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Abstract

Background: Chronic inflammatory pain, when not effectively treated, is a costly health problem
and has a harmful effect on all aspects of health-related quality of life. Despite the availability of
pharmacologic treatments, chronic inflammatory pain remains inadequately treated. Understanding
the nociceptive signaling pathways of such pain is therefore important in developing long-acting
treatments with limited side effects. High local proton concentrations (tissue acidosis) causing
direct excitation or modulation of nociceptive sensory neurons by proton-sensing receptors are
responsible for pain in some inflalmmatory pain conditions. We previously found that all four
proton-sensing G-protein-coupled receptors (GPCRs) are expressed in pain-relevant loci (dorsal
root ganglia, DRG), which suggests their possible involvement in nociception, but their functions in
pain remain unclear.

Results: In this study, we first demonstrated differential change in expression of proton-sensing
GPCRs in peripheral inflammation induced by the inflammatory agents capsaicin, carrageenan, and
complete Freund's adjuvant (CFA). In particular, the expression of TDAGBS, one proton-sensing
GPCR, was increased 24 hours after CFA injection because of increased number of DRG neurons
expressing TDAGS8. The number of DRG neurons expressing both TDAG8 and transient receptor
potential vanilloid | (TRPVI) was increased as well. Further studies revealed that TDAGS8
activation sensitized the TRPVI response to capsaicin, suggesting that TDAGS8 could be involved
in CFA-induced chronic inflammatory pain through regulation of TRPVI function.

Conclusion: Each subtype of the OGRI family was expressed differently, which may reflect
differences between models in duration and magnitude of hyperalgesia. Given that TDAGS8 and
TRPVI expression increased after CFA-induced inflammation and that TDAGS8 activation can lead
to TRPVI sensitization, it suggests that high concentrations of protons after inflammation may not
only directly activate proton-sensing ion channels (such as TRPVI) to cause pain but also act on
proton-sensing GPCRs to regulate the development of hyperalgesia.
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Background

Inflammation induced by tissue injury, infection or tumor
growth often accompanies persistent and chronic pain
that heightens a pain experience by increasing the sensi-
tivity of nociceptors to both thermal and mechanical stim-
uli. This phenomenon results, in part, from the
production and release of chemical mediators (e.g., pro-
tons, adenosine triphosphate, bradykinin, histamine,
postaglandin, serotonin) from the primary sensory termi-
nal and from non-neural cells in the environment [1,2].
High local proton concentrations found in inflamed tis-
sues (tissue acidosis) contribute directly to pain and
hyperalgesia. The degree of acid-associated pain or dis-
comfort is well associated with the magnitude of acidifica-
tion, which is attributable to direct excitation or
modulation of nociceptive sensory neurons by proton-
sensing receptors [3-7].

Several lines of evidence have demonstrated that proton-
sensing ion channels are related to acid-associated pain.
Mice deficient in the gene transient receptor potential/
vanilloid receptor subtype 1 (TRPV1) show reduced sensi-
tivity to thermal stimuli after inflammation [8,9]. Acid-
sensing ion channel 3 (ASIC3) is essential for cutaneous
and muscle inflammation [10-14]. With peripheral
inflammation, the mRNA expression of TRPV1 and ASIC3
is increased in dorsal root ganglia (DRG) and sensitizes
their responses [15-20]. Enhanced expression of ASIC3 is
probably due to promoter activation by stimulation of
inflammatory mediators, especially nerve growth factor
(NGF) [18-20]. Although the factors resulting in increased
TRPV1 expression and function is unclear, protease-acti-
vated receptor 2 was found to sensitize TRPV1 function
through protein kinase A (PKA) and protein kinase C
(PKC) pathways [21-23]. Interestingly, DRG neurons with
increased TRPV1 expression and function after inflamma-
tion are non-peptidergic (isolectin B4 [IB,]-positive)
rather than peptidergic (IB,-negative) [17], which suggests
that non-peptidergic neurons play important roles in
inflammatory pain.

The ovarian cancer G-protein-coupled receptor 1 (OGR1)
family, consisting of OGR1, GPR4, TDAGS, and G2A,
respond to proton stimulus with full activation at pH 6.4~
6.8 [24-27]. These four receptors were found in DRG, and
most (75%~82%) are present in small-diameter neurons
that are responsible for nociception [28,29]. More than
half of these genes are expressed in IB,-positive neurons
that are involved in inflammatory or neuropathic pain.
However, the functions of the OGR1 family subtypes in
chronic pain remain unclear.

In this study, we used the inflammatory agents capsaicin,
carrageenan, or complete Freund's adjuvant (CFA) to
induce peripheral inflammation and examined the
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change in expression of OGR1 family genes in DRG neu-
rons. OGR1 family subtypes showed differential expres-
sion in various types of inflammatory pain (neurogenic,
short-term or long-term inflammatory pain). TDAGS8
seems to be the major subtype involved in CFA-induced
chronic inflammation. Enhanced expression of TDAGS8
gene is mainly due to an increase in total number of
TDAGS-expressing neurons. Further studies demonstrated
that the number of DRG neurons expressing both TDAG8
and TRPV1 genes was increased as well, and TDAGS acti-
vation sensitized TRPV1 response to capsaicin. TDAG8
could be involved in CFA-induced chronic inflammatory
pain by regulating TRPV1 function.

Results

Differential expression of proton-sensing GPCR genes
after induction of peripheral inflammation

To understand whether the proton-sensing OGR1 family
is involved in inflammatory pain, mRNA expression was
examined in different inflammatory pain states. Periph-
eral inflammation was generated by intraplantar injection
with capsaicin, carrageenan, CFA, or saline. Capsaicin
injection induced neurogenic inflammatory pain. Carra-
geenan and CFA are commonly used models of short-term
and long-term chronic inflammatory pain, respectively.

Neurogenic inflammatory pain

Capsaicin administered locally caused pain-related behav-
iors. The greatest magnitude of pain-related behaviors was
perceived during the first minute after the injection and
then rapidly decreased (data not shown). Within 15 min-
utes, injected mice showed unilateral edema, which grad-
ually decreased. Four hours after injection, the edema
lessened, with a paw thickness of 3.09 + 0.13 mm on the
injected (ipsilateral) paw and 2.85 + 0.13 mm on the
uninjected (contralateral) paw (Fig. 1A). A small degree of
edema lasted for three days (2.94 + 0.17 and 2.69 + 0.12
mm for the ipsilateral and contralateral paws, respec-
tively). Saline-injected controls showed no edema (2.64 +
0.08 and 2.49 + 0.06 mm for the ipsilateral and contralat-
eral paws, respectively; Fig. 1D). Surprisingly, after capsa-
icin injection, GPR4 gene expression decreased 24 hours
(2.6~3.4-fold that of the contralateral paw), and such
decrease lasted for three days (2.6~4.0-fold at 72 hours).
In addition, after capsaicin injection, G2A gene expression
decreased (2.7~4.5-fold) at 72 hours after injection.
Saline injection produced no increase or decrease in
OGR1 family gene expression (Fig. 2D).

Short-term inflammatory pain

In carrageenan-induced short-term inflammation, unilat-
eral edema was detected early, within 15 minutes, and
peaked at 4 hours after injection (4.36 + 0.29 and 2.87 +
0.14 mm for the ipsilateral and contralateral paws, respec-
tively, Fig. 1B). Although decreasing with time, peripheral
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Thickness of mouse paws after peripheral inflammation. The wild-type CD| mice (8—12 week-old) were injected in
the right hind paws with 25 pl of capsaicin (100 pg/ml in saline containing 10% ethanol and 0.5% Tween 80, A), carrageenan (20
mg/ml, B), CFA (50% in saline, C), or saline (D). At 4, 24, and 72 hours after injection, the mice were killed and the thickness of
injected (ipsilateral) and uninjected (contralateral) paws was measured. All data are presented as mean + SEM of total tested
mice (n = 6—12). Comparison of inflammatory agent-injected and saline-injected animals (*) or between contralateral and ipsi-
lateral paws of agent-injected animals (#) was by t test. *# p < 0.05, ** ##p < 0.01, **###p < 0.001.

edema extended to three days (4.18 + 0.12 mm at 24
hours and 3.85 + 0.09 mm at 72 hours). At 24 hours after
carrageenan injection, GPR4, TDAGS8 and G2A expression
increased (1.4~2.2-fold for GPR4, 1.4~2.1-fold for G2A,
and 1.4~1.9-fold for TDAGS; Fig. 2B). At 72 hours after
injection, the expression of GPR4 and G2A returned to
baseline, but that of TDAGS8 remained at high levels as
compared with saline injection.

Long-term inflammatory pain
CFA injection induced unilateral peripheral edema 4
hours after injection (3.86 + 0.19 mm for the ipsilateral

paw), smaller than was observed after carrageenan injec-
tion (an increase of 46% with CFA injection and 65% with
carrageenan injection, as compared with saline injection;
Fig. 1A, D). The edema peaked at 24 hours after injection
(4.29 + 0.15 mm), then gradually decreased but remained
for at least three weeks (3.33 + 0.19 mm at 21 days after
injection; data not shown). At 24 hours after CFA injec-
tion, only TDAGS8 expression was increased greatly
(2.5~4.3-fold), but the level was reduced at 72 hours
(1.2~1.6-fold) (Fig. 2C). In contrast, G2A expression was
first decreased at 4 hours after injection (2~3-fold reduc-
tion) and gradually returned to basal levels.
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Gene expression change of OGRI family genes after peripheral inflammation. The wild-type CDI mice (8—12
week-old) were injected at right hind paws with 25 pl of capsaicin (100 pg/ml in saline containing 10% ethanol and 0.5% Tween
80, A), carrageenan (20 mg/ml, B), CFA (50% in saline, C), or saline (D). At 4, 24, and 72 hours after injection, the mice were
killed. Lumbar 4-6 DRG ipsilateral and contralateral to injected paws were taken for RNA extraction for quantitative RT-PCR.
The contralateral DRG was used as untreated controls. The expression of each gene on the ipsilateral DRG was first normal-
ized to that of mMGAPDH and then represented as a relative value to contralateral controls. All data are presented as mean *
SEM of quadruplicates of three experiments (N = 3, n = 3 mice). Comparison between inflammatory agent-injected and saline-
injected animals was by t test. *p < 0.05, **p < 0.01, ***p < 0.001.

Both mechanical and thermal hyperalgesia developed on
the ipsilateral paw in CFA-injected mice at 4 hours after
injection (Fig. 3). Before injection, the paw withdrawal
threshold (50%) for mechanical stimuli (mechanical
hyperalgesia) was 1.63 + 0.11 g on the ipsilateral paw and
1.78 + 0.11 g on the contralateral paw (0 hour). After CFA
injection, the threshold was decreased on the ipsilateral
paw to 0.60 + 0 g at 4 hours and 0.56 + 0.04 g at 24 hours
but remained similar to that in controls on the contralat-
eral paw (1.84 + 0.29 gat 4 hours and 1.70 + 0.10 g at 24
hours; Fig. 3A). Mechanical hyperalgesia remained for

three weeks (data not shown). Non-noxious mechanical
stimulation did not induce hyperalgesia in saline-injected
mice (Fig. 3B). The latency of paw withdrawal to heat
stimuli (thermal hyperalgesia) was 13.06 + 0.55 seconds
for the contralateral paw and 13.18 + 0.84 seconds for the
ipsilateral paw before injection. At 4 hours after CFA injec-
tion, the latency of paw withdrawal to heat was decreased
to 9.44 + 0.38 seconds for the ipsilateral paw and
remained at 13.20 + 0.51 seconds for the contralateral
paw (Fig. 3C, D). The decreased latency to heat stimula-
tion lasted for three weeks (data not shown).
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Mechanical and thermal hyperalgesia in mice after CFA-induced peripheral inflammation. The wild-type CD|

mice (12 week-old) were injected with 25 pl CFA (50% in saline, A, C), or saline (B, D). The threshold (A, B) and the latency
(C, D) of paw withdrawal were measured before injection (t = 0) and after injection (t = 4, 24, and 72 hours). All data are mean
* SEM of total tested mice (n = 6 per group). Comparison between inflammatory agent-injected and saline-injected animals (#)
or between contralateral side and ipsilateral side of agent-injected animals (*¥) was by t test. *#p < 0.05, **##p < 0.01, ** Hp

< 0.001.

DRG neurons expressing TDAGS8 increase in number with
CFA-induced inflammation

TDAGS was the only receptor whose expression increased
at 24 hours after CFA injection (Fig. 2C). To further deter-
mine whether the increased TDAGS expression was due to
an increased number of DRG neurons, we used in situ
hybridization to examine L4-5 DRG 24 hours after CFA
injection. CFA injection did not change the distribution of
neurons that were PERI positive (67 + 3% and 66 + 2% for
the contralateral and ipsilateral DRGs, respectively) and
N52 positive (41 + 3% and 41 + 2% for the contralateral
and ipsilateral DRGs, respectively) (Fig. 4 and Table 1). At

24 hours after CFA injection, 27 + 2% of total neurons
expressed TDAGS8 in the contralateral DRG, which was
consistent with results for untreated controls found in a
previous study [28], whereas the number was increased to
38 + 2% on the ipsilateral DRG (Fig. 4A, B, Table 1).
TDAGS8-expressing neurons were increased in number in
small- and large-diameter neuron populations. Of PERI-
positive neurons, 24 + 3% expressed TDAGS8 on the ipsi-
lateral DRG and 20 + 2% on the contralateral DRG (Fig.
4A, B). In N52-positive populations, 17 + 2% showed
TDAGS expression on the ipsilateral DRG and 10 + 3% on
the contralateral DRG (Fig. 4A, B). The distribution of
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Table I: Number of TDAGB8-expressing neurons in DRG after CFA-induced peripheral inflammation

IR Neurons/total neurons TDAG8-labeled neurons/total neurons

TDAGS8-labeled neurons/total
TDAGS8-labeled neurons

Contralateral DRG

Total 27 (25~30)

N52 41 (37~45) 10 (7~12) 36 (30~43)

PERI 67 (64~70) 20 (17~21) 72 (67~78)
N52 & PERI 8 (5~11) 2 (1~3) 9 (6~13)

Ipsilateral DRG

Total 38 (36~40)

N52 41 (39~43) 17 (15~19) 44 (41~48)

PERI 66 (65~68) 24 (23~27) 64 (61~68)
N52 & PERI 8 (6~10) 3 (2~4) 8 (6~13)

Percentage of labeled neurons in total DRG neuron populations with 95% confidence intervals. The number of total cells counted was 900~ 1500.

PERI = peripherin. IR = immunreactive.

TDAGS-expressing neurons shifted slightly to a popula-
tion of N52-positive neurons after CFA injection (Fig.
4C), which suggests that TDAG8-expressing neurons were
greater in number in medium- to large-diameter neurons.

TDAGS8 expression was further examined in peptidergic
(IB,-negative) and non-peptidergic (IB,-positive) sub-
populations. CFA-induced inflammation did not alter the
distribution of neurons in nociceptors that were IB, posi-
tive (52 + 4% on the contralateral DRG and 56 + 5% on
the ipsilateral DRG) or negative (48 + 4% and 44 + 5% on
contralateral and ipsilateral DRG, respectively) (Fig. 5A, B
and Table 2). Of the neurons labeled with PERI, 33 + 4%
of IB,-positive neurons expressed TDAGS8 on the ipsilat-
eral DRG as compared with 21 + 4% on the contralateral
DRG at 24 hours after CFA injection. TDAG8-expressing
neurons were also increased in number in the IB,-negative
population (12 + 3% and 21 + 4% for the contralateral
and ipsilateral DRGs, respectively) (Fig. 5B, Table 2).
Accordingly, TDAGS8-expressing neurons were increased
in number in both IB,-positive and -negative populations
after CFA injection.

TDAGS activation increases levels of intracellular cAMP

Whether increased TDAGS8 expression enhances TDAGS8
function after inflammation has remained unclear. We
first examined proton signaling in HEK293T cells trans-
fected with TDAGS. Consistent with previous studies [26],
TDAGS-expressing cells responded to protons and
induced increased levels of intracellular cAMP. The cAMP
response peaked at pH 6.6~6.4 (data not shown). Levels
of cAMP with pH 6.4 was 6-fold higher that with pH 7.4
(Fig. 6A). To confirm whether the signaling elicited by
TDAGS is through the Gs protein, we used two inhibitors:
pertussis toxin (PTX) blocks Gi protein-mediated signal-
ing, and U73122 inhibits phospholipase CB (PLCP),
which is activated by Gq or Gi protein. Treatment with
PTX or U73122 did not inhibit the cAMP signaling elicited

by TDAGS, which suggests that cCAMP accumulation is
through activation of Gs protein (Fig. 6B).

The accumulation of intracellular cAMP was further exam-
ined in primary DRG cultures. Surprisingly, cAMP accu-
mulation declined with acid stimulation in untreated
DRG cultures (Fig. 6C), which suggests a Gi-mediated sig-
naling elicited by acid stimulation. At 24 hours after CFA
injection, DRG cultures from ipsilateral paws showed
higher levels of cAMP after pH 6.4 stimulation (~2-fold
increase) than those from contralateral paws (Fig. 6D),
although the increase was not great. Since acid-induced
Gi-signaling was found in primary culture, increased
cAMP levels could be resulted from enhancement of Gs-
signaling or reduction of Gi-signaling. To clarify this
point, intracellular [Ca2+] (|Ca2+];) was examined. After
pH6.4 stimulation, the same levels of [Ca2+]; were found
in contralateral and ipsilateral DRG cultures from CFA-
injected mice (Fig. 6F), suggesting that CFA-injection did
not enhance or reduce acid-induced Gi- or Gg-signaling.
PTX treatment before acid stimulation inhibited [Ca2+];
levels in both ipsilateral and contralateral DRG cultures
(Fig. 6F), indicating that [Ca2+]; increase found in contral-
ateral and ipsilateral DRG cultures was due to Gi-signal-
ing. Accordingly, increased cAMP levels observed in
ipsilateral DRG cultures were primarily due to enhance-
ment of Gs-signaling.

Co-localization of TDAG8 with TRPVI increased after
inflammation

Although TDAG8 mRNA expression was increased after
CFA-induced peripheral inflammation, the function of
TDAGS in inflammatory pain is unclear. TDAGS likely
regulates other molecules (such as TRPV1 or ASICs) to
influence mechanical or thermal hyperalgesia [8-14].
Given that 40% of TRPV1-positive neurons express
TDAGS [28,29], we wondered whether co-localization of
TRPV1 and TDAGS is changed after CFA injection. Co-
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Figure 4

Number of TDAGB8-expressing neurons increases in DRG after CFA-induced inflammation. After CFA-injection,
lumbar 4-5 DRG ipsilateral and contralateral to injected paws were sectioned and hybridized with dig-labeled anti-sense
mTDAGS probes, followed by co-staining with antibodies against peripherin (PERI, green fluorescence) and N52 (red fluores-
cence). (A) Phase-contrast fields (a, d) are neurons labeled with cRNA probes. Fluorescence images (b, €) show neurons
labeled with green (PERI only), red (N52 only), and yellow (PERI and N52). Phase-contrast images and fluorescence images
were combined to obtain merged images (c, f). Arrows indicate the peripherin-positive neurons labeled with antisense probes.
Arrowheads are the N52-positive neurons labeled with antisense probes. The scale bar is 50 um. (B) The histogram shows the
percentage of total neurons that expressed TDAGS in PERI, N52, or overlapping subpopulations. (C) The histogram shows the
percentage of total TDAGS8-positive neurons that co-localized with PERI or N52 markers.
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Table 2: Number of TDAG8-expressing neurons in IB4-positive and -negative neurons after CFA-induced inflammation

IR neurons/total PERI-IR neurons

TDAGS8-labeled neurons/total

TDAGS probe-labeled neurons/

neurons total TDAGS8-labeled neurons
Contralateral DRG

PERI (+) 33 (28~37) 59 (54~64)

1B, (+) 41 (31~43) 48 (44~52)
PERI (+) & IB, (+) 52 (48~56) 21 (17~25) 63 (59~68)
PERI (+) & IB4 (-) 48 (44~52) 12 (9~15) 37 33~42)
Ipsilateral DRG

PERI (+) 48 (44~52) 61 (56~66)

1B, (+) 57 (52~62) 49 (43~52)
PERI (+) & IB4 (+) 56 (51~61) 33 (28~37) 69 (65~74)
PERI (+) & IB4 () 44 (39~49) 21 (17~25) 43 (38~47)

Percentage of labeled neurons in total DRG neuron populations with 95% confidence intervals. The number of total cells counted was 900~1000.

PERI = peripherin. IR = immunoreactive.

localization of TDAG8 and TRPV1 was examined in pairs
of continuous 6-pm DRG sections. Each pair was hybrid-
ized with antisense cRNA of TDAG8 and TRPV1, then co-
stained with antibodies against N52 and PERI. In the total
DRG population, 40 + 5% neurons expressed TDAGS, 41
+ 5% expressed TRPV1, and 21 + 4% expressed both
(Table 3). At 24 hours after CFA injection, 51 + 7% of total
neurons expressed TDAGS, 47 + 7% expressed TRPV1,
and 25 + 6% expressed both. After inflammation, an
increased number of PERI- and N52-positive neurons
began to express TDAGS8 (Table 3), but mainly the N52-
positive population showed an increase in number of
neurons expressing TRPV1 (from 12 + 3% to 23 + 6%,
Table 3). CFA injection did not produce a significant
increase in total number of neurons expressing both genes
(from 21 + 4% to 25 + 6%), but medium- to large-diame-
ter neurons showed a significant increase (8%) (Fig. 7,
Table 3). Surprisingly, the number of small-diameter neu-
rons (PERI-positive only) that expressed both TDAGS8 and
TRPV1 genes was slightly decreased (4%) after injection.

TDAGS8 activation sensitizes TRPVI response to capsaicin

We further tested whether TDAGS8 activation sensitizes the
TRPV1 response to capsaicin. The addition of 10 nM cap-
saicin to the cells produced a rapid increase in [CaZ2+]; lev-
els (0.110 + 0.016) in TRPV1-expressing cells, but the
addition of 5 nM capsaicin (0.001 + 0.011) or pH 6.4
buffer (0.000 + 0.006) did not induce a significant
response (Fig. 8A, B, C, G). Pre-treatment with pH 6.4
buffer for 30 minutes before the addition of 5 nM capsai-
cin (pH 6.4-30/cap) slightly increased [Ca2+]; in TRPV1-
expressing cells (0.039 + 0.014), as compared with adding
capsaicin only (Fig. 8B, D, G). A similar magnitude of
increase was also found with pH 7.4-30/cap and pH 6.4~
15/cap treatments (Fig. 8G). The same treatment (pH 6.4~
30/cap) applied in cells co-expressing both TDAGS8 and
TRPV1 induced a 3-fold enhanced [CaZ2+]; response (0.124
+ 0.013), as compared with [Ca2+]; signaling induced by

TRPV1-expressing cells (Fig. 8E, G). TDAGS8-expressing
cells showed no change in [Ca2+]; levels after exposure to
pH 6.4 or 7.4 buffers (Fig. 8F, G). Pre-treatment with
pHG6.4 or 7.4 buffers for 30 minutes had a slight [Ca2+];
increase in TRPV1-expressing cells. It could be resulted
from the temperature effect as pre-treatment was done at
37°C. To avoid temperature influence, acid pre-treatment
was performed at 22 °C. Significant [Ca2+];increase (0.074
+ 0.019; 3-fold increase) was observed in TRPV1 and
TDAGS8 co-expressing cells, as compared with [Ca2+];
response (0.024 + 0.004) seen in TRPV1-expressing cells
(Fig. 8G). The similar experiments were done in primary
DRG culture. As showed in Fig. 8H, acid pre-treatment
(pH6.4) for 30 minutes before the addition of 5 nM cap-
saicin increased [Ca2+];levels in both IB,-positive and neg-
ative DRG neurons. IB,-positive neurons showed a higher
[Ca?+];increase.

Discussion

OGR1 family members were recently found in DRG, and
most (75%~82%) are in small-diameter neurons that are
responsible for nociception [28,29]. Here, we demon-
strated that OGR1 family subtypes are expressed differ-
ently in different inflammatory pain states, which suggests
that they are involved in neurogenic, short-term and long-
term chronic inflammatory pain. The receptor TDAG8
with particularly increased expression after CFA-induced
inflammation. Increased mRNA levels were due to the
increased number of neurons expressing TDAG8. Given
that the number of neurons expressing both TDAG8 and
TRPV1 genes was increased as well and that TDAGS8 acti-
vation sensitized TRPV1 responses to capsaicin, TDAGS is
likely involved in long-term chronic inflammatory pain
by sensitizing TRPV1 function.

Capsaicin, carrageenan, or CFA administered locally
causes pain-related behaviors, which is accompanied by
erythema and edema. Consistent with previous studies
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PERI(R)/IB4(G) Merged

1IB4(-)
BIB4(+)

Contralateral Ipsilateral

Number of TDAGB8-expressing neurons increases in both IB,-positive and -negative neurons after CFA-
induced inflammation. After CFA-injection, lumbar 4-5 DRG ipsilateral and contralateral to injected paws were sectioned
and hybridized with dig-labeled anti-sense mMTDAG8S probes, followed by staining with antibodies against peripherin (PERI, red
fluorescence) and IB,-FITC conjugates (IB,, green fluorescence). (A) Phase-contrast fields (a, d) are neurons labeled with cRNA
probes. Fluorescence images (b, €) show neurons labeled with red (PERI only), green (IB4 only), and yellow (PERI and IB).
Phase-contrast images and fluorescence images were combined to obtain merged images (c, f). Arrows indicate the peripherin-
positive neurons labeled with antisense probes. Arrowheads are the PERI and IB, co-expressing neurons labeled with antisense
probes. The scale bar is 50 um. (B) The histogram shows the percentage of total PERI neurons that expressed TDAGS in IB,-

positive or -negative subpopulations.
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Figure 6 (see previous page)

Accumulation of cAMP by cells exposed to acidic pH. (A) HEK293T cells were transfected with pIRES-GFP-TDAGS or
pIRES-GFP plasmids for 36 hours. Transfected cells were exposed to pH7.4 and 6.4 buffers for 30 minutes at 37°C in the pres-
ence of RO201724 for detection of intracellular cAMP. All values were normalized with pH 7.4 vector control (as 100%). Data
are obtained from at least three independent experiments performed in duplicate. Comparison between vector- and TDAGS8-
transfected cells was by t test, *p < 0.05. (B) The accumulation of cAMP in TDAG8-transfected HEK293T cells pre-treated
with PTX for 4 hours or U73122 for 15 minutes at 37°C before exposure to pH 6.4 buffer for 30 minutes. All values were nor-
malized with pH 7.4 control (as 100%). (C) The pH-dependent cAMP accumulation in DRG primary cultures. Primary DRG
cultures were exposed to pH7.4, 6.8, 6.4 and 6.0 buffers for 30 minutes at 37°C in the presence of RO201724 for detection of
intracellular cAMP. The cAMP levels at pH 7.4 were a control (= 100%). (D) The cAMP levels in DRG cultures from CFA-
injected mice after exposure to pH 6.4 buffer for 30 minutes at 37°C in the presence of RO201724. The cAMP levels from
contralateral DRG were a control (100%). (E) Intracellular [Ca2*] change in DRG cultures from CFA-injected mice after tran-
sient exposure to pH 6.4 buffer. Peak values of [Ca2*] response (approximately 20 seconds after the addition of agonists) are
presented as histograms. All data are presented as mean £ SEM (n = 12 cells). (F) Intracellular [Ca?*] change in DRG cultures
from CFA-injected mice. DRG cultures were transiently exposed to pH 6.4 buffer after pre-treatment with PTX for 2 hours.

Peak values of [Ca2*] response are presented as histograms. All data are presented as mean + SEM (n = 7—12 cells).

[30], capsaicin injection induces neurogenic inflamma-
tion. Significant edema developed rapidly within 5 min-
utes after the administration of capsaicin but was reduced
gradually, which indicates an acute inflammatory
response. Both carrageenan and CFA injection induced
chronic inflammation with higher magnitude and longer
duration of edema than did capsaicin injection. Although
carrageenan induced edema with a magnitude similar to
that produced by CFA, the edema produced by carra-
geenan peaked in level earlier at 4 hours and remained for
a week. The edema induced by CFA injection was fully
developed at 24 hours but lasted longer, for 3 weeks. This
finding suggests that CFA injection induces long-term
chronic inflammation with a peak at 24 hours, whereas
carrageenan causes short-term chronic inflammation with
a peak at 4 hours.

Hyperalgesia development seems to be well associated
with edema development. Previous studies of humans,
rats or mice have demonstrated that hyperalgesia induced

by capsaicin injection is dose dependent and develops
rapidly within 15 minutes after injection [31-35]. Our
observations are consistent with these studies: low-dose
capsaicin (2.5 pg/paw) administered locally induced
pain-related behaviors within 5 minutes; heat hyperalge-
sia disappeared in 15 minutes after injection, but mechan-
ical hyperalgesia lasted for hours. Carrageenan induced a
sub-chronic inflammatory pain. The peak of hyperalgesia
was at 4 hours, and hyperalgesia was extended to several
days, which is consistent with previous studies [36-38]. In
the CFA-injection model, both thermal and mechanical
hyperalgesia developed fully within 24 hours after injec-
tion and extended to three weeks, which is similar to pre-
vious observations [37,38].

The OGR1 family were expressed differently in these three
inflammatory pain models. After capsaicin injection,
GPR4 gene expression was reduced to 2.5~3-fold the basal
levels at 24 hours and remained so for three days, whereas
G2A transcripts were significantly reduced 72 hours after

Table 3: Number of DRG neurons co-expressing TDAG8 and TRPVI after CFA-induced inflammation

TDAGS8-labeled neurons/total

TRPVI-labeled neurons/total

TRPVI & TDAGS8-labeled neurons/

neurons neurons total neurons
Contralateral DRG

Total 40 (35~45) 41 (36~46) 21 (16~24)

PERI 35 (30~39) 32 (28~36) 18 (14~21)

N52 8 (5~11) 12 (9~15) 5(3~7)
N52 & PERI 3 (2~5) 4 (3~6) 2 (1~4)

Ipsilateral DRG

Total 51 (44~58) 47 (40~54) 25 (19~32)

PERI 39 (33~46) 33 (26~40) 19 (13~24)

N52 21 (16~27) 23 (17~29) 13 (9~18)
N52 & PERI 9 (5~14) 9 (5~14) 7 (4~11)

Percentage of neurons that expressed single gene or two genes in total DRG neuron populations with 95% confidence intervals. The number of

total cells counted was |50~350. PERI = peripherin
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Number of DRG neurons co-expressing TDAG8 and TRPV1 after CFA-induced inflammation. DRG tissues were
contiguously sectioned at 6 um and hybridized with dig-labeled antisense cRNA probes, then co-stained with antibodies against
PERI and N52. Each pair of sections was hybridized with two different gene cRNA probes. The histogram shows the percent-
age of total DRG neurons that expressed both TDAG8 and TRPV| genes.

injection. Capsaicin-induced edema and hyperalgesia
developed within 15 minutes. Down-regulation of GPR4
and G2A is unlikely to have a direct influence on the for-
mation of hyperalgesia or edema. Possibly, reduced levels
of GPR4 and G2A mRNA prevent the extension of edema
and hyperalgesia. Administration of high-dose capsaicin
to adult rats or the application of capsaicin to primary sen-
sory neurons induces a subpopulation of DRG neuron
death [39-41]. Although capsaicin dosage used in our
studies was lower than that used in rats, it is possible that
such dosage may have some influence on neurons that
expressed GPR4 and G2A genes. GPR4-expressing neu-
rons could be more sensitive to capsaicin administration
than neurons expressing G2A. The in situ hybridization
experiments had confirmed that the number of GPR4-
positve neurons was decreased (9% of decrease) after cap-
saicin injection (data not shown). Capsaicin-injection
also induced a slight reduction in the number of PERI-
positive neurons. Alternatively, down-regulation of GPR4
and G2A genes is due to functional desensitization.

GPR4, G2A, and TDAGS transcripts were increased in lev-
els 24 hours after carrageenan injection, but only TDAG8
expression was increased after CFA injection. In both
models, the transcripts of the three genes increased in lev-
els at 24 hours when edema and hyperalgesia were already
developed. GPR4, G2A, and TDAGS8 seem to maintain
edema and hyperalgesia rather than induce edema and
hyperalgesia. TDAG8 was identified from apoptotic

immature thymocytes, where its expression is up-regu-
lated, which suggests that TDAGS is involved in immune
cell development [42]. Although TDAGS8 expression is
required for the production of cAMP in immune cells,
mice lacking TDAG8 have normal immune cell develop-
ment [43,44]. In endothelial cells, G2A expression blocks
NF-kB activation and chemokine expression, thus inhibit-
ing macrophage accumulation [45], which suggests that
G2A expression may have a protective role for prevention
of early events of inflammation. GPR4 is present in the
endothelial cells of blood vessels, and mice lacking GPR4
show vascular abnormalities, which suggests that GPR4
has a role in vascular growth and vascular stability [46].
Vascular stability is important for leukocyte adhesion and
function [47]. TDAGS8, G2A, and GPR4, were all previ-
ously suggested to have pro-inflammatory or anti-inflam-
matory roles. Whether they have similar roles in
nociceptors is unclear. OGR1 is the only receptor whose
expression did not change in any inflammatory pain
models we tested. Since the level of OGR1 in DRG is the
highest among the family members [28], OGR1 is likely
the pH sensor for physiological conditions, whereas other
family members are responsible for different pathological
conditions. However, OGR1 protein and function could
still be enhanced after inflammation despite no change in
mRNA expression.

TDAGS8 is the major proton-sensing GPCR showing

increased expression after CFA-induced inflammation.
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Figure 8 (see previous page)

TDAGS activation sensitizes TRPVI response to capsaicin. (A-G) HEK293T cells were transfected with TDAGS-
pIRES-GFP, TRPV|-pIRES-GFP, or both plasmids. After 36 hours, cells were exposed to pH 7.4, 6.4 or vehicle for |5 or 30
minutes at 37°C or at 22°C and then washed with pH7.4 buffer, followed by addition of 5 nM of capsaicin at room tempera-
ture. Time courses of [Ca2*]; signals following addition of different agonists (A-F). Intracellular [Ca2*] change in HEK293T cells
(G). Peak values of [Ca2*], response (approximately 20 seconds after the addition of agonists) are presented as histograms. All
data are presented as mean = SEM (n = 14-23 cells). Comparison between TRPV| and TRPVI/TDAG8-transfected cells was
by t test, ***p < 0.005. (H) Intracellular [Ca2*] change in DRG cultures. Primary DRG cultures were transiently exposed to dif-
ferent concentrations of capsaicin or pH6.4 at room temperature. Some cultures were pre-treated with pH6.4 buffer for 30
minutes at 37°C and then washed with pH7.4 buffer, followed by addition of 5 nM of capsaicin at room temperature. Peak val-
ues of [Ca2*]; response (approximately 20 seconds after the addition of agonists) are presented as histograms. All data are pre-

sented as mean £ SEM (n = |12-18 cells).

Enhanced mRNA levels were due to an increase in the
total number of neurons expressing TDAGS. A considera-
ble number of A-fiber neurons began to express TDAGS8
after CFA injection. We also found that the number of
TRPV1-expressing neurons was increased in medium- and
large-diameter neurons after inflammation, consistent
with previous results in rats [16]. The total number of A-
fiber neurons that expressed both TDAG8 and TRPV1 was
largely increased after CFA injection. The peripheral large-
diameter neurons are known to respond to innocuous
mechanical stimuli, whereas medium-diameter (A-delta
fiber) neurons are classified into two types, both of which
respond to intense mechanical stimuli but have differen-
tial responsiveness to heat [1,48]. The plasticity of A-fiber
neurons is an important mechanism that causes hyperal-
gesia following inflammation, therefore, increased
TDAGS8 expression in A-fiber could be involved in
mechanical and thermal hyperalgesia by regulating
TRPV1 function.

In small-diameter neurons, TDAGS8-expressing neurons
were increased in number in both IB,-positive and -nega-
tive nociceptors. IB,-positive and -negative nociceptors
have not only biochemical and anatomical differences but
also distinct functions owing to their physiological prop-
erties [49,50]. IB,-negative nociceptors are primarily
responsible for the initial nociceptive response to proton,
capsaicin and noxious heat; whereas the responsiveness of
IB,-positive neurons to capsaicin is increased after proton
stimulation [51]. Breese et al. [17] proposed that periph-
eral inflammation sensitizes the responses of IB,-positive
neurons to protons and capsaicin, which is due to
enhanced expression and function of TRPV1. The func-
tion of IB,-positive neurons in inflammation has recently
been of interest. Increased TDAGS8 expression in IB,-posi-
tive neurons after peripheral inflammation may increase
the sensitivity of IB,-positive neurons to proton and cap-
saicin, through modulating the functions of ASICs or
TRPV1.

Cells co-expressing TDAG8 and TRPV1 showed signifi-
cantly enhanced responsiveness of cells to 5 nM of capsa-
icin after pre-treatment with proton (pH 6.4), as
compared with cells expressing TRPV1 only. This finding
suggests that proton potentiates TRPV1-mediated [CaZ+];
increase in the presence of TDAGS8. The large increase of
[CaZ+]; is unlikely directly induced by TDAGS8 because
cells expressing TDAGS8 alone did not show elevated
[CaZ+]; levels but, rather, accumulated intracellular cAMP
levels. The enhanced response of TRPV1 to capsaicin was
possibly due to proton-induced TDAGS activation. Simi-
lar results were found in primary culture. Acid pre-treat-
ment (pH 6.4) increased the responsiveness of DRG
neurons to capsaicin. IB,-positive neurons had a higher
sensitivity than IB,-negative neurons. Given that IB,-pos-
itive neurons had more TDAGS8 expression than IB,-nega-
tive neurons after CFA-injection, the enhanced sensitivity
of IB,-positive neurons to capsaicin may be due to
increased TDAGS8 expression.

Interestingly, 5 nM capsaicin induced a slight increase in
[Ca?+]; levels in TRPV1-expressing cells after pre-treatment
with different pH buffers (pH 7.6 and 6.4) at 37°C for 30
minutes. Such increase is likely due to the temperature
effect, because application of different pH buffers or dif-
ferent times showed similar results. Pre-treatment at 22°C
reduced such [Ca?+]; increase. The temperature influence
on the TRPV1 response to capsaicin was previously dem-
onstrated [52].

CFA-induced inflammation selectively increases the
responsiveness of IB,-positive neurons to protons and
capsaicin because of the enhanced response of TRPV1
[17]. Our observation could provide an explanation for
the enhanced TRPV1 function in IB,-positive neurons
after inflammation. In IB,-positive neurons, TDAG8
responds to extracellular protons leads to cAMP accumu-
lation to activate PKA directly. PKA modulates TRPV1
function by phosphorylation [53,54]. Alternatively,
TDAGS8-activation may act on other second messenger
kinases, such as PKCe through the cAMP-Epac-PKCg path-
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way. The cAMP-Epac-PKCe pathway is important to IB,-
positive neurons to mediate inflammatory pain [55].
PKCe not only modulates TRPV1 function but also regu-
lates prolonged response of the chronic inflammatory
pain [54,56-58]. Therefore, TDAGS8 could be involved in
sensitization of TRPV1 function in IB,-positive neurons
and in the development of the chronic inflammatory pain
state through the cAMP-PKCe signaling. Accordingly,
peripheral inflammation induces a local increase of pro-
tons, leading to TDAGS activation. TDAGS activation ele-
vates cCAMP levels, activating PKA and PKCe. PKA or PKCe
sensitizes TRPV1 or other ion channels to cause hyperal-
gesia.

Although the number of neurons expressing TDAGS8
increased after inflammation, the cAMP accumulation by
TDAGS8 was not enhanced significantly. We used cAMP
assays here was to measure total cCAMP levels in a culture
population. Given that we found only an 11% increase in
TDAGS-expressing neurons after inflammation and that
DRG neurons are heterogeneous, our finding of no large
increase in cCAMP levels in DRG cultures after CFA injec-
tion is not surprising. Interestingly, cAMP levels were
lower in primary culture after stimulation with pH 6.4
than with pH 7.4. This decrease is pH dependent and
raises a possibility that increased cAMP levels observed
after CFA injection is due to a reduction of Gi-signaling
rather than an enhancement of Gs-signaling. Given that
acid-induced [Ca?*|; increase did not change in contralat-
eral or ipsilateral DRG neurons after CFA-injection and
such increase was from Gi-signaling, increased cAMP lev-
els after inflammation are more likely due to enhanced
Gs-signaling.

Previous studies have reported that proton-sensing
GPCRs mediate Gs and Gq signaling pathways [24-27].
Unexpectedly, we observed pH-dependent Gi responses
in DRG culture. Later studies in different tissues or cells
have found that OGR1 and GPR4 can mediate more than
one type of G-protein signaling [59-61]. The OGR1 family
subtypes may also mediate Gi signaling. Alternatively,
OGR1 family members forming heterodimers for func-
tion provides an explanation for why pH-dependent Gi
signaling is present in DRG primary culture. About
31%~40% nociceptors express at least two OGR1 family
genes [28]. Such a high degree of co-localization may
reflect that a heterodimer formation between OGR1 fam-
ily members is necessary for their function, because a
dimerization of GPCRs is now accepted as a functional
unit for ligands [62,63]. A GPCR heterodimer might have
signaling pathways different from those of a homodimer
[62]. A heterodimeric receptor likely switches Gs or Gq
signaling to Gi signaling.

http://www.molecularpain.com/content/5/1/39

Conclusion

This is the first study to systematically explore the expres-
sion changes of proton-sensing GPCRs (the OGR1 family)
at different times and in different inflammatory pain
models (capsaicin, carrageenan, or CFA). Each subtype of
the OGR1 family was expressed differently, which may
reflect differences between models in duration and mag-
nitude of hyperalgesia. This finding also implies the com-
plexity of the mechanism of inflammatory pain. As
demonstrated here, TDAGS activation can lead to TRPV1
sensitization, and TDAG8 expression increased after CFA-
induced inflammation. Our results suggest that high con-
centrations of protons after inflammation may not only
directly activate proton-sensing ion channels (such as
ASIC3 and TRPV1) to cause pain but also act on proton-
sensing GPCRs to regulate the development of hyperalge-
sia or to enhance the sensitivity of neurons.

Methods

Inflammation experiments and tissue collection

Male CD-1 mice (8-12 weeks old) (were bred in animal
house in the National Central University, Taiwan) under-
went intraplantar injection with 25 pl of saline, CFA (50%
in saline), carrageenan (20 mg/ml in saline), or capsaicin
(100 pg/ml in saline containing 10% ethanol and 0.5%
Tween 80). At 4, 24, and 72 hours after injection, the mice
were killed and paw thickness was measured. Lumbar 4-
6 DRG ipsilateral and contralateral to injected paws were
removed for RNA extraction, with the ganglia from unin-
jected paws serving as negative controls. L4-5 DRG were
frozen for cryosectioning. The animal experimental proce-
dures were approved by the Animal Care and Use Com-
mittee at the National Central University, Taiwan.

Behavioral tests

To assess mechanical nociceptive responses, animals were
tested for withdrawal thresholds to mechanical stimuli
(von Frey filaments, Touch-Test, North Coast Medical,
Inc., Morgan Hill, CA) applied to the plantar aspect of the
hindpaw. Mice (n = 6 per group) were placed on a wire
mesh platform in transparent plexiglas chambers (10 x 8
x 10 cm/chamber), allowed to habituate for 2 hours each
day and trained for 3 days before the test. At 4, 24, and 72
hours after mice were injected with inflammatory agents
or saline, we applied a series of von Frey fibers (0.4, 0.6,
1.0, 1.4, 2.0 g), in ascending order beginning with the fin-
est fiber, through the wire mesh onto the plantar surface
of both hindpaws of mice. A withdrawal response was
considered valid only if the hindpaw was removed com-
pletely from the platform. If the paw withdrawal response
was ambiguous, the application of fibers was repeated.
For each paw, a von Frey fiber was applied 5 times at 5-sec-
ond intervals. The threshold was when paw withdrawal
was observed in more than 3 of 5 applications.
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Animals were also tested for thermal nociceptive response
to radiant heat applied to the plantar surface of the paw
[36]. Mice (n = 6 per group) were allowed to habituate for
at least 2 hours in transparent plexiglass chambers (10 x 8
x 10 cm/chamber) on a glass floor before testing. At 4, 24,
and 72 hours after mice were injected with inflammatory
agents or saline, we stimulated the plantar surface of
mouse hindpaws with a light bulb (40% intensity, 305
mW/cm?2). The latency to withdrawal of the paw from
radiant heat was measured. Measurements from three tri-
als at 1-minute intervals in each paw were averaged. We
obtained mean basal withdrawal latencies of 12~15 sec-
onds in uninjected mice.

RNA preparation and quantitative RT-PCR

DRG RNA extraction involved use of the RNeasy kit (Qia-
gen, Valencia, CA), according to the manufacturer's
instructions. RNA was reverse transcribed by use of Super-
script I RT (Invitrogen, Carslbad, CA) with oligo dT (Inv-
itrogen). Derived ¢cDNA was used as a template for
quantitative RT-PCR.

The reaction mixture (25 pl) included 6 pl of 2x master
mix (containing SYBR green I and AmpliTag Gold DNA
polymerase [Applied Biosystems, Foster City, CA]), 100
nM each of primers and cDNA. The primer sets for each
gene were as follows: OGR1 (151 bp), 5'-gacgatac-
cagcccaagtgt-3' (forward) and 5'-gctgttatccctagecacca-3'
(reverse); GPR4 (199 bp), 5'-cttcctcagcttcccaagtg-3' (for-
ward) and 5'-cctgggcctectttctaaac-3' (reverse); G2A (166
bp), 5'-aagtgtccagaatccacacagggt-3' (forward) and 5'-
agtaaacctagcttcgetggetgt-3' (reverse); and TDAG8 (197
bp), 5'-atagtcagcgtcccagecaac-3' (forward) and 5'-cgctte-
ctttgcacaaggtg-3' (reverse). The internal control was also
measured from the same samples [mGAPDH,
NM_001001303, 233 bp, primers: 5'-ggagccaaacgggtcat-
catctc-3'  (forward) and 5'-gaggggccatccacagtcttct-3'
(reverse)].

For each assay, three independent preparations were run
in quadruplicate. The DRG pool had at least 9 ganglia. The
thermal cycling conditions were 95°C for 10 min, fol-
lowed by 40 cycles of 95°C for 15 s, and 60°C for 1 min.
PCR reactions and product detection were carried out in
the ABI Prism 7300. The amplified product was detected
by measurement of SYBR green I, which was added to the
initial experiment mixtures. The threshold cycle (Ct) val-
ues obtained from the experiments indicated the frac-
tional cycle numbers at which the amount of amplified
target reached a fixed threshold. The Ct values of both the
targets and internal reference (mMGAPDH) were measured
from the same samples, and the expression of the target
genes relative to that of mGAPDH was calculated by the
comparative Ct method.

http://www.molecularpain.com/content/5/1/39

In situ hybridization and immunohistochemistry

Excised lumbar DRG tissue was immediately put into
freezing solution. Serial sections 12 pum thick were cut by
use of a cryostat (Leica microsystem 3510S, Bensheim,
Germany). For colocalization experiments, several pairs
of contiguous sections 6 um thick were prepared. Sections
were attached to slides coated with 3-aminopropyl-
trithozysilane (2%). After fixation with 4% paraformalde-
hyde at 4°C for 30 min, sections were acetylated for 10
min with 0.12% (v/v) triethanolamide and 0.25% (v/v)
acetic anhydrides (all Merck). After pre-incubation with
hybridization buffer (50% formamide, 4x SSC, 2x Den-
hardt's solution, and 50 pg/ml tRNA) for 2 h at room tem-
perature, the digoxigenin-UTP (dig, Roche)-labeled
complementary RNA (cRNA) probes diluted in hybridiza-
tion buffer were denatured and hybridized to the DRG
sections overnight at 65°C. The dig-labeled probes were
generated by in vitro transcription with T7 and T3
polymerases (Roche) from nucleotide sequences as fol-
lows: nucleotides 1183~1599 (417 bp) for TDAGS
(NM_008152), and nucleotides 2519~2651 (132 bp) for
TRPV1 (ENSMUSG00000005952). Following the hybrid-
ization, the slides underwent high-stringency washing
cycles: four times of 2x SSC (20x SSC stock: 3 M NaCl and
0.3 M sodium citrate, pH 7.0) at 72°C for 10 min, three
times of pre-warmed 2x SSC at 72°C for 30 min, three
times of pre-warmed 0.1x SSC at 72°C for 60 min, and
twice of 0.2x SSC at room temperature for 10 min. After
the washing, the dig-labeled cRNA probes were detected
with use of an alkaline phosphatase-conjugated anti-dig
antibody (Roche) by incubation for 1 h at room tempera-
ture. Development of signals involved use of a mix of
nitro-blue tetrazolium chloride, 0.45%, and 5-bromo-4-
chloro-3'-indolyphosphate  p-toluidine salt, 0.35%
(Sigma, St. Louis. MO). The specificity of hybridization
signals was confirmed by a control study involving sense
cRNA probes for each gene.

After detection of hybridization signals, sections were
washed with 1x PBS and then co-stained with various
combinations of primary antibodies, followed by suitable
secondary antibodies. All antibodies were diluted in 1x
PBS containing 1% BSA. All antibody incubations were
carried out at 4°C overnight. Primary antibodies were
against N52 (1:500, Sigma) or peripherin (PERI; 1:500,
Chemicon). Secondary antibodies were goat-anti-mouse
IgG conjugated to TRITC (1:250, Sigma) or goat-anti-rab-
bit-IgG conjugated to FITC (1:250, Sigma). Some experi-
ments involved direct staining with IB,-FITC conjugates
(12.5 pg/ml, Sigma).

The specimens were examined by use of a 20x objective in
a fluorescence microscope (Zeiss, Axiovert 200, Ger-
many). The digitized images were captured by AxioVixion
software. A total of 1,000 neurons from 8 sections were
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usually counted, and 95% confidence intervals for pro-
portions were estimated.

Primary DRG cultures

Mouse DRGs were collected and placed in pre-warmed
serum-free DMEM (Invitrogen). After centrifugation at
970 x g for 2 minutes, ganglia were incubated at 37°C for
1.5 hours with 1 ml of serum-free DMEM containing
0.125% collagenase IA (Sigma) and thoroughly mixed in
15-minute intervals, then centrifuged at 970 x g for 3 min-
utes. Cell pellets were re-suspended in 1 ml of 0.25%
trypsin (Invitrogen) and incubated at 37°C for 15 min-
utes with mixing in 5-minute intervals to avoid aggrega-
tion of neurons. After trypsin digestion, cells underwent
sedimentation at 1224 x g for 3 minutes and were washed
once by DMEM containing 10% fetal bovine serum (FBS),
then once with serum-free medium. Ganglia were re-sus-
pended in 2 ml of serum-free DMEM and then dissociated
into single cells by mechanical titration 8 times through
flame-polished Pasteur pipettes of decreasing tip diame-
ter. Cell suspension was slowly dropped into 10 ml of
serum-free DMEM. After 3~5 minutes, the cell suspension
on the top (~10 ml) was collected and centrifuged at 1224
x g for 5 minutes. The cell pellet was suspended and
mixed in 400 ul DMEM containing 10% FBS and seeded
on 100 pg/ml poly-D-lysine-coated 24-mm coverslips.
After incubation at 37°C for 2 hours, cells were supple-
mented with 1.5 ml DMEM containing 10% FBS and
maintained at 37°C for 24 hours before use. For cAMP
experiments, one-day DRG cultures obtained from CFA-
injected mice were treated with the indicated pH HEPES/
MES buffers (pH 7.4 and 6.4) for 30 minutes at 37°C,
then underwent cAMP assay.

Constructs and cell cultures

TDAGS8 and TRPV1 were cloned into the vector pIRES-
hrGFP-2a (pIRES-GFP) for transfection experiments.
Human embryonic kidney, adenovirus type 5-trans-
formed 293 cells lines (HEK293T, obtained from Biore-
source Collection and Research Center of Food Industry
Research and Development Institute, Taiwan) were main-
tained in DMEM supplemented with 10% FBS (Invitro-
gen) and antibiotics. For calcium imaging experiments,
HEK293T cells were seeded at 4 x 10° on 24-mm poly-D-
lysine-coated coverslips and grown in DMEM containing
10% FBS. Cells were then transfected with 1.5 ug of plas-
mids pIRES-GFP-TDAGS, pIRES-GFP-TRPV1, or pIRES-
GFP by use of lipofectamine reagent (Invitrogen). In some
experiments, cells were co-transfected with 1.5 ug of both
PIRES-GFP-TDAGS8 and pIRES-GFP-TRPV1 in a ratio of
1:1. Intracellular [Ca2?+] was detected 36 hours after trans-
fection. For cAMP assay, HEK293T cells were seeded at 1.6
x 105 per well (70%-80% confluence) in 12-well plates.
After 24 hours, cells were transfected with pIRES-GFP-
TDAGS, pIRES-GFP-TRPV1, or pIRES-GFP plasmids.

http://www.molecularpain.com/content/5/1/39

Intracellular calcium imaging

Transfected cells were pre-incubated at 37 °C with 2.5 uM
Fura-2 acetoxymethyl ester (Fura-2-AM, Molecular
Probes) for 40 minutes in a HEPES/MES solution (125
mM NaCl, 1 mM KCl, 5 mM CaCl,, 1 mM MgCl,, 8 mM
glucose, 10 mM HEPES and 15 mM MES, pH7.4). This
solution was then replaced with a fresh one without Fura-
2-AM. Coverslips were assembled into culture wells and
supplemented with 300 pl of the HEPES/MES solution
(pH 7.4). Cells were observed by use of a Zeiss inverted
microscope and illuminated with a xenon lamp to excita-
tion fluorescence, then images were taken with use of a
Zeiss Plan-Apo 63x oil-immersion objective lens. A
cooled CCD camera (Photometric) was used to detect flu-
orescence. GFP-positive cells within a field were identified
by use of a FITC filter with excitation wavelength 480 nm
and emission wavelength 535 nm. In the same field, fura-
2 fluorescence was measured by 10 Hz alternating wave-
length time scanning, with excitation wavelength 340 and
380 nm and emission wavelength 510 nm. The fluores-
cence ratio at two excitation wavelengths (340/380 nm,
Ca2+-bound Fura-2/free Fura-2) was recorded and ana-
lyzed. The HEPES/MES bulffers (600 ul) were added to the
culture wells to obtain the indicated pH values. The pH-
evoked calcium transients and the number of cells
responding to the indicated pH values were recorded.
Some experiments involved initial supplementation with
500 pl of the HEPES/MES buffer (pH 7.4) in culture wells,
then the addition of 500 pl of the HEPES/MES buffer (pH
7.4) containing twice the final agonist concentrations.

The cAMP assay

Transfected HEK293T cells or primary cultures were pre-
incubated for 15 minutes with serum-free DMEM con-
taining 30 puM of the phosphodiesterase inhibitor
RO201724 (Sigma), then stimulated with indicated pH
buffers containing 30 uM of RO201724 for 30 minutes at
37°C or 22°C. After stimulation, cells were lysed in etha-
nol. The lysates were dried and cAMP in dried lysates was
quantified by use of the cAMP immunoassay kit (Assay
Designs, MI), according to the manufacturer's protocol.
Some experiments involved pre-incubation with 100 ng/
ml of pertussis toxin (PTX) for 2-4 hours or U73122 for
15 minutes at 37°C before pH stimulation. All data are
referenced to pH at room temperature. To obtain pH at
37°C, 0.05 pH units should be subtracted for HEPES buft-
ers in the range of pH 6.8-5.0 according to our calibration
experiments.

Statistical analysis

All data are presented as mean + SEM. Paired ¢ test was
used to compare the paw volume, withdrawal threshold,
and latency between inflammatory agent-treated ipsilat-
eral paws and contralateral paws. The t test was used to
compare results for control and inflammatory agent-
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treated groups. The statistically significant levels were set
at *p < 0.05, **p <0.01, and ***p < 0.001.
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