximal depolariz-
ing current pulses (500 ms, 500 pA), DRG neurons fired
with a frequency at 21.22 ± 1.57 Hz (Figure 6D and 6F, n
= 6). Sar-SP significantly increased the firing frequency to
33.22 ± 1.53 Hz (Figure 6E and 6F, n = 6, p < 0.001).

Discussion
The role of substance P (SP) and its NK-1 receptor in pain
processing was widely investigated in the spinal cord.
However, most of the prevailing studies focused on the
postsynaptic NK-1 receptors in the spinal superficial dor-
sal horn neurons. Whether NK-1 receptors are also

Involvement of PKC, but not PKA in Sar-SP-induced potentiation of Nav1.8 currentsFigure 3
Involvement of PKC, but not PKA in Sar-SP-induced potentiation of Nav1.8 currents. Incubation with PKC inhibi-
tor BIM (1 μM) for 30 min before Sar-SP perfusion completely blocked the potentiation effect of Sar-SP in all 24 neurons tested 
(A and B, p > 0.05, Mann-Whitney rank sum test). After incubation with PKA inhibitor H89, Sar-SP (1 μM) still fully enhanced 
Nav1.8 currents in 9 of 24 DRG neurons (C and D, ***p < 0.001, Mann-Whitney rank sum test).
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expressed presynaptically in primary sensory neurons is
still obscure. A growing body of evidence showed that SP
could activate DRG neurons through NK-1 receptor in pri-
mary sensory neurons [10-13,34,35], in despite of a con-
tradictory report [36]. Our recent study provided new
evidence for the expression of NK-1 receptor protein and
interaction with TRPV1, a crucial pain signal molecule, in
DRG neurons [9].

In addition to TRPV1, another important ion channel,
TTX-resistant sodium channel, is also primarily expressed
in nociceptors. Between the two distinct TTX-resistant
sodium channel isoforms Nav1.8 and Nav1.9, Nav1.8
likely mediates the majority of the TTX-resistant currents

and plays an important role in pain processing. Nav1.8-
null mice displayed a pronounced increase in threshold to
noxious mechanical stimuli and a slight decrease in noci-
ceptive thermoreception as well as delayed development
of inflammatory hyperalgesia [17]. Likewise, knocking-
down of Nav1.8 mRNA with antisense oligodeoxynucle-
otides was effective in alleviating both the inflammatory
and neuropathic pain [18-20,37,38]. Also, muO-conoto-
xin MrVIB, a selective blocker of Nav1.8, reduced allody-
nia and hyperalgesia in neuropathic and chronic
inflammatory pain models [39,40]. The present study for
the first time revealed that NK-1 activation potentiated
Nav1.8 currents and shifted both the activation and
steady-state inactivation curves of this channel in a hyper-

PMA mimic the effect of Sar-SPFigure 4
PMA mimic the effect of Sar-SP. A and B:representative traces (A) and histogram (B) showing the effect of PMA on 
Nav1.8 currents. 300 nM PMA induced a similar potentiation to 1 μM Sar-SP. Perfusion with Sar-SP failed to further enhance 
the currents after PMA-induced peak potentiation (***p < 0.001, versus control, Kruskal-Wallis one-way ANOVA, n = 16 for 
control, 10 for PMA and 10 for Sar-SP). PMA also shifted the activation and steady-state inactivation curve of Nav1.8 in a hyper-
polarized direction (C and D).
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polarizing direction. This change in voltage sensitivity of
Nav1.8 may decrease the activate threshold and increase
the likelihood of action potential firing, and then proba-
bly cause a hyperexcitability of the neurons. As shown in
Figure 6, the enhancement of excitability was observed in
our experiments. Although the involvement of Sar-SP-
induced modulation on other ion channels still need to
be further investigated, it is assumed that modulation on
Nav1.8 at least partly contributes to this enhancement of
excitability. Similar results were also obtained from stud-
ies on modulation of Nav1.8 by another peripheral pain-
related neuropeptide calcitonin gene related peptide
(CGRP) [41] and proinflammatory factors such as 5-
hydroxytryptamine and prostaglandin E2 [22,42,43]. It is
conceivable that the modulation of Nav1.8 by NK-1 acti-
vation may contribute to peripheral sensitization of pain
pathway.

NK-1 receptor is a G-protein coupled receptor [28]. The
activation of NK-1 receptors generates various second
messengers, which, in turn, trigger a wide range of effector
mechanisms underlying regulating cellular excitability
and functions [44-47]. In agreement with our previous
finding that the modulation of TRPV1 by NK-1 receptor
was mediated by activation of PLC and downstream PKC
pathway [9], the present results also proved the involve-
ment of PKC in the interaction between NK-1 and Nav1.8.

As shown in Figure 3 and Figure 4, PKC inhibitor BIM
completely blocked Sar-SP-induced potentiation of
Nav1.8 currents, whereas PKC activator PMA could mimic
the effects of Sar-SP on Nav1.8 currents. These results sug-
gest that NK-1 modulates Nav1.8 in a PKC-dependent
pathway. There are many other papers confirmed the
enhancement of Nav1.8 by PKC pathway [24,48,49].
However, the inconsistent results have been reported.
Gold et al. reported that PKC activation also caused an
increase in the amplitude of the TTX-resistant current in
rat DRG neurons. But this increase was not associated
with a shift in the activation curve [23]. Vijayaragavan and
colleagues reported that in Xenopus oocytes expression sys-
tem, PKC activator PMA caused a decrease of Nav1.8 cur-
rent and a right shift of the activation curve [29]. The
reason for the difference is still unclear.

Furthermore, we observed that PKCε inhibitor εV1-2 com-
pletely blocked Sar-SP-induced potentiation of Nav1.8
currents, suggesting that PKCε was the main mediator of
NK-1 potentiation, in consistence with the modulation of
TRPV1 by NK-1 [9].

In addition to the PKC pathway, several reports showed
that PKA was also involved in the increase of TTX-resistant
currents by proinflammatory agents (5-HT, PGE2)
[22,23,42]. However, PKA inhibitor H89 failed to prevent

PKCε was the main PKC subtype mediating the effect of Sar-SPFigure 5
PKCε was the main PKC subtype mediating the effect of Sar-SP. A and B: representative traces (A) and histogram (B) 
showing the effect of PKCε inhibitor εV1-2 on Sar-SP-induced potentiation. Intracellular application of εV1-2 (200 μM) com-
pletely abolished the potentiation effect of Sar-SP. The negative control (control peptide) of εV1-2 failed to block Sar-SP-
induced potentiation (***p < 0.001, versus normal control, one-way ANOVA, n = 16 for normal control, 11 for εV1-2 and 8 
for negative control).
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Sar-SP-induced potentiation of Nav1.8 in the present
study. These suggested the diverse mechanisms underly-
ing modulation of Nav1.8 by the different proinflamma-
tory agents. Therefore, the modulatory action of NK-1
may be predominately mediated by PKC, particularly by
PKCε, but not PKA.

It is well documented an increase in expression of Nav1.8
in DRG neurons in several inflammatory pain models
[50-53]. Our previous results have revealed that both the
NK-1 expression and phosphorylation of PKCε are up-reg-
ulated in DRG after CFA-induced inflammation [9,33].
Therefore, we assume that the modulation of Nav1.8 by
NK-1 via PKCε is likely to be stronger after peripheral
inflammation. In support of this view, the present study
showed that not only the effect of NK-1 activation on

Nav1.8 currents was significantly potentiated, but also the
rate of Sar-SP-responsive neurons following CFA treat-
ment. It is conceivable that the modulation of Nav1.8 by
NK-1 may amplify peripheral nociceptive inputs and in
turn strengthen activation of the pain-sensitive neurons in
the spinal cord, contributing to inflammatory pain.

Conclusion
Substance P (SP) receptor NK-1 and TTX-resistant sodium
channel Nav1.8 expressed on nociceptors are two impor-
tant molecules for pain processing. The present study for
the first time investigated their interaction in rat DRG neu-
rons. The results showed that activation of NK-1 receptor
potentiates Nav1.8 sodium current via PKCε-dependent
signaling pathway, probably participating in the genera-
tion of inflammatory hyperalgesia.

Effect of 1 μM Sar-SP on action potential threshold and firing rate in DRG neuronsFigure 6
Effect of 1 μM Sar-SP on action potential threshold and firing rate in DRG neurons. Sar-SP reduced the amount of 
current required to evoke action potential and increased the firing rate in DRG neurons. Experiments were performed using 
current clamp model. A and B: depolarizing current pulse required to evoke an action potential in a DRG neuron, before (A) 
and after (B) application of Sar-SP (a = 130 pA, b = 140 pA, c = 80 pA, d = 90 pA). C: effect of Sar-SP on the threshold for 
action potential generation by depolarizing current pulse (**p < 0.01, paired t-test, n = 6). D and E: firing response of a DRG 
neuron to a 500 pA depolarizing current pulse (500 ms), before (D) and after (E) application of Sar-SP. F: effect of Sar-SP on fir-
ing rate in DRG neurons (***p < 0.001, paired t-test, n = 6).
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Methods
Animals
Male adult (100–150 g) Sprague-Dawley rats (obtained
from the Experimental Animal Center, Shanghai Medical
College of Fudan University, China) were used in our
experiments. Rats were on a 12 h light/dark cycle with a
room temperature of 22 ± 1°C and received food and
water ad libitum. All experimental procedures were
approved by the Shanghai Animal Care and Use Commit-
tee and followed the policies issued by the International
Association for the Study of Pain on the use of laboratory
animals. All efforts were made to minimize animal suffer-
ing and reduce the numbers of animals used.

Cell preparation
Culture of DRG neurons was established as described pre-
viously [33]. Briefly, DRGs from L4-L6 lumbar segments
were dissected and incubated at 36.8°C for 25 min in
DMEM containing 3 mg/ml collagenase (type IA, Sigma,
St. Louis, MO) and, 1 mg/ml trypsin (type I, Sigma). The
ganglias were then gently triturated using fine fired-pol-
ished Pasteur pipettes. The dissociated DRG neurons were
plated onto coverslips (10 mm diameter) in the 3.5 cm
culture dishes and incubated with Standard external solu-
tion containing (in mM) 150 NaCl, 5 KCl, 2 CaCl2, 1
MgCl2, 10 HEPES, and 10 glucose, adjusted to pH 7.4 with
NaOH.

Patch-clamp recordings
Whole-cell voltage-clamp and current-clamp recordings
of DRG neurons were performed at room temperature
(20–22°C) with an EPC-9 amplifier (HEKA Elektronik,
Lambrecht/Pfalz, Germany). Stimulation protocols and
data acquisition were controlled by the software Pulse and
Pulsefit 8.5 (HEKA Elektronik). Neurons were prepared as
above, and all recordings were performed within 2–8 h
after plating. All of the recordings were made from small-
diameter (15–25 μm) DRG neurons. After gigaohm seal
formation and membrane disruption, the whole cell
capacitance was cancelled and series resistance was com-
pensated (> 80%). Microelectrodes were fabricated from
1.5 mm out diameter borosilicate capillary glass (Sutter
Instruments, Novato, CA) by using a P-97 puller (Sutter
Instruments, Novato, CA), and had a resistance of 3–5
MΩ. Electrodes were filled with (in mM): 140 CsF, 1
MgCl2, 1 EGTA, 2.5 Na2ATP, 10 HEPES, pH was adjusted
to 7.2 with CsOH. In recording of Nav1.8 currents, the
external solution contained (in mM): 32 NaCl, 20 TEA-Cl,
105 choline-Cl, 1 MgCl2, 1 CaCl2, 0.1 CdCl2, 10 HEPES,
0.0005 TTX and 10 glucose, adjusted to pH 7.4 with
NaOH. The TEA-Cl, CdCl2, TTX was used to inhibit
endogenous K+, Ca2+, and TTX-sensitive sodium currents,
respectively. In current-clamp recordings, the electrode
solution was changed to: 140 KCl, 1 MgCl2, 0.5 CaCl2, 5
EGTA, 10 HEPES, 2.5 Na2ATP, pH was adjusted to 7.2

with KOH. The external solution was changed to: 150
NaCl, 5 KCl, 2.5 CaCl2, 1 MgCl2, 10 HEPES, pH was
adjusted to 7.4 with NaOH.

Drugs
All the drugs were purchased from Sigma (St. Louis, MO,
USA), except that the PKCε inhibitor εV1-2 and its nega-
tive control were from Biomol (Plymouth Meeting, PA).
All the drugs are prepared on the day of the experiment
from stocks kept at -20°C at a concentration at least 1000-
fold the working concentration. [Sar9, Met(O2)11]-sub-
stance P (Sar-SP) and PMA were applied close to the cells
through a ALA-VM8 perfusion system (ALA Scientific
Instruments, Westbury, NY). Inhibitors were applied
(where appropriate) to the chamber for 30 min before the
perfusion of Sar-SP and PMA and existed during the whole
recording course.

Data analysis
Peak sodium current values were converted to conduct-
ance values using the equation: G = I/(Vm - ENa), where G
is the conductance, I is the peak current amplitude, Vm is
the membrane potential, and ENa is the equilibrium
potential value for Na+. The Boltzmann equation used to
describe the voltage dependence of activation was of the
form: G/Gmax = 1/(1 + exp [(V1/2 - Vm)/k]), where Gmax is the
peak conductance, V1/2 is the potential at half maximal
activation, and k is the slope factor. Voltage dependence
of steady-state inactivation was described by the Boltz-
mann function: I/Imax = 1/(1 + exp [(V-V1/2)/k]), where Imax
is the maximal peak current, V is the prepulse membrane
potential, V1/2 is the potential at half maximal activation,
and k is the slope factor.

Data are expressed as means ± standard error of the mean
(SEM). Statistical analysis was performed using SigmaStat
software (Systat Software, Chicago, IL). Student's t-test or
Mann-Whitney analysis was used to assess differences
between means from two groups. One-way ANOVA or
Kruskal-Wallis one-way ANOVA was used to assess differ-
ence among more groups. P < 0.05 was considered signif-
icant. Curves were plotted and fitted using Origin software
(OriginLab Corporation, Northampton, USA).
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