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Abstract

Group | mGIuRs (mGIuR| and 5) pre- and/or postsynaptically regulate synaptic transmission at
glutamatergic synapses. By recording spontaneous EPSCs (sEPSCs) in the spinal trigeminal
subnucleus oralis (Vo), we here investigated the regulation of glutamatergic transmission through
the activation of group | mGluRs. Bath-applied DHPG (10 nM/5 min), activating the group | mGluRs,
increased sEPSCs both in frequency and amplitude; particularly, the increased amplitude was long-
lasting. The DHPG-induced increases of sEPSC frequency and amplitude were not NMDA
receptor-dependent. The DHPG-induced increase in the frequency of sEPSCs, the presynaptic
effect being further confirmed by the DHPG effect on paired-pulse ratio of trigeminal tract-evoked
EPSCs, an index of presynaptic modulation, was significantly but partially reduced by blockades of
voltage-dependent sodium channel, mGIuR| or mGIuR5. Interestingly, PKC inhibition markedly
enhanced the DHPG-induced increase of sEPSC frequency, which was mainly accomplished
through mGIuR|1, indicating an inhibitory role of PKC. In contrast, the DHPG-induced increase of
sEPSC amplitude was not affected by mGIluR| or mGIuR5 antagonists although the long-lasting
property of the increase was disappeared; however, the increase was completely inhibited by
blocking both mGIuR | and mGIuRS5. Further study of signal transduction mechanisms revealed that
PLC and CaMKIl mediated the increases of sEPSC in both frequency and amplitude by DHPG, while
IP; receptor, NO and ERK only that of amplitude during DHPG application. Altogether, these
results indicate that the activation of group | mGluRs and their signal transduction pathways
differentially regulate glutamate release and synaptic responses in Vo, thereby contributing to the

processing of somatosensory signals from orofacial region.
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Background

Orofacial somatosensory signals are transmitted to the
first central relay site within the trigeminal sensory
nuclear complex of brainstem via afferent component of
the trigeminal nerve. The trigeminal complex consists of
the principal nucleus and the spinal trigeminal nucleus.
The latter is subdivided into oralis (Vo), interpolaris (Vi)
and caudalis (Vc) in a rostro-caudal direction. The Vo
receives somatosensory inputs from various oral and peri-
oral structures including tooth [1,2], periodontal tis-
sue[3], lip [4] and skin [5,6]. Recently, it has been
suggested that the Vo is implicated in the central process-
ing of nociceptive information owing to containing con-
vergent and nociceptive-specific neurons, the neurons
changing their properties by intramuscular mustard oil [5]
and subcutaneous formalin [7]. Moreover, some Vo neu-
rons transmit the processed somatosensory signals into
other nociception-related brainstem areas, such as the
parabrachial nucleus [8] and the thalamus [9,10]. There-
fore, Vo is an important functional brainstem area partic-
ipating in the processing and transmission of nociceptive
information, resembling the deep laminae of the Vc and
the spinal cord dorsal horn [6,8].

In the central nervous system (CNS), glutamate mediates
fast excitatory synaptic transmission or exerts slow synap-
tic effects by binding its ionotropic (iGluR) or metabo-
tropic (mGluR) glutamate receptors [11]. The mGluRs are
one of G-protein coupled receptor families, enclosing
eight subtypes (mGluR1-8) that can be divided into three
groups according to sequence homology, pharmacology
and signaling mechanisms [12].

Group I mGluRs (mGluR1 and 5) activate phospholipase
C (PLC) via Gg-protein, resulting in phosphoinositide
hydrolysis, Ca2* release from inositol 1,4,5-triphosphate
(IP;)-sensitive intracellular stores, and protein kinase C
(PKC) activation by diacylglycerol (DAG) [12]. On the
contrary, group Il (mGluR2 and 3) and III (mGluR4, 6-8)
mGluRs are negatively coupled to cAMP production path-
way via Gi/Go-protein [12]. Group I mGluRs are
expressed in perisynaptic region of postsynaptic den-
drites, and can mediate slow excitatory synaptic transmis-
sion in the CNS, including the spinal cord [13,14]. A
previous study showed the expression of mGluR1 and
mGIuR5 in the trigeminal system including the subnu-
cleus Vo [15]. mGluR1 was immunostained in the
neuropil of all the trigeminal nuclei, and mGluR5-immu-
noreactive neurons are distinguishable in Vo. To date,
although the precise synaptic localization and synaptic
function of mGluR1 and 5 have been widely studied in
various brain regions, including the spinal cord dorsal
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horn [16-21], the functions of group I mGluRs in the reg-
ulation of glutamatergic synaptic transmission in the Vo
[15] have not been studied yet. Hence, we here attempted
to study the functional roles of group I mGluRs in regulat-
ing glutamate release and modulating an o-amino-3-
hydroxy-5-methylisoxazole-4-propionic acid (AMPA)
receptor-mediated synaptic responses by recording spon-
taneous excitatory postsynaptic currents (SEPSCs) and
trigeminal tract (Vt) stimulation-evoked EPSCs from the
Vo neurons in the horizontal brainstem slices. In addi-
tion, we examined signaling pathways responsible for the
group I mGluRs-mediated synaptic regulation.

Results

Increases of sEPSC frequency and amplitude and change
of trigeminal tract-evoked EPSC amplitude by DHPG in Vo
SEPSCs were recorded in Vo neurons (Fig. 1A), voltage-
clamped at -70 mV in the presence of 5 uM bicuculline
methiodide (BMI) and 1-2 puM strychnine to block inhib-
itory synaptic responses (see Methods). The sEPSCs were
predominantly mediated by AMPA receptors because
most of them were disappeared by 10 uM 2,3-dioxo-6-
nitro-1,2,3,4-tetrahydrobenzo [f]quinoxaline-7-sulfona-
mide (NBQX), an AMPA/kainate receptor blocker (Fig.
1B). Bath application of (S)-3,5-dihydroxyphenylglycine
(DHPG; 10 uM, 5 min), a selective group I mGIluR ago-
nist, rapidly and significantly increased both the fre-
quency (230.7 + 42.9% of baseline) and the amplitude
(124.6 + 6.8% of baseline) of SEPSC (n = 13; Fig. 1C; P <
0.01 vs. baseline) at 2.5 min from the start of the applica-
tion. The increased frequency of sEPSC was recovered to
the baseline period (107.1 + 41.9% of baseline at 13-14
min; Fig. 1Cb), whereas the increased amplitude was only
partially recovered (114.3 + 6.0% of baseline at 7-9 min;
Fig. 1Cc), indicating that the DHPG-induced increase of
sEPSC amplitude is long-lasting.

On the other hand, we tested the DHPG on EPSCs evoked
by electrical stimulation of Vt to investigate if DHPG also
affects evoked and synchronized glutamate release from
primary afferent terminals. Apparently, in five out of eight
Vo neurons, the DHPG (10 pM, 5 min) caused a small
decrease of EPSC amplitude during bath application but
an increase of that after washout (Fig. 1Da). The mean
changes of evoked EPSCs were 87.1 + 8.1% of baseline
during DHPG (P > 0.05) and 124.2 + 8.3% of baseline at
3 min after washout (P < 0.05; Fig. 1Db). When mean
paired-pulse ratio (PPR), a change of which designates a
presynaptic source of the modulation of synaptic trans-
mission, was measured in all eight Vo neurons, it was sig-
nificantly increased during DHPG application (0.97 +
0.09; P < 0.05; Fig. 1Dc), compared to that before DHPG
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Increase of sEPSC frequency and amplitude and change of Vt stimulation-evoked EPSC amplitude by bath
application of DHPG in Vo. A diagram (A) demonstrates the recording site of the Vo area within the spinal trigeminal
nucleus and the electrical stimulation site in the Vt. SEPSCs recorded at holding potential of -70 mV in the Vo area were
blocked by 10 tM NBQX (B). Representative sEPSC traces at -70 mV, recorded from Vo neurons with Cs-based internal solu-
tion, before and during DHPG (10 uM, 5 min), the group | mGIuR agonist, and after washout of the drug (Ca). Time-course
graphs demonstrate DHPG-induced increases of sEPSC frequency (Cb) and amplitude (Cc) in Krebs's solution containing 5 uM
BMI and | uM strychnine (n = I3). Each point with error bar represents mean £ SEM. Numbers on the graphs (Cb) indicate the
corresponding time of the traces sampled. Representative EPSCs evoked by two pulses (interval, 50 ms) of Vt stimulation (Da).
During DHPG, the amplitude of the first EPSC was slightly decreased, whereas that of the second EPSC increased (upper
traces), resulting in an increase of paired pulse ratio (PPR, the second/the first EPSC). In traces (Da), the EPSC before DHPG
was normalized to the amplitude of the first EPSCs during DHPG or after washout of DHPG (dotted line, normalized EPSCs).
Histograms summarized the amplitude of the first EPSC (Db) and the PPR (Dc) before, during and after DHPG. The mean
amplitude of EPSC was significantly increased after washout of DHPG, (Db, *P < 0.05, n = 5), whereas the mean PPR was sig-
nificantly increased during DHPG (Dc, *P < 0.05, n = 8).
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(0.79 + 0.08). These results indicate that group I mGIluR
activation also regulates the synchronized glutamate
release from primary afferent terminals.

Mediation of group | mGIuR subtypes in the DHPG-
induced increases of sEPSC frequency and amplitude

To identify which subtype(s) of group I mGluRs is respon-
sible for the DHPG-induced increase of sEPSC frequency
and amplitude, we tested DHPG in the presence of (+)-2-
methyl-4-carboxyphenylglycine (LY367385), a selective
mGIuR1 antagonist, and/or 2-methyl-6-phenylethynyl-
pyridine (MPEP), a selective mGIuR5 antagonist. In the
presence of LY367385 (100 puM), the DHPG-induced
increase of sEPSC frequency was significantly reduced
with a delayed peak at 4.5 min (164.7 + 42.8% of base-
line, n = 5; P < 0.05 vs. Krebs; Fig. 2Ab and 2D), but the
increased amplitude was maintained (130.4 + 15.9% of
baseline; P > 0.05 vs. Krebs, Fig. 2Ac and 2E), compared to
the Krebs condition. Both increases in frequency and
amplitude were recovered to the baseline after washout of
DHPG, indicating a requirement of mGluR1 for the long-
lasting increase of SEPSC amplitude. Likewise, MPEP (10
M) significantly reduced the DHPG-induced increase in
the frequency, but not in the amplitude, of sEPSCs (fre-
quency, 146.5 + 33.9% of the baseline, n = 4, P < 0.05 vs.
Krebs; Fig. 2Bb and 2D). Because individual LY367385
and MPEP partially or minimally inhibited the DHPG
effects on the frequency and the amplitude of sSEPSCs, we
applied DHPG in the presence of both antagonists
together. In this condition, the effects of DHPG on sEPSC
frequency and amplitude were completely blocked (fre-
quency, 102.9 + 9.5% of baseline at 2-4 min, n =5, P <
0.01; Fig. 2Cb and 2D; amplitude, 108.7 + 8.2% of base-
line at 2-4 min, P < 0.05; Fig. 2Cc and 2E). Taken together,
these results indicate that mGluR1 and mGIuR5 additively
contribute to the glutamate release at presynaptic termi-
nals in the Vo, while two subtypes compensate each other
for the potentiation of postsynaptic responses.

Besides the identification of subtypes in the DHPG effects,
we tested DHPG in the presence of 1 pM tetrodotoxin
(TTX), a Na* channel blocker, to address what degree of
action potential-independent glutamate release contrib-
utes to the DHPG-induced facilitation of glutamate
release. In this condition (called miniature EPSC), DHPG-
induced increase of SEPSC was significantly reduced in fre-
quency (123.9 + 10.2% of baseline at 2-4 min, n =4; P <
0.01; Fig. 2D), but not in amplitude (Fig. 2E), compared
to those in the Krebs condition, suggesting that the facili-
tating effect of DHPG on glutamate release was mainly
due to an action potential-dependent mechanism. On the
other hand, a recovery of the increased amplitude of
SsEPSC was observed at 7-9 min in the presence of TTX
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(102.0 + 4.5% of baseline; Fig. 2E), presumably suggest-
ing that a global neuronal excitability induced by the acti-
vation of group I mGluRs is required for the long-lasting
increase of AMPA receptor-mediated synaptic responses.

NMDA receptor-independent DHPG-induced increase of
sEPSC frequency and amplitude

To test if NMDA receptors mediate the DHPG-induced
increases in the frequency and the amplitude of sEPSCs,
DHPG was applied in the presence of 50 uM D-(-)-2-
amino-5-phosphonopentanoic acid (D-AP5). In this con-
dition, the increases of SEPSC frequency and amplitude by
DHPG in the Krebs condition were not affected in the
magnitude (frequency, 219.2 + 45.2% of baseline, Fig. 3A
and 3D; amplitude, 126.6 + 7.0% of baseline; n = 5, Fig.
3E; both, P > 0.05 vs. Krebs). However, the long-lasting
property of the increase of sSEPSC amplitude by DHPG,
shown in the Krebs condition was disappeared in the D-
AP5 condition (98.9 + 6.1% of baseline at 7-9 min; P <
0.01 vs. Krebs, Fig. 3Ac and 3E), indicating that NMDA
receptors did not play a role in the DHPG-induced facili-
tation of glutamate release but in the long-lasting increase
of AMPA receptor-mediated synaptic responses by DHPG.

Involvement of phospholipase C pathway in the DHPG-
induced increase of sEPSC frequency and amplitude
Group I mGluRs activate PLC via Gq/11, resulting in
phosphoinositide hydrolysis, Ca2+ release from IP;-sensi-
tive intracellular stores and PKC activation [16]. There-
fore, the involvements of PLC, IP; receptor and PKC were
tested. The blockade of the PLC with 1-[6-[[(17b)-3-meth-
oxyestra-1,3,5(10)-trien-17-yl|Jamino]hexyl]-1H-pyrrole-
2,5-dione (U73122, 10 puM) significantly reduced the
DHPG-induced increases of SEPSCs in frequency (140.6 =+
12.6% of baseline at 2-4 min, n = 6, P < 0.01 vs. Krebs; Fig.
3B and 3D) and amplitude (97.6 + 2.9% of baseline, n =
6, P < 0.01 vs. Krebs; Fig. 3E). In contrast, the blockade of
the IP; receptor with 2-aminoethoxydiphenylborane (2-
APB, 100 puM) significantly inhibited the DHPG-induced
increase of sEPSC not in frequency (181.9 + 26.0% of
baseline at 2-4 min, n = 6, P > 0.05 vs. Krebs; Fig. 3C and
3D), but in amplitude (101.0 + 3.1% of baseline at 2-4
min, n = 6, P < 0.05 vs. Krebs; Fig. 3B and 3E), indicating
a postsynaptic role of 1P, receptor.

On the other hand, blockade of PKC with 2-[1-(3-dimeth-
ylaminopropyl)indol-3-yl]-3-(indol-3-yl)maleimide

(GF109203X, 1 uM) significantly enhanced the DHPG-
induced increase of sEPSC in frequency (618.0 + 135.1%
of baseline at 2-4 min, n = 7, P = 0.01 vs. Krebs; Fig. 4A
and 4D), but not in amplitude (111.9 + 9.3% of baseline
at 2-4 min, n = 7, P > 0.05 vs. Krebs; Fig. 4A and 4E). To
further investigate which subtype of group I mGluRs is
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Figure 2

Pharmacological characterization of the DHPG-induced increase of sEPSC frequency and amplitude. Repre-
sentative sEPSC traces, recorded from Vo neurons, before and during bath application of 10 pM DHPG (5 min) in the presence
of the selective mGIuR | antagonist LY367385 (100 uM; Aa), the selective mGIuR5 antagonist MPEP (10 uM; Ba), and
LY367385+MPEP (Ca). Time-course graphs demonstrate the DHPG-induced changes of mean frequency (Ab, Bb and Cb) and
amplitude (Ac, Bc and Cb) in LY367385 (n = 5), MPEP (n = 4) and LY367385+MPEP (n = 5). Numbers on the graphs indicate
the corresponding time of the traces sampled. Histograms compare the magnitudes of DHPG-induced increases in sEPSC fre-
quency (D) and amplitude (E) during the application (filled) or the washout (open) of DHPG in the presence of different antag-
onists including TTX (I uM; n = 4), a Na* channel blocker. Asterisks indicate significant differences of DHPG effects, compared
to the effect in the Krebs condition (**P < 0.01; *P < 0.05).
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Effects of D-AP5, U73122 and 2-APB on the DHPG-induced increase of sEPSC frequency and amplitude. Repre-
sentative sEPSC traces recorded from Vo neurons were sampled before and during bath application of 10 pM DHPG (5 min) in
the presence of the NMDA receptor antagonist D-AP5 (50 uM; Aa), the PLC inhibitor U73122 (10 pM; Ba) and the IP; recep-
tor inhibitor 2-APB (100 uM; Ca). Time-course graphs demonstrate the DHPG-induced changes of mean frequency (Ab, Bb
and Cb) and amplitude (Ac, Bc and Cb) in D-AP5 (n = 5), U73122 (n = 6) and 2-APB (n = 6). Numbers on the graphs indicate
the corresponding time of the traces sampled. Histograms compare magnitudes of DHPG-induced increases in sEPSC fre-
quency (D) and amplitude (E) during the application (filled) or the washout (open) of DHPG in the presence of D-AP5 (n = 5),
U73122 (n = 6) and 2-APB (n = 6). Asterisks indicate significant differences of DHPG effects, compared to the effect in the
Krebs condition (**P < 0.01, *P < 0.05).
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involved in the enhancement of the DHPG-induced
increase of sEPSC frequency, we added either LY367385
or MPEP to the solution containing GF109203X. The
addition of LY367385 to GF109203X prevented the
enhancement of DHPG-induced increase of sEPSC fre-
quency (120.6 + 6.0% of baseline, n = 6; P < 0.01 vs.
GF109203X or Krebs; Fig. 4B and 4D) and even more
decreased the DHPG effect on the frequency, compared to
that of LY367385 alone (Fig. 2A and 2D). However, the
addition of MPEP to GF109203X caused only a small
decrease of the enhancement by PKC inhibition (433.9 +
85.2% of baseline, n = 5; P> 0.05 vs. GF109203X, P < 0.05
vs. Krebs; Fig. 4C and 4D). These results indicate that PKC
plays an inhibitory role in the DHPG-induced increase of
glutamate release, and mGluR1 is a main upstream activa-
tor of PKC at presynaptic terminals in Vo. On the other
hand, the increased amplitude of sEPSC amplitude by
DHPG was completely blocked when either LY367385 or
MPEP was added to the GF109203X-containing solution
(respectively, 101.3 + 0.6% and 95.9 + 0.6% of baseline;
Fig. 4B, C and 4E). Together, these results suggest that two
diverging signaling pathways from group I mGluR-acti-
vated PLC differently regulate presynaptic glutamate
release and postsynaptic response at Vo synapses.

Restricted roles of NO pathway in the DHPG-induced
increase of sEPSC amplitude

Activation of mGluR1 augments ¢cGMP accumulation
[12], which is attributable to the sequential events of
nitric oxide synthase (NOS) activation, NO production
and NO-sensitive guanylate cyclase (GC) activation. It has
been established that the activation of NOS is due to an
increased intracellular Ca2+ concentration from the Ca2+
influx through Ca?+ channels and/or Ca2+* release from
IP;-sensitive intracellular stores [22]. Therefore, an
attempt was made to study the NO pathways in the
DHPG-induced increases of sEPSC frequency and ampli-
tude. We blocked the NOS with NG-nitro-L-arginine
methyl ester hydrochloride (L-NAME, 100 puM), scav-
enged NO with 2-(4-carboxyphenyl)-4,4,5,5-tetramethyl-
imidazoline-1-oxyl-3-oxide (PTIO, 10 uM), or blocked
NO-sensitive NO-GC with 1H-[1,2,4]oxadiazolo [4,3-
a]quinoxalin-1-one (ODQ, 10 uM). All three compounds
did not significantly change the magnitude of DHPG-
induced increase of SEPSC frequency at 2-4 min (L-NAME,
192.2 + 19.9% of baseline, n = 5; PTIO, 175.5 + 17.4% of
baseline, n = 6; ODQ, 198.3 + 27.1% of baseline, n = 6; P
> 0.05 vs. Krebs; Fig. 5). However, these compounds had
significant effects on the DHPG-induced increase of
sEPSC amplitude during DHPG application (L-NAME,
97.5 + 7.7% of baseline at 2-4 min, P < 0.05 vs. Krebs, Fig.
5A and 5E; PTIO, 92.6 + 3.7% of baseline at 2-4 min, P <
0.01 vs. Krebs, Fig. 5B and 5E) or after washout of DHPG
(ODQ, 103.5 + 3.2% of baseline at 10 min, P < 0.05 vs.
Krebs, Fig. 5C and 5E), indicating postsynaptic roles of the
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NO pathway in the action of group I mGluRs at Vo syn-
apses.

Involvements of CaMKII and ERK in the DHPG-induced
increase of sEPSC frequency andlor amplitude

The activation of group I mGluRs leads to the activation
of many protein kinases [17], including extracellular sig-
nal-regulated kinase (ERK) in the spinal cord [17,23-26].
In addition, Ca2*-calmodulin-dependent protein kinase II
(CaMKII) can be activated by elevated intracellular cal-
cium as a result of release from intracellular stores and/or
an influx through openings of various Ca2* channels [16].
Therefore, we tested the involvement of CaMKII and ERK
in the DHPG-induced increases in the frequency and the
amplitude of SEPSCs. Blockade of CaMKII with 4-[(2S)-2-
[(5-isoquinolinylsulfonyl)methylamino]-3-oxo-3-(4-
phenyl-1-piperazinyl)propyl] phenyl isoquinolinesul-
fonic acid ester (KN-62, 3.5 uM) significantly reduced the
DHPG-induced increase of sEPSC in frequency (163.2 +
11.9% of baseline at 2-4 min, n =5, P < 0.05 vs. Krebs; Fig.
6A and 6C) and amplitude (102.3 + 1.4% of baseline at 2-
4 min, n =5, P < 0.01 vs. Krebs; Fig. 6A and 6D). On the
other hand, an inhibition of ERK activation by 2-(2-
amino-3-methoxyphenly)-4H-1-benzopyran-4-one
(PD98059, 50 uM), a mitogen-activated protein kinase
kinase (MEK) inhibitor, showed a significant blockade of
the DHPG effect on the amplitude (94.7 + 2.1% of base-
line at 2-4 min, n = 6, P < 0.01 vs. Krebs; Fig. 6B and 6D),
but not on the frequency (253.4 + 60.8% of baseline at 2-
4 min, n = 6, P > 0.05 vs. Krebs; Fig. 6B and 6C), of sEP-
SCs. These results indicate that CaMKII and ERK are
important protein kinases in the regulation of glutamate
release and AMPA receptor-mediated synaptic responses
by DHPG at Vo synapses.

Expression of mGIluR| and mGIuRS5 in the Vo

Following the DHPG effects in Vo that are mediated by
mGluR1 and/or 5, we attempted to identify the receptors
in Vo with immunohistochemical/fluorescent staining
methods. The immunohistochemical staining demon-
strated distinct immunoreactive cells sporadically in Vo
region for mGluR1 (Fig. 7A), but weak diffuse immunore-
activities for mGluR5 (Fig. 7B). Similarly, the immunoflu-
orescent staining confirmed the distinct cell body-like
immunoreactivities for mGluR1 (Fig. 7C) and the diffuse
immunoreactivities for mGluR5 (Fig. 7D), indicating
potential expressions of mGluR1 in cell bodies and
mGluR5 at axon terminals in Vo.

Discussion

The present study demonstrated that the bath application
of DHPG markedly increased the frequency of sEPSCs
recorded in Vo neurons, consequently indicating a facili-
tation of glutamate release by the activation of group I
mGluRs from presynaptic terminals. Even though inhibi-
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Figure 4

Effects of GF109203X alone and with LY367385 or MPEP on the DHPG-induced increases of sEPSC frequency
and amplitude. Representative sEPSC traces before and during bath application of 10 uM DHPG (5 min) in the presence of
the PKC inhibitor GF109203X (I 1M) alone (Aa) and with LY367385 (50 uM; Ba) or MPEP (10 uM; Ca). Time-course graphs
demonstrate the DHPG-induced changes of mean frequency (Ab, Bb and Cb) and amplitude (Ac, Bc and Cb) in GF109203X (n
=7), GF109203X + LY367385 (n = 6) and GF109203X + MPEP (n = 5). Numbers on the graphs indicate the corresponding
time of the traces sampled. Histograms compare magnitudes of DHPG-induced increases in sEPSC frequency (D) and ampli-
tude (E) during the application (filled) or the washout (open) of DHPG in the presence of GF109203X (n = 7), GF109203X +
LY367385 (n = 6) and GF109203X + MPEP (n = 5). Asterisks indicate significant differences of DHPG effects between two con-
ditions indicated by lines (**P < 0.01; *P < 0.05).
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Figure 5

Effects of L-NAME, PTIO and ODQ on the DHPG-induced increases of sEPSC frequency and amplitude. Repre-
sentative sEPSC traces before and during bath application of 10 utM DHPG (5 min) in the presence of the NOS inhibitor L-
NAME (100 uM; Aa), the NO scavenger PTIO (10 uM; Ba) and the NO-sensitive guanylate cyclase inhibitor ODQ (10 uM; Ca).
Time-course graphs demonstrate the DHPG-induced changes of mean frequency (Ab, Bb and Cb) and amplitude (Ac, Bc and
Cb) in L-NAME (n = 5), PTIO (n = 6) and ODQ (n = 6). Numbers on the graphs indicate the corresponding time of the traces
sampled. Histograms compare magnitudes of DHPG-induced increases in sEPSC frequency (D) and amplitude (E) during the
application (filled) or the washout (open) of DHPG in the presence of L-NAME (n = 5), PTIO (n = 6) or ODQ (n = 6). Asterisks
indicate significant differences of DHPG effects, compared to the effect in the Krebs condition (**P < 0.01; *P < 0.05).
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Figure 6

Effects of KN-62 and PD98059 on the DHPG-induced increases of sEPSC frequency and amplitude. Representa-
tive sEPSC traces before and during bath application of 10 uM DHPG (5 min) in the presence of the CaMKII inhibitor KN-62
(3.5 uM; Aa) and the MEK inhibitor PD98059 (50 uM; Ba). Time-course graphs demonstrate the DHPG-induced changes of
mean frequency (Ab, Bb and Cb) and amplitude (Ac, Bc and Cb) in KN-62 (n = 5) and PD98059 (n = 6). Numbers on the
graphs indicate the corresponding time of the traces sampled. Histograms compare magnitudes of DHPG-induced increases in
sEPSC frequency (D) and amplitude (E) during the application (filled) or the washout (open) of DHPG in the presence of KN-62
(n =5) or PD98059 (n = 6). Asterisks indicate significant differences of DHPG effects, compared to the effect in the Krebs con-
dition (**P < 0.01; *P < 0.05).

Page 10 of 15

(page number not for citation purposes)



Molecular Pain 2009, 5:50

tory effects of group I mGluRs on glutamate release have
been widely discovered in the various brain regions [16],
including the hippocampus [27] and the spinal cord [28],
there have been few studies reporting the facilitating
effects [16,29]. Therefore, the present study provides a
new example of the facilitating effect of group I mGluRs
on glutamate release in the CNS. Although the sources of
glutamate were not clear since SEPSCs recorded from the
Vo are mainly occurred by spontaneous unsynchronized
glutamate release from terminals of other brainstem neu-
rons, local Vo interneurons or trigeminal ganglion neu-
rons, we found partial but significant mediation of
mGluR1 or mGluR5 for the presynaptic facilitating effect
of DHPG. In addition, the DHPG-induced facilitating
effect was not dependent on the activation of NMDA
receptors but voltage-dependent Na+ channels and CaM-
KII. The dependence of voltage-dependent Na+ channels
indicates that an action potential-dependent mechanism
for glutamate release is for the most part responsible for
the DHPG-induced facilitating effect. Further, the interest-
ing finding shown in the present study is that PLC and
CaMKII mediate the facilitating effect of DHPG on the
SsEPSC frequency, whereas PKC negatively mediates it
because its inhibition markedly enhances the facilitating
effect of DHPG. The enhancement of DHPG effect caused
by PKC inhibition involves mGluR1, rather than mGluR5.
Our data together reveal that spontaneous glutamate
release in Vo is strongly regulated by activation of group I
mGluRs depending on activated signal transduction path-
ways.

AMPA receptors, iGluRs, consist of heteromeric assem-
blies of four different subunits GluR1-4, and mediate fast
excitatory synaptic transmission at glutamatergic synapses
in the CNS [30]. Diverse electrophysiological studies have
indicated that the AMPA receptors are modulated by acti-
vation of group I mGluRs [16]. Group I mGluRs-mediated
modulation of AMPA receptors includes both potentia-
tion and depression, and is achieved by various intracellu-
lar signal transduction molecules downstream to group 1
mGluRs [12,31]. In this study, we demonstrated that
DHPG-induced long-lasting potentiation of AMPA recep-
tors-mediated sEPSC amplitude was completely blocked
only when both mGluR1 and mGIuR5 were blocked, indi-
cating that a single subtype of group I mGluR is enough
for the postsynaptic potentiating effect. These results has
been demonstrated in the spinal dorsal horn neurons
[29], and are comparable with earlier studies showing
potentiaiton of AMPA, an agonist of AMPA receptors, -
induced responses by group I mGIluR activation [32-35].
Interestingly, albeit the potentiation during DHPG appli-
cation was not dependent on NMDA receptors and PKC
but on PLC, IP; receptors, NOS, CaMKII and ERK, the
long-lasting property of the potentiation was disappeared
by the blockades of NMDA receptors, as well as individual
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antagonists used to block signal transduction pathways.
This result indicates that the long-lasting potentiation
requires a full set of signal transduction molecules
recruited after the activation of group I mGluRs.

Although the synaptic localization of mGluR1 and
mGIluR5 has been known in the spinal cord dorsal horn
[20,21], it has not been clearly demonstrated in the Vo.
Compelling anatomical and electrophysiological studies
have indicated the presence of mGluR1 and mGIuR5 in
the neuropil of all the trigeminal nuclei [15]. In the
present study, the immunohistochemical data demon-
strate cell body-like immunostaining of mGluR1 and dif-
fuse staining of mGIuR5 in the Vo area. In addition, the
electrophysiological data put forward the expression of
both subtypes on postsynaptic membrane and at presyn-
aptic terminals in the Vo area, respectively, because of no
significant blockade of sSEPSC amplitude and significant
but partial inhibition of the DHPG-induced increase of
SEPSC frequency by either LY367385 or MPEP. On the
other hand, a previous western blot analysis revealed the
abundant expression of mGIuR5 in the trigeminal gan-
glion but almost no expression of mGluR1, suggesting
that the subtype of group I mGIuR expressing at central
terminals of trigeminal primary afferents in the Vo is
exclusively mGIluR5 [36]. Therefore, the DHPG-induced
increase of sEPSC frequency, found in the present study, is
probably originated from the activation of both mGluR1
and mGIluR5 at terminals of other brainstem neurons or
local Vo neurons, as well as the activation of mGluR5 at
trigeminal afferent terminals in Vo [36]. This interpreta-
tion was also supported by the result that MPEP even
more effectively inhibited the DHPG effect on sEPSC fre-
quency (Fig. 2D). Accordingly, mGluR5 possibly mediates
the regulatory effect of DHPG on the synchronized gluta-
mate release from central trigeminal primary afferents,
although the effect of MPEP on the DHPG-induced
increase of PPR has not been tested in the present study.

Although other signaling molecules or channels, which
were not studied here, may be involved in the DHPG
effects [16], some signal transduction pathways relating to
synaptic regulation by mGluR1 and mGluR5 are sequen-
tially represented in the present study. Particularly, the
present study demonstrates CaMKII as a positive regulator
and PKC as a negative regulator in the presynaptic termi-
nals of Vo region. Because PKC inhibition caused
enhancement of the DHPG-induced facilitation of gluta-
mate release, it could be postulated that the activation of
PKC might render feedback inhibition to the group I
mGluR activation by certain mechanisms, for instance, a
desensitization [17,37-39] which terminates further acti-
vation of mGluR1 and/or 5 and thereby prevents the facil-
itation of glutamate release. In the postsynaptic dendritic
spine, the activation of both mGIluR1 and mGIuR5 ele-
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Rostral

Figure 7

Immunoreactivities of mGIuRIl and 5 in Vo region.
Immunoperoxidase (A and B) and immunofluorescent (C and
D) staining of mGluR| (A and C) and mGIuR5 (B and D) in
Vo region of spinal trigeminal nucleus. Some arrow heads (A
and C) designate cell body staining. The fluorescent images
(C and D) are acquired from the same section with different
filters. Scale bars equal 100 um. Negative controls for the flu-
orescent images are shown (E and F). The arrows in images
indicate the rostral direction.

vates intracellular Ca?+ concentration that is due to the
IP;-mediated intracellular Ca2* release [40], which may
lead to the activation of the Ca2+-sensitive enzyme NOS
[22] and CaMKI], via the binding with Ca2+-bound pro-
tein calmodulin, and then the positive modulation of
AMPA receptor channels. The activation of NOS can acti-
vate NO-sensitive GC, converting GTP to cGMP [41]. The
cGMP may play a role in the long-lasting increase of
AMPA receptor-mediated synaptic responses (Fig. 5E). On
the other hand, in the postsynaptic dendritic spine, ERK
may be activated by Gy or Homer proteins [42], rather
than a calcium-dependent manner, potentiating channel
function of AMPA receptors responded to glutamate.

Previous studies have indicated significant roles of Vo
brainstem area in the processing and the integration of
somatosensory signals, including nociception [8,43-45].
It has been known that the Vo area contains convergent
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Vo neurons [46], the neurons also called wide-dynamic
range neurons and responded to both non-noxious and
noxious stimuli. The convergent Vo neurons are likely to
be processors of somatosensory signals as well as media-
tors of wind-up phenomenon [47]. In addition to the con-
vergent Vo neurons, neurons projecting their axons to the
diencephalons have been found in Vo [9,10]. The dien-
cephalic projections of Vo neurons were contralaterally or
bilaterally reached to the various subnuclei of thalamus,
such as ventral posteromedial nucleus and posterior tha-
lamic nuclei, which involve the transmission of pain
information into the higher brain areas. Therefore, the
modulation of orofacial nociceptive signals in the Vo has
functional significance in these contexts. In this study, we
demonstrated the modulation of glutamate release and
synaptic responses by the group I mGIuR activation in the
Vo. The modulation by group I mGluRs has been demon-
strated in the central pain modulation area, such as the
spinal cord dorsal horn. The activation of group I mGluR
in the spinal cord dorsal horn induced long-lasting poten-
tiation of the polysynaptic response [18] and, to the con-
trary, long-lasting depression of the monosynaptic
response [18,19]. These studies in vitro have been corre-
lated with other studies in vivo demonstrating group I
mGluRs-mediated nociceptive sensitization
[23,24,48,49]. Thus, our present finding, i.e., group I
mGluRs-mediated augmentation of synaptic inputs into
the Vo neurons, may support the notion that the amplifi-
cation of somatosensory signals from the periphery by
central pain transmission neurons underlies persistent
pain [50].

In summary, we provided strong evidences that the activa-
tion of group I mGIluR subtypes, mGluR1 and mGluR5,
and their signal transduction pathways, differentially reg-
ulates glutamate release and AMPA receptor-mediated
synaptic responses in the Vo region. These data will con-
tribute to our understanding regarding the mode of the
group I mGluR action adjusting brain functions such as
orofacial normal sensation and pain.

Materials and methods

Experiments were approved by Institutional Animal Care
and Use Committee of Kyungpook National University,
and were carried out in accordance with the National
Institute of Health guidelines for the Care and Use of Lab-
oratory Animals.

Preparation of horizontal brain stem slices

Horizontal brainstem slices (400-450 um) were prepared
from 6-14 day-old Sprague-Dawley rats of either sex as
described previously [51]. Under deep urethane anaesthe-
sia (1.5 g/kg, i.p.), the brain and part of the cervical spinal
cord were removed after decapitation, and then immedi-
ately transferred into an ice-cold Krebs' solution (compo-
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sition in mM: NaCl 117, KClI 3.6, CaCl, 2.5, MgCl, 1.2,
NaH,PO, 1.2, NaHCO; 25, and glucose 11; pre-oxygen-
ated with a mixture of 95% O, and 5% CO,; pH 7.4;
CaCl, was substituted with MgCl, in case of the Ca2+-free
medium). In the pre-oxygenated ice-cold Krebs' solution,
other brain parts except for the brainstem were elimi-
nated. The brainstem was glued upside down on the flat
top of a hard mounting cube block that was prefixed to
the bottom of a slice chamber. Then, horizontal slices
were cut using a Vibratome 1000+ (Vibratome, St. Louis,
MO, USA). Typically, the first cut of the ventral part of the
brainstem was discarded, and two horizontal brainstem
slices were obtained. The slices prepared were transferred
into a fresh oxygenated Krebs' solution at room tempera-
ture, and incubated at least an hour for an incubation that
may wash hazardous molecules that occurred during the
preparation processes. Either the right or the left side of
the slice was moved to a recording chamber, and sub-
merged and fixed with nylon strands drawn taut across a
C-shaped sliver wire (~0.5 mm o.d.).

Blind whole-cell voltage-clamp recordings

Blind whole-cell recordings with patch pipettes (borosili-
cate glass, TW150F; WPI, Sarasota, FL, USA) were made
from Vo neurons. When viewed under a microscope
(BX51WI, Olympus, Tokyo, Japan) with transmitted illu-
mination (40x), the caudal border of the Vo area was dis-
tinguishable with the Vi area although it was difficult to
discern with the rostral border of the Vo area [51,52].
Under visual guidance, the tip of the patch pipette was
positioned in the Vo area above the caudal border with
the Vi. The resistance of patch pipettes was typically 8-12
MQ when filled with Cs-based (composition in mM:
Cs,S0, 110, CaCl, 0.5, MgCl, 2, EGTA 5, HEPES 5, TEA
chloride 5, ATP-Mg salt 5; Figs. 1, 2 and 3) or K-based
(composition in mM: 145 K-gluconate, 5 NaCl, 1 MgCl,,
0.2 EGTA, 10 HEPES, 2 Mg-ATP, and 0.1 Na;-GTP; Figs. 3,
4, 5, 6 and 7) internal solutions (pH 7.2).

All recordings were made under a continuous perfusion of
the preoxygenated Krebs' solution (2-3 ml/min), the same
as the slice preparation solution, at room temperature
(23-25°C). BMI (5 uM) and strychnine (1-2 uM) were
always added to all the recordings to block inhibitory syn-
aptic responses mediated by y-aminobutyric acid type A
(GABA,) and glycine receptors, respectively. After whole-
cell formation was identified by appearance of the capac-
itance transients upon voltage pulses (-5 mV), sEPSCs
were recorded at a holding potential of -70 mV. In this
recording condition, sEPSCs were completely blocked by
10 uM NBQX or 6-cyano-7-nitroquinoxaline-2,3-dione
(CNQX), AMPA/kainate receptor antagonists (Fig. 1B),
indicating that the synaptic responses are mediated by the
AMPA/kainate receptors. In addition, EPSCs were evoked
in Vo neurons by two electrical stimuli (spaced at 50 ms)
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of Vt, and analyzed in their amplitudes and in PPRs. PPR
was calculated by dividing the second EPSC by the first
EPSC in amplitude. Recordings were amplified with a
Multiclamp 700A amplifier (MDS Inc., Toronto, Canada),
and sampled at 5-10 KHz and filtered at 1-2 KHz. Series
resistances are occasionally monitored in the beginning,
throughout and at the end of experiments. The recordings
were terminated or discarded if series resistance (about 8-
20 MQ) changed by more than 20%. Data acquisition was
performed using pClamp software (version 10; MDS Inc.,
Toronto, Canada). After a stable baseline recording for 5-
10 min, DHPG (10 uM), known as a selective group I
mGluR agonist, was bath-applied for 5 min. Antagonists
were added to the perfusing and also the DHPG-contain-
ing Krebs' solutions. Frequencies and amplitudes of
sEPSC before and after bath-application of DHPG were
analyzed using a template-matching method (Clampfit of
pClamp software) followed by cut-oft filtering of ampli-
tude threshold (typically 2 - 3 pA). The analyzed data were
represented as mean + SEM (%) of the baseline (before
DHPG) over time (bin, 30 sec). Statistical comparisons
were made using Student's t-test. Statistical significance, P
<0.050rP<0.01.

Immunohistochemical staining

Similar aged rats used in whole-cell recordings were per-
fused with 4% paraformaldehyde in 0.1 M phosphate
buffered saline (PBS; pH 7.4), and their brainstems were
collected. The brainstems were post-fixed overnight at
4°C, and cryoprotected overnight in 30% sucrose solu-
tion (in 0.1 M PBS) at 4°C. Cryostat sections (40 pm)
were made in a similar way as the horizontal brainstem
slice preparation for whole-cell recordings (see above). For
3,3'-diaminobenzidine (DAB) development, sections
were incubated overnight at 4 °C with either goat polyclo-
nal anti-mGluR1a/b (1:50; sc-47131, Santa Cruz Inc,,
Santa Cruz, CA, USA) or rabbit polyclonal anti-mGIluR5
(1:50; 06-451, Upstate, Lake Placid, NY, USA) as primary
antibodies, followed by anti-goat IgG for 1 hr or anti-rab-
bit IgG for 2 hrs, respectively. Nuclei were stained with
methyl green. For fluorescent staining, sections were incu-
bated with anti-goat IgG-FITC for 2 hrs and anti-rabbit
IgG-Cy3 for 2 hrs after incubating at room temperature
with both primary antibodies (1:200 for both). The pri-
mary antibodies were not incubated in case of negative
controls. Nuclei were stained with 4',6'-diamidino-2-phe-
nylindole (DAPI) (data not shown).

Chemicals

Drugs were dissolved as a stock in distilled water or
dimethylsulfoxide (DMSO), and diluted more than 1000
times to the final concentrations in the oxygenated Krebs'
solution. Drugs and their sources were as follows: 2-APB,
D-AP5, BMI, CNQX, DHPG, LY367385, MPEP,
GF109203X, KN-62, L-NAME, PD98059, PTIO, ODQ,
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strychnine and U73122 from Tocris Cookson (Ellisville,
MO, USA); TTX from Sigma (St. Louis, MO, USA).
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