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Abstract
Cortical areas including the anterior cingulate cortex (ACC) are important for pain and pleasure.
Recent studies using genetic and physiological approaches have demonstrated that the investigation
of basic mechanism for long-term potentiation (LTP) in the ACC may reveal key cellular and
molecular mechanisms for chronic pain in the cortex. Glutamate N-methyl D-aspartate (NMDA)
receptors in the ACC are critical for the induction of LTP, including both NR2A and NR2B
subunits. However, cellular and molecular mechanisms for the expression of ACC LTP have been
less investigated. Here, we report that the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid
(AMPA) receptor subunit, GluA1 but not GluA2 contributes to LTP in the ACC using genetic
manipulated mice lacking GluA1 or GluA2 gene. Furthermore, GluA1 knockout mice showed
decreased extracellular signal-regulated kinase (ERK) phosphorylation in the ACC in inflammatory
pain models in vivo. Our results demonstrate that AMPA receptor subunit GluA1 is a key
mechanism for the expression of ACC LTP and inflammation-induced long-term plastic changes in
the ACC.

Introduction
Activity-dependent synaptic plasticity in the central nerv-
ous system (CNS) has been proposed to contribute to
major brain functions, including memory, chronic pain
and drug addiction [1-4]. Long-term potentiation (LTP) is
a major form of synaptic plasticity, and the enhancement
of synaptic transmission in central regions related to sen-
sory transmission and perception is believed to be a key

cellular mechanism for chronic pain [2,5]. The anterior
cingulate cortex (ACC) is a major cortical area that is
believed to contribute to injury-related unpleasantness
and memory in animal models of pain and memory [6-9].
Activation of postsynaptic glutamate NMDA receptor by
different stimulation protocols triggers LTP in pyramidal
neurons of the ACC [10-13]. Calcium-dependent intracel-
lular signaling proteins, including AC1 (adenylyl cyclase
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subtype 1), ERK (extracellular signal-related kinase) and
CaMKIV (calmodulin-dependent protein kinase IV) are
found to contribute to ACC LTP [11,14-16].

Glutamatergic AMPA (α amino-3-hydroxy-5-methylisoxa-
zole-4-propionic acid) receptors mediate the majority of
fast excitatory synaptic transmission in the brain, includ-
ing the ACC region [17-19]. In the forebrain areas, AMPA
receptors are heteromeric complexes assembled from
mainly GluA1 and GluA2 [20]. The other two subunits of
AMPA receptor, GluA3 and GluA4 express at relative
lower levels [21,22]. According to the new subunit
nomenclature recommended by the International Union
of Basic and Clinical Pharmacology (IUPHAR), these
AMPA subunits are renamed as GluA1, GluA2, GluA3 and
GluA4 [23]. The requirement of different AMPA subtype
receptors for LTP is likely to be regional-, development-
dependent [24-27]. For example, in the hippocampal CA1
region, GluA1 is required for LTP in adult but not juvenile
animals [25,27]. Furthermore, LTP in the cerebellum
require GluA2 subunit [28]. It is also important to note
that not all cortical LTP share the similar mechanisms. In
the somatosensory cortex, Frey et al reported that GluA1 is
not required for the LTP in the layer II/III barrel cortex
[24]. However, in the ACC, using postsynaptic injection of
different peptide inhibitors Toyoda et al found that GluA1
contribute to LTP in the layer II/III pyramidal neurons
[29]. One possible difference between these experiments
is the methods of pharmacological and genetic
approaches, in addition to the different cortical region
investigated.

In the present study, we performed whole-cell patch-
clamp recordings from ACC and somatosensory cortex
(SSC) neurons to test the role of AMPA receptor subunits
for long-term synaptic plasticity by using mice lacking the
genes for GluA1 or GluA2. Furthermore, we analyzed
ERK1/2 phosphorylation in these cortical regions by using
mouse models of inflammation. We observed that the
AMPA receptor subunits, GluA1 and GluA2 differentially
contribute to LTP in the ACC and SSC. Moreover, GluA1
knockout mice showed the decreased cortical activation of
ERK1/2 in vivo. Our results provide strong evidence that
the induction of cortical plasticity and persist pain could
be triggered by GluA1-mediated, ERK-dependent signal-
ing pathway.

Results
GluA1 subunits are involved in synaptic potentiation in the 
ACC
It is evident that injuries trigger a series of plastic changes
in pain-related cortical regions including the ACC [2,30-
32]. Thus, the investigation of the molecular and cellular
mechanisms regarding ACC plasticity provides insights
into how the ACC processes and modulates sensory infor-

mation. To reveal the roles of GluA1 and GluA2 subunits
for synaptic potentiation in the ACC, we took genetic
approach by using GluA1 and GluA2 knockout mice
(GluA1-/- and GluA2-/-, respectively) in the present study.
We performed whole-cell patch-clamp recordings from
visually identified pyramidal neurons in layer II/III of the
ACC slices from GluA1-/- mice and their wild-type (WT)
mice. Fast excitatory postsynaptic currents (EPSCs) were
obtained by delivering focal electrical stimulation to layer
V (see Fig. 1A). In addition to visual identification, we
confirmed that the recordings were performed from corti-
cal pyramidal cells by injecting depolarizing currents into
the neuron (Fig. 1B). Intrinsic membrane properties and
action potential firing were compared between WT and
GluA1-/- mice. No significant differences in passive or
active intrinsic properties between neurons from WT (n =
11) and GluA1-/- mice (n = 10) were detected (t-test, P >
0.05). Table 1 summarizes the measurement of resting
membrane potential, input resistance and action poten-
tial characteristics in WT and GluA1-/- mice.

Next, we studied the synaptic potentiation in WT and
GluA1-/- mice. We used the typical LTP induction para-
digm to trigger LTP in ACC slices, which contained presy-
naptic 80 pulses at 2 Hz with postsynaptic depolarization
at +30 mV (referred to as the pairing training) [13]. We
induced LTP within 12 minutes after establishing the
whole-cell configuration to avoid washout of intracellular
contents that are critical for the establishment of synaptic
plasticity [13]. LTP was induced by pairing training which
produced a significant, long-lasting potentiation of synap-
tic responses in slices of WT mice (35 min to 40 min after
the conditioning, mean 146.0 ± 8.3% of baseline, n = 13
slices/6 mice, t-test; P < 0.001 compared with baseline
responses before the pairing training, Fig. 1C). By con-
trast, synaptic potentiation was absent in slices from
GluA1-/- mice (106.8 ± 7.2%, n = 8 slices/6 mice, t-test; P >
0.05 compared with baseline responses, Fig. 1D). These
results provide the first genetic evidence that GluA1 is crit-
ical for LTP in the ACC of adult mice.

AMPA receptor-mediated EPSCs are reduced in GluA1-/- 

mice
Considering the abolishment of synaptic potentiation in
the ACC of GluA1-/- mice, we decided to examine if basal
synaptic transmission may be altered in GluA1-/- mice.
First, we analyzed AMPA receptor-mediated EPSCs evoked
by various stimulus intensities in the presence of the
NMDA receptor blocker AP-5 (50 μM). The input-output
relationship of AMPA receptor-mediated EPSCs in GluA1-

/- mice (n = 6) was significantly reduced as compared with
WT mice (n = 7; Fig. 2A, left). The rise time and the decay
time in AMPA receptor-mediated EPSCs with input stim-
ulation at 9 V showed no significant difference in GluA1-/

- (rise time, 3.3 ± 0.2 ms; decay time, 17.9 ± 1.0 ms, n = 6)
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Abolishment of cingulate potentiation in GluA1-/- miceFigure 1
Abolishment of cingulate potentiation in GluA1-/- mice. (A) Diagram of a slice showing the placement of a whole-cell 
patch recording and a stimulation electrode in the ACC. (B) These traces showing typical voltage responses to current injec-
tions of -100, 0, and 100 pA in ACC neurons from WT and GluA1-/- mice. (C) LTP was induced in ACC pyramidal neurons in 
WT mice (n = 13 slices/6 mice). (D) LTP was lost in ACC pyramidal neurons in GluA1-/- mice (n = 8 slices/6 mice). (C-D) The 
insets show averages of five EPSCs at baseline responses and 30 min after the pairing procedure (arrow). The dashed line indi-
cates the mean basal synaptic responses.
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mice in comparison with WT mice (rise time, 3.2 ± 0.2 ms;
decay time, 17.6 ± 1.6 ms, n = 7) (Fig. 2A, right). These
findings indicate that GluA1 contributes to basal synaptic
transmission in the ACC.

We next examined paired-pulse facilitation (PPF) to test
whether presynaptic function was altered in GluA1-/- mice.
There was no difference in PPF ratio in GluA1-/- mice (n =
12) compared with WT mice (n = 13) (Fig. 2B); indicating
that basic presynaptic release properties is likely intact in
GluA1-/- mice. We further examined mEPSCs from WT and
GluA1-/- mice and found no significant differences in
either the frequency (1.4 ± 0.1 vs 1.3 ± 0.2 Hz, t-test; P >
0.05) or the amplitude (9.4 ± 0.7 vs 9.0 ± 0.3 pA, t-test; P
> 0.05) in ACC neurons of WT (n = 13) vs GluA1-/- mice (n
= 9) (Fig. 2C). The rise time and the decay time in mEPSCs
showed no significant difference in GluA1-/- (rise time, 1.9
± 0.2 ms; decay time, 11.4 ± 0.4 ms, n = 9) mice in com-
parison with WT mice (rise time, 2.2 ± 0.1 ms; decay time,
12.0 ± 0.4 ms, n = 13) (Fig. 2C). These results suggest that
the reduction of AMPA receptor-mediated EPSCs in
GluA1-/- mice is unlikely to result from presynaptic
changes.

NMDA receptor-mediated EPSCs are intact in GluA1-/- 

mice
NMDA receptors are critical for the induction of LTP in the
ACC [13]. To test the possibility that the deletion of
GluA1 subunit affect the induction of LTP by inhibiting
NMDA receptor-mediated currents, we first examined the
NMDA receptor-mediated EPSCs evoked by various stim-
ulus intensities. To record NMDA receptor-mediated
EPSCs, we added CNQX (20 μM) and glycine (1 μM) in
the recording solution. NMDA receptor-mediated EPSCs
in the ACC pyramidal neurons remained unchanged in
GluA1-/- (n = 8) mice in comparison with WT mice (n = 6,
Fig. 3A, left). The rise time and decay time in NMDA
receptor-mediated EPSCs with input stimulation at 12 V
showed no significant difference in GluA1-/- (rise time,
19.8 ± 1.2 ms; decay time, 146.9 ± 9.3 ms, n = 8) mice in
comparison with WT mice (rise time, 20.7 ± 1.2 ms; decay
time, 143.2 ± 7.0 ms, n = 6) (Fig. 3A, right).

We also examined the voltage dependence of NMDA
receptor-mediated EPSCs. We recorded the NMDA recep-
tor-mediated EPSCs over a range of membrane potentials
from -85 mV to +55 mV. NMDA receptor-mediated EPSCs
showed typical rectified I-V relationship with the reversal
potential around +5 mV. No difference was found for the
I-V relationship of NMDA receptor-mediated EPSCs in WT
(n = 8) and GluA1-/- (n = 8) mice (Fig. 3B).

Synaptic potentiation is enhanced in GluA2-/- mice
To determine if GluA2 may be also involved in ACC LTP,
we performed whole-cell patch-clamp recordings from
pyramidal neurons in layer II/III of ACC slices from
GluA2-/- and their littermate wild-type (WTCD1) mice.
There was no significant difference in passive or active
intrinsic properties between neurons from WTCD1 (n = 8)
and GluA2-/- mice (n = 7) (Fig. 4A, see Table 1). We then
examined the synaptic potentiation in WTCD1 and
GluA2-/- mice. Unlike the case observed in GluA1-/- mice,
the pairing training produced robust LTP in GluA2-/- mice
(last 5 min mean 177.8 ± 9.8%, n = 8 slices/5 mice; P <
0.05 compared with baseline responses, Fig. 4C). The
magnitude of synaptic potentiation in GluA2-/- mice was
significantly greater than that of WTCD1 mice (136.2 ±
10.1% of baseline, n = 9 slices/5 mice, t-test; P < 0.05 com-
pared with baseline responses, Fig. 4B). These results sug-
gest that GluA1 and GluA2 subunits differentially
modulate synaptic potentiation in the ACC of adult mice.

AMPA receptor-mediated EPSCs are reduced in GluA2-/- 

mice
We also examined AMPA receptor-mediated EPSCs in
GluA2-/- mice in the presence of 50 μM AP-5. As with
GluA1-/- mice, GluA2-/- mice (n = 6) also showed reduced
AMPA receptor-mediated EPSCs at all stimulus intensities
compared with WTCD1 mice (n = 6) (Fig. 5A, left). The
rise time and decay time in AMPA receptor-mediated
EPSCs with input stimulation at 9 V showed no significant
difference in GluA2-/- (rise time, 3.1 ± 0.1 ms; decay time,
17.6 ± 1.3 ms, n = 6) mice in comparison with WTCD1
mice (rise time, 3.1 ± 0.1 ms; decay time, 17.6 ± 1.3 ms, n
= 6) (Fig. 5A, right).

Table 1: Summary of basic electrophysiological properties for ACC neurons in wild-type and GluA1 and GluA2 knockout mice

WT GluA1-/- WTCD1 GluA2-/-

Resting membrane Potential (mV) 68.3 ± 0.8 68.0 ± 1.0 67.8 ± 1.0 68.5 ± 0.8
Input resistance (MΩ) 113.5 ± 5.4 112.4 ± 5.0 130.3 ± 6.9 154.8 ± 14.0

Frequency (Hz) 4.6 ± 0.5 4.0 ± 0.4 4.6 ± 0.3 4.4 ± 0.5
AP amplitude (mV) 93.8 ± 5.5 94.8 ± 5.0 102.3 ± 1.5 103.5 ± 1.9
AP Half-width (ms) 2.3 ± 0.2 2.3 ± 0.3 1.9 ± 0.1 1.8 ± 0.1

AHP amplitude (mV) 10.0 ± 2.0 8.8 ± 1.6 7.7 ± 0.5 7.0 ± 0.7
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Reduced AMPA receptor-mediated EPSCs in GluA1-/- miceFigure 2
Reduced AMPA receptor-mediated EPSCs in GluA1-/- mice. (A) Input-output relationships for AMPA receptor-medi-
ated EPSCs in WT (n = 7) and GluA1-/- (n = 6) mice (left). * P < 0.05 compared with WT mice. Traces showing averages of five 
AMPA receptor-mediated EPSCs with input stimulation at 9 V (right). (B) Paired-pulse facilitaion (PPF) did not differ in WT (n 
= 13) and GluA1-/- (n = 9) mice (left). Sample traces of PPF recorded from WT and GluA1-/- mice at the 50 ms interval (right). 
(C) Traces of mEPSCs recorded from WT and GluA1-/- mice (Top). Summary results showing the frequency and the amplitude 
of mEPSCs in ACC neurons from WT (n = 13) and GluA1-/- (n = 9) mice (Bottom, left). Cumulative probability plot showing the 
distribution of the inter-event interval and the frequency in WT (n = 13) and GluA1-/- (n = 9) mice (Bottom, right).
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We then examined PPF and found that there was no dif-
ference in the level of facilitation in GluA2-/- (n = 13) com-
pared with WTCD1 mice (n = 7) (Fig. 5B). We also
recorded mEPSCs from WTCD1 and GluA2-/- mice. There
was no significant difference in either the frequency (1.4
± 0.1 vs 1.4 ± 0.1 Hz, P > 0.05) or the amplitude (9.4 ± 0.3
vs 9.4 ± 0.6 pA, P > 0.05) in ACC neurons of WTCD1 (n =
8) vs GluA2-/- mice (n = 9) (Fig. 5C). The rise time and the
decay time in mEPSCs showed no significant difference in
GluA2-/- (rise time, 2.2 ± 0.1 ms; decay time, 9.8 ± 0.4 ms,
n = 9) mice in comparison with WTCD1 mice (rise time,
2.2 ± 0.1 ms; decay time, 11.0 ± 0.2 ms, n = 8) (Fig. 5C).
These results suggest that the reduction of AMPA receptor-
mediated EPSCs in GluA2-/- mice is unlikely to result from
presynaptic changes, similar to the result from GluA1-/-

mice.

NMDA receptor-mediated EPSCs were examined in the
presence of 20 μM CNQX and glycine (1 μM). The NMDA
receptor-mediated EPSCs in ACC pyramidal neurons
remained unchanged in GluA2-/- mice (n = 6) in compari-
son with WTCD1 mice (n = 6). The rise time and the decay

time in NMDA receptor-mediated EPSCs with input stim-
ulation at 12 V showed no significant difference in GluA2-

/- (rise time, 21.6 ± 1.9 ms, n = 6; decay time, 153.4 ± 8.9
ms, n = 6) mice in comparison with WTCD1 mice (rise
time, 19.6 ± 2.0 ms, n = 6; decay time, 149.4 ± 10.9 ms, n
= 6) (Fig. 5D). Taken together, these results suggest that
AMPA but not NMDA receptor-mediated transmission in
GluA2-/- mice was also reduced, similar to GluA1-/- mice.

GluA1 and GluA2 subunits differentially modulate synaptic 
potentiation in somatosensory cortex (SSC)
The SSC plays a central role in the processing of sensory
inputs, and developmental- or pathology-associated activ-
ity-dependent changes in the SSC have been hypothesized
to underlie plastic changes in sensory discrimination in
vivo [33-35]. We therefore addressed the role of GluA1
and GluA2 subunits in sensory activity-related LTP in the
SSC. Recordings were performed from pyramidal cells in
layer II/III in somatosensory hindlimb cortex (SSHL). We
tested synaptic potentiation in SSHL neurons by deliver-
ing focal electrical stimulation to layer V (Fig. 6A). In WT
mice, the pairing training produced significant synaptic
potentiation (134.4 ± 5.4%, n = 7 slices/6 mice, t-test; P <
0.01 compared to baseline, Fig. 6B). In contrast, synaptic
potentiation was lost in slices from GluA1-/- mice (102.9 ±
5.1%, n = 7 slices/5 mice, t-test; P > 0.05 compared with
baseline responses, Fig. 6C). We then studied synaptic
potentiation in SSHL neurons in GluA2-/- mice. As with the
ACC, the pairing training produced significant synaptic
potentiation in GluA2-/- mice (160.1 ± 10.1%, n = 6 slices/
5 mice; P < 0.05 compared with baseline responses, Fig.
6E) as well as in WTCD1 mice (134.2 ± 5.6% of baseline,
n = 6 slices/5 mice, t-test; P < 0.05 compared with baseline
responses, Fig. 6D). The magnitude of synaptic potentia-
tion was significantly enhanced in GluA2-/- mice (134.2 ±
5.6% for WTCD1 versus 160.1 ± 10.1% for GluA2-/-, t-test;
P < 0.05). These results suggest that the GluA1 and GluA2
subunits differently modulate synaptic plasticity in the
SSC, consistent with the ACC.

Inflammatory pain is associated with activation of ERK1/2 
in cortical neurons
What do these ex-vivo slice findings mean in the context
of plasticity in the cortex in vivo? LTP in the ACC is pro-
posed to be a key cellular model [30,36-38] and ACC LTP
is likely contributing to both the early cortical changes in
the ACC as well as plastic changes in the ACC after the
injury [2]. We therefore chose mouse models of persistent
nociceptive activity to address mechanisms of synaptic
plasticity in the ACC in vivo. Recent work from our lab as
well as others showed that ACC ERK is activated after
peripheral inflammation [39,40]. Considering the fact
that ERK activity is required for ACC LTP [14], it is con-
ceivable that activity-dependent LTP may contribute to
activation of ERK1/2 in the ACC in animal models of per-

Intact NMDA receptor-mediated EPSCs in GluA1-/- miceFigure 3
Intact NMDA receptor-mediated EPSCs in GluA1-/- 

mice. (A) Input-output relationships for NMDA receptor-
mediated EPSCs in WT (n = 6) and GluA1-/- (n = 8) mice (left). 
Traces showing averages of five NMDA receptor-mediated 
EPSCs with input stimulation at 12 V (right). (B) I-V relation-
ships of NMDA receptor-mediated EPSCs in WT (n = 8) and 
GluA1-/- (n = 8) mice (left). NMDA receptor-mediated EPSCs 
recorded at holding potentials from -85 mV to +55 mV in 
WT and GluA1-/- mice (right).
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Enhancement of synaptic potentiation in GluA2-/- miceFigure 4
Enhancement of synaptic potentiation in GluA2-/- mice. (A) These traces show typical voltage responses to current 
injections of -100, 0, and 100 pA in ACC neurons from WTCD1 and GluA2-/- mice. Injection of depolarizing currents into neu-
rons induced repetitive action potentials with frequency adaptation that is typical of the firing pattern of pyramidal neurons. (B) 
LTP was induced in ACC pyramidal neurons in WTCD1 mice (n = 9 slices/5 mice). (C) LTP was enhanced in ACC pyramidal 
neurons in GluA2-/- mice (n = 8 slices/5 mice) compared with WTCD1 mice. (B-C) The insets show averages of five EPSCs at 
baseline responses and 30 min after the pairing procedure (arrow). The dashed line indicates the mean basal synaptic 
responses.
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Reduced AMPA receptor-mediated EPSCs in GluA2-/- miceFigure 5
Reduced AMPA receptor-mediated EPSCs in GluA2-/- mice. (A) Input-output relationships for AMPA receptor-medi-
ated EPSCs in WTCD1 (n = 6) and GluA2-/- (n = 6) mice (left). * P < 0.05 compared with WT mice. Traces showing averages of 
five AMPA receptor-mediated EPSCs with input stimulation at 9 V (right). (B) Paired-pulse facilitaion (PPF) did not differ in 
WTCD1 (n = 7) and GluA2-/- (n = 13) mice (left). Sample traces of PPF recorded from WTCD1 and GluA2-/- mice at the 50 ms 
interval (right). (C) Traces of mEPSCs recorded from WTCD1 and GluA2-/- mice (Top). Summary results showing the fre-
quency and the amplitude of mEPSCs in ACC neurons from WT (n = 8) and GluA2-/- (n = 9) mice (Bottom, left). Cumulative 
probability plot showing the distribution of the inter-event interval and the frequency in WTCD1 (n = 8) and GluA1-/- mice (n = 
9) (Bottom, right). (D) Input-output relationships for NMDA receptor-mediated EPSCs in WTCD1 (n = 6) and GluA1-/- mice (n 
= 6) (left). Traces showing averages of five NMDA receptor-mediated EPSCs with input stimulation at 12 V (right).
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Synaptic potentiation in the SSHL in GluA1-/- miceFigure 6
Synaptic potentiation in the SSHL in GluA1-/- mice. (A) Diagram of a slice showing the placement of a whole-cell patch 
recording and a stimulation electrode in the SSHL. (B) LTP was induced in SSHL neurons in WT mice (n = 7 slices/6 mice). (C) 
LTP was lost in ACC pyramidal neurons from GluA1-/- mice (n = 7 slices/5 mice). (D) LTP was induced in SSHL neurons from 
WTCD1 mice (n = 6 slices/5 mice). (E) LTP was enhanced in SSHL neurons from GluA2-/- mice (n = 6 slices/5 mice). (B-E) The 
insets show averaged of five EPSCs at baseline responses and 30 min after the pairing procedure (arrow). The dashed line indi-
cates the mean basal synaptic responses.
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sistent pain. To address the cortical levels of activated
(phosphorylated) ERK1/2 in inflammatory pain states, we
utilized mouse models based upon intraplantar injection
of 1% formalin or complete Freund's adjuvant (CFA) in
the mouse hindpaw. The plantar formalin test is a meas-
ure of rapid sensitization of nociceptive pathways and
involves formalin-evoked nocifensive responses in two
phases: an acute phase I (0–10 minutes following injec-
tion), which is caused by direct activation of nociceptors
by formalin and a subacute phase II (15–50 minutes),
which is believed to involve spinal, cortical as well as
peripheral sensitization mechanisms. In the basal (naïve)
state, only a few neurons in the ACC showed immunore-
activity for phosphorylated ERK1/2 (pERK1/2) (Fig. 7A).
At 10 minutes after formalin injection, a significant
increase was observed in the immunoreactivity for pERK
over neurons of the ACC, as judged by densitometry (P <
0.05 as compared with basal levels; see Fig. 7A for typical
examples and Fig. 7B for quantitative summary). Whereas
only a few neurons demonstrated strong immunoreactiv-
ity over the neuronal somata in the basal state, following
formalin injection, prominent immunoreactivity was
observed in the dendrites as well as the somata of a large
number of neurons (Fig. 7A, higher magnification). For-
malin-induced increase in pERK immunoreactivity was

sustained at 30 minutes after injection, and returned to
basal levels at 60 min after injection, after the phase II
response had subsided (Fig. 7B).

To address whether long-lasting hypersensitivity evoked
by peripheral inflammation is associated with cortical
activation of ERK1/2, we analyzed pERK1/2 immunoreac-
tivity at 10 min, 30 min and 3 hours after hindpaw injec-
tion of CFA. Injection of CFA in the hindpaw triggered
inflammation within minutes and led to a rapid and long-
lasting hyperalgesia to thermal and mechanical stimuli
(Fig. 7B). Concurrent to the course of hyperalgesia, CFA
evoked a rapid and long-lasting increase in pERK immu-
noreactivity over neurons of the ACC (see Fig. 7A and Fig.
7B for summary; P < 0.05 as compared with basal levels).
In particular, intense immunoreactivity was observed in
the dendrites and neuropil after CFA administration (Fig.
7A, higher magnification).

Nociceptive-activity induced cortical ERK1/2 activation in 
AMPA receptor subunit knockout mice
Given the importance of both ERK and GluA1-containing
AMPA receptors in plasticity phenomena in the ACC, we
asked whether AMPA receptors could act upstream of
nociceptive activity-evoked activation of ERK1/2 in the
cortex. Phosphorylation of ERK1/2 in neurons of the ACC
induced by intraplantar injection of either formalin or
CFA was significantly decreased in GluA1-/- mice in com-
parison with their WT mice (see Fig. 8A for typical exam-

ERK phosphorylation as an indicator of synaptic plasticity in the ACC in mouse models of inflammatory painFigure 7
ERK phosphorylation as an indicator of synaptic plas-
ticity in the ACC in mouse models of inflammatory 
pain. (A) Typical examples of increase in immunoreactivity 
for phospho-ERK1/2 in ACC of WT mice at 10 minutes 
(min) following intraplantar (ipl.) injection of formalin or 30 
min following intraplantar injection of complete Freund's 
adjuvant (CFA). (B) Analysis of the time-course and quantifi-
cation of nociceptive activity-induced ERK phosphorylation in 
ACC via densitometric analysis of immunostained sections.

ERK phosphorylation in the ACC with inflammatory-relayed pain in WT and GluA1-/- miceFigure 8
ERK phosphorylation in the ACC with inflammatory-
relayed pain in WT and GluA1-/- mice. (A) ERK immu-
noreactivity of control, and 10 min after formalin injection or 
30 min after CFA injection in control (WT, top panel) and 
GluA1-/- mice (lower panel). (B) Quantitative summary of ERK 
immunoreactivity in control and GluA1-/- mice.
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ple and Fig. 8B for summary of densitometric analysis). In
particular, dendrites of cortical neurons were rarely
immunoreactive for pERK1/2 in formalin- or CFA-
injected GluA1-/- mice. In contrast, nociceptive activity-
evoked ERK1/2 phosphorylation of ERK1/2 remained
intact in the ACC of GluA2-/- mice, as compared to WTCD1
mice (not shown).

Discussion
In the present study, we have demonstrated that AMPA
receptor GluA1 subunit contributes to the expression of
LTP in pain-related ACC region. This finding is consistent
with our previous report using postsynaptic injection of
AMPA receptor GluA1 interfering peptide inhibitor [29].
Furthermore, GluA1-/- mice showed the significant
decrease in cortical ERK activation in two in vivo animal
models of inflammatory pain. Thus, AMPA GluA1-ERK
pathway is likely to play an important role in cortical syn-
aptic plasticity, which would be essential for higher brain
functions such as persistent pain and related memory and
emotional responses. Future experiments are clearly
needed to explore the roles of GluA1-ERK in different
forms of chronic pain.

ACC and chronic pain
Cumulative evidence from both human and animal stud-
ies demonstrates that the ACC is important for pain-
related perception and chronic pain. It has been demon-
strated that local lesions of the medial frontal cortex,
including the ACC, reduced acute nociceptive responses,
injury-related aversive behaviors, and chronic pain in
rodents [32,41,42]. Electrophysiological recordings
showed that ACC neurons responded to peripheral nox-
ious stimuli, and neuroimaging studies in humans have
further confirmed these observations and showed that the
ACC, together with other cortical structures, were acti-
vated by acute noxious stimuli, psychological pain, and
social pain (see [2]). Cellular and molecular mechanisms
for long-term plastic changes in ACC neurons have been
investigated using genetic and pharmacological
approaches, and several key signaling proteins or mole-
cules have been identified including calcium-stimulated
adenylyl cyclase (AC) 1, AC8, NMDA receptor NR2B sub-
unit [7-9,43,44]. After persistent inflammation, the
expression of NMDA NR2B receptors in the ACC was up-
regulated with the enhanced behavioral responses [44],
consistent with the increased inflammation-related per-
sistent pain in NR2B forebrain overexpression mice [7].
We also found the attenuated behavioral sensitization in
various chronic pain models in mice lacking AC1 and AC8
[8,43]. Moreover, enhancements of not only presynaptic
enhancements of glutamate release but also postsynaptic
glutamate receptor-mediated responses in the ACC were
mediated by cAMP signaling pathway [8,9,45]. Recent
studies using animal models of inflammatory and neuro-

pathic pain reported that the ERK signaling pathway in the
ACC contributes to both induction and expression of
chronic pain [39,40]. In the current study, we further
extended the molecular and cellular mechanisms relating
the long-term plastic changes in ACC neurons by demon-
strating that GluA1-ERK pathway may play an important
role in early changes within the ACC. This provides the
first evidence that GluA1-ERK pathway plays vital roles in
activity-dependent synaptic plasticity in the ACC.

Molecular mechanisms of LTP induction in the ACC
The molecular and cellular mechanisms of synaptic
potentiation in the ACC are beginning to be elucidated by
pharmacological and genetic studies. The neuronal activ-
ity triggered by LTP-inducing stimuli increases the release
of glutamate in the cingulate synapses. The activation of
NMDA receptors including NR2A and NR2B subunits and
L-type voltage-gated calcium channels (L-VDCCs) causes
an increase in postsynaptic calcium in dendritic spines
[11,13]. Calcium influx via NMDA receptors and L-
VDCCs plays a key role for triggering biological processes
that lead to LTP in the ACC. Postsynaptic calcium then
binds to calmodulin and triggers various intracellular pro-
tein kinases and phosphatases [46]. Calmodulin target
proteins, such as Ca2+/calmodulin-dependent protein
kinases (PKC, CaMKII and CaMKIV), calmodulin-acti-
vated ACs (AC1 and 8), and the calmodulin-activated
phosphatase calcineurin, are known to be important for
synaptic plasticity in the hippocampus [1,47]. Among
them, we found that activation of AC1 and CaMKIV is
essential for the induction of LTP in the ACC [11,15]. As
the downstream target of AC1, cAMP-dependent protein
kinase (PKA) may activate MEK and ERK/MAPK. The role
of MAPK cascade in the induction of cingulate LTP has
been documented in a previous study [14], which showed
that activation of MAPK including ERK, JNK and p38 is
critical for the induction of cingulate LTP. In addition,
activated ERK/MAPK likely has multiple targets including
cAMP response element binding protein (CREB) that is
required for long-term synaptic changes in neurons [15].

GluA1 and GluA2 subunits in cortical LTP
Several studies suggest that these receptor subunits may
play distinct roles in the regulation of AMPA receptor traf-
ficking and synaptic plasticity. The GluA1 subunit is
required for NMDA receptor-dependent synaptic delivery
of AMPA receptors, a process thought to be responsible
for the activity-dependent delivery of AMPA receptors dur-
ing LTP [48-53]. We have recently examined the role of
GluA1 subunit using pharmacological approaches and
found that the GluA1 subunit C-terminal peptide analog
Pep1-TGL blocked the induction of cingulate LTP [29].
Thus, in the ACC of adult mice, the interaction between
the C terminus of GluA1 and PDZ domain proteins is
required for the induction of LTP. Our results in this paper
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show that the ACC and SSHL slices prepared from adult
GluA1-/- mice failed to elicit LTP. This result is consistent
with the previous reports that LTP was impaired in GluA1-

/- mice in the hippocampus [27,54]. The postsynaptic Ca2+

influx via NMDA receptors activates the CaMKII and this
also activates Ras and ERK [53,55]. This signaling cascade
is suggested to be involved in GluA1-dependent LTP [55].
In contrast, GluA2/GluA3 receptors may continually
replace preexisting synaptic AMPA receptors in an activity-
independent manner [56-59]. The GluA2/GluA3 recep-
tors may play a complementary role in the constitutive
delivery pathway via GluA2-mediated interaction with N-
ethylmaleimide-sensitive fusion protein (NSF) and class
II PDZ domain proteins [50]. The functional significance
of GluA2 and GluA3 in synaptic plasticity has been exten-
sively studied in CA1 hippocampus neurons [60,61]. We
here show that synaptic potentiation is enhanced in ACC
and SSHL in GluA2-/- mice. Thus, our experiments using
GluA1/2 KO mice suggest that the AMPA receptor subu-
nits, GluA1 and GluA2, act differentially in ACC LTP.

Activity-dependent ERK activation in vivo
An interesting finding of this paper is that both, ERK1/2
and the GluA1 subunit are important in activity-depend-
ent changes in the ACC in vivo. Peripheral injuries are
known to lead to a sustained phosphorylation and activa-
tion of ERK1/2 in sensory neurons of the dorsal root gan-
glia as well as in spinal dorsal neurons [62-64]. Here we
report a rapid and sustained phosphorylation of ERK1/2
in neurons of the ACC induced by persistent activation of
nociceptors following CFA injection. These observations,
coupled to our previous finding that ERK activation is nec-
essary for LTP in the ACC [14] strongly suggests that ERK
activation is an important step in triggering long-lasting
potentiation of cortical neurons, which is critically linked
with induction and maintenance of chronic pain. Interest-
ingly, GluA1-/- mice demonstrated a diminished activation
of cortical ERK in responses to persistent nociception in
vivo and a loss of cortical potentiation ex-vivo. This is con-
sistent with our previous findings that GluA1-/- mice dem-
onstrate diminished behavioral hyperalgesia in models of
inflammatory pain [62]. Thus, the composition of cortical
as well as spinal AMPA receptors may be a key determi-
nant for pathological pain states which are triggered by
persistent activation of nociceptors in inflamed or injured
tissue.

In summary, we demonstrate the strong ex-vivo as well as
in-vivo evidence that the ERK-GluA1 pathway is essential
for synaptic plasticity in pain-related cortical regions. This
study might further improve our understanding of cellular
and molecular mechanisms of cortical plasticity and help
to identify new targets for the treatment of patients with
chronic pain.

Materials and methods
Genetically-modified mice
Null mutant mice for genes encoding GluA1 (gria1) and
GluA2 (gria2) have been described previously [27,65].
GluA1-/- mice were crossed back into the C57BL/6 strain,
and the GluA2-/- mice were crossed back into the CD1
strain, each for more than eight generations. GluA gene
knockout mice and control littermates were obtained by
interbreeding heterozygous mice.

Slice preparation
The Animal Care and Use Committee of University of
Toronto approved the mouse protocols. Coronal brain
slices (300 μM) containing the anterior cingulate cortex
(ACC) and somatosensory hindlimb cortex (SSHL) from
six- to eight-week-old GluA gene knockout mice and their
control littermates were prepared using standard methods
[13]. Slices were transferred to a submerged recovery
chamber with oxygenated (95% O2 and 5% CO2) artificial
cerebrospinal fluid (ACSF) containing (in mM: 124 NaCl,
2.5 KCl, 2 CaCl2, 1 MgSO4, 25 NaHCO3, 1 NaH2PO4, 10
glucose) at room temperature for at least 1 h.

Whole-cell recordings
Experiments were performed in a recording chamber on
the stage of an Axioskop 2FS microscope with infrared
DIC optics for visualization of whole-cell patch clamp
recording. Excitatory postsynaptic currents (EPSCs) were
recorded from layer II/III neurons with an Axon 200B
amplifier (Molecular Devices, CA) and the stimulations
were delivered by a bipolar tungsten stimulating electrode
placed in layer V of the ACC and SSHL. EPSCs were
induced by repetitive stimulations at 0.02 Hz and neurons
were voltage clamped at -70 mV. The recording pipettes
(3–5 MΩ) were filled with solution containing (mM). 145
K-gluconate, 5 NaCl, 1 MgCl2, 0.2 EGTA, 10 HEPES, 2 Mg-
ATP, and 0.1 Na3-GTP (adjusted to pH 7.2 with KOH).
After obtaining stable EPSCs for 10 min, the LTP induc-
tion paradigm was used within 12 min after establishing
the whole-cell configuration to prevent wash out effect on
LTP induction [66]. The LTP-inducing protocol involved
paired presynaptic 80 pulses at 2 Hz with postsynaptic
depolarization at +30 mV (referred to as pairing training).
The NMDA receptor-mediated component of EPSCs was
pharmacologically isolated in ACSF containing: CNQX
(20 μM), glycine (1 μM) and picrotoxin (100 μM). The
patch electrodes contained (in mM) 102 cesium gluco-
nate, 5 TEA chloride, 3.7 NaCl, 11 BAPTA, 0.2 EGTA, 20
HEPES, 2 MgATP, 0.3 NaGTP, and 5 QX-314 chloride
(adjusted to pH 7.2 with CsOH). Neurons were voltage
clamped at -30 mV and NMDA receptor-mediated EPSCs
were evoked at 0.05 Hz. Picrotoxin (100 μM) was always
present to block GABAA receptor-mediated inhibitory cur-
rents. Access resistance was 15–30 MΩ and monitored
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throughout the experiment. Data were discarded if access
resistance changed more than 15% during an experiment.
Rise times were determined between 10 and 90% of the
peak amplitude of the evoked and miniature EPSC. Decay
times were measured between 90 and 10% of peak ampli-
tude.

Pharmacological inhibitors
All chemicals and drugs were obtained from Sigma (St.
Louis, MO), except for QX-314, which was from Tocris
Cookson (Ellisville, MO).

Immunohistochemistry
Mice were perfused with 0.1 M phosphate buffer saline
and 4% paraformaldehyde (PFA) and brains were isolated
and post-fixed for up to 16 h in 4% PFA. Free-floating sec-
tions (100 μm, vibratome), were processed for immuno-
histochemistry anti-phospho-ERK1/2 antibody (Cell
Signaling Inc., 1: 1000 dilution) as described in details
previously [62]. Densitometric analysis of pERK immuno-
reactivity was performed over ACC and SSHL using the
Cell Explorer Software (Serva, Heidelbeg, Germany) in at
least 3–4 sections per mouse from at least 3 mice per treat-
ment group as described in details previously [62].

Furthermore, the following antibodies were used: rabbit
polyclonal anti-GluA2/3 and anti-GluA1 antisera (Chemi-
con International, Hofheim, Germany). Mice were per-
fused transcardially with 4% paraformaldehyde (PFA)
and spinal cords, brains or dorsal root ganglia were
extracted and postfixed overnight in 4% PFA. Immunohis-
tochemistry was performed on vibratome sections (50
μm) or cryosections (20 μm) using standard reagents and
protocols (Vector Laboratories, Burlingame, USA). Sec-
tions from treatment groups to be compared were stained
and photographed together and care was taken to ensure
that the staining reaction was within the linear range.
Brightfield images were taken under similar illumination
conditions.

Data analyses
Results were analyzed by t-test, paired t-test, or two-way
ANOVA followed by post-hoc student-Newman-Keuls test
to identify significant differences. Data are expressed as
mean ± S.E.M. In all cases, P < 0.05 was considered statis-
tically significant.
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