
BioMed CentralMolecular Pain

ss
Open AcceResearch
Morphine modulation of pain processing in medial and lateral pain 
pathways
Jin-Yan Wang†1, Jin Huang†2, Jing-Yu Chang3, Donald J Woodward3 and 
Fei Luo*1

Address: 1Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Science, Beijing, China, 2Neuroscience Research Institute, 
Peking University, Beijing, China and 3Neuroscience Research Institute of North Carolina, Winston-Salem, NC, USA

Email: Jin-Yan Wang - wangjy@psych.ac.cn; Jin Huang - huangjinbmu@sohu.com; Jing-Yu Chang - jchang@neurosciencenc.org; 
Donald J Woodward - dwoodward@NeuroscienceNC.org; Fei Luo* - luof@psych.ac.cn

* Corresponding author    †Equal contributors

Abstract
Background: Despite the wide-spread use of morphine and related opioid agonists in clinic and
their powerful analgesic effects, our understanding of the neural mechanisms underlying opioid
analgesia at supraspinal levels is quite limited. The present study was designed to investigate the
modulative effect of morphine on nociceptive processing in the medial and lateral pain pathways
using a multiple single-unit recording technique. Pain evoked neuronal activities were
simultaneously recorded from the primary somatosensory cortex (SI), ventral posterolateral
thalamus (VPL), anterior cingulate cortex (ACC), and medial dorsal thalamus (MD) with eight-wire
microelectrode arrays in awake rats.

Results: The results showed that the noxious heat evoked responses of single neurons in all of the
four areas were depressed after systemic injection of 5 mg/kg morphine. The depressive effects of
morphine included (i) decreasing the neuronal response magnitude; (ii) reducing the fraction of
responding neurons, and (iii) shortening the response duration. In addition, the capability of cortical
and thalamic neural ensembles to discriminate noxious from innocuous stimuli was decreased by
morphine within both pain pathways. Meanwhile, morphine suppressed the pain-evoked changes in
the information flow from medial to lateral pathway and from cortex to thalamus. These effects
were completely blocked by pre-treatment with the opiate receptor antagonist naloxone.

Conclusion: These results suggest that morphine exerts analgesic effects through suppressing
both sensory and affective dimensions of pain.

Background
It has been proven that systemic morphine can produce
marked clinical pain relief [1,2]. Considerable advances
have been made in the understanding of antinociceptive
mechanisms at the peripheral and spinal levels [3,4],
whereas supraspinal mechanisms are less explored. The

existing data proposed that many supraspinal brain
regions are involved in mediating morphine analgesia.
Neuroanatomical studies have identified that several dis-
tinct opioid receptors are widely distributed throughout
the central nervous system with particularly high density
in limbic structures, thalamic nuclei and cerebral cortex
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[5-7]. Positron emission tomography (PET) studies
detected the presence of endogenous opioid release and
the changes of opioid receptor occupancy in cortex and
thalamus during the experience of acute experimental and
sustained clinical pain [8,9]. Systemic administration of
opiate receptor agonists morphine or fentanyl is able to
attenuate the pain-evoked responses in many supraspinal
areas, such as thalamus, primary and secondary somato-
sensory cortex [10,11]. In the present study, we attempted
to evaluate the effect of morphine on pain-evoked
responses of single and ensemble cortical and thalamic
neurons and on the functional interactions between corti-
cal and thalamic areas in conscious behaving rats.

Another unsettled question about morphine analgesia is
which dimensions of pain experience are most affected by
opioids. It is well-known that pain is a complex experi-
ence encompassing multiple dimensions and processed
by parallel ascending systems [12,13]. The 'lateral pain
system' including the lateral thalamic nuclei and the som-
atosensory cortex is considered to be involved in analyz-
ing the location, intensity and duration of the nociceptive
stimulus, while 'the medial pain system' including the
medial thalamic nuclei and the anterior cingulate cortex is
associated with the unpleasant character of pain percep-
tion. Early work supported that opioid receptor agonists
reduced affective-motivational dimension much more
than sensory-discriminative dimension of pain [14,15].
The primary somatosensory cortex (SI) is usually consid-
ered to have the lowest opioid receptor densities and the
medial pain system has a high opioid receptor density
[6,16]. Nonetheless, some other studies found that opi-
ates could reduce both sensory and affective ratings of the
pain experience [17]. High opiate receptor binding poten-
tial has been found in the human lateral pain system,
including frontoparietal operculum and insula [18]. Thus,
the roles of medial and lateral pain systems in mediating
morphine analgesia remain controversial. The second aim
of the present study was to investigate how systemic mor-
phine influences the neural activity in sensory and affec-
tive pain pathways.

Results
Behavioural responses
Heat stimulation elicited apparent paw withdrawal
behavior (3.49 ± 0.08 s, 3.42 ± 0.08 s, and 3.49 ± 0.09 s
for the baselines of NS, morphine, and morphine plus
naloxone sessions, respectively; see Fig. 1). The two-way
ANOVA revealed significant session × treatment interac-
tive effect (F (2, 17) = 31.87, P < 0.0001). Post-hoc analy-
sis showed that pre-treatment with morphine produced
significantly longer withdrawal latency (5.15 ± 0.24 s)
than that of any other session (Bonferroni post tests, P <
0.001). The effect of morphine was prevented by

naloxone pretreatment prior to morphine administration.
Rats treated with saline caused no change in pain thresh-
olds compared to the baseline level.

General neuronal responses
A total of 218 units were recorded during the morphine
session (62 SI, 53 VPL, 42 ACC and 61 MD). All of these
neurons were spontaneously active and the mean firing
rates of SI, VPL, ACC and MD neurons were 4.15 ± 0.46,
2.53 ± 0.25, 2.74 ± 0.27, and 2.16 ± 0.25 spikes/s (mean
± S.E.), respectively. The majority of these neurons exhib-
ited excitatory responses to noxious heat stimulation
(Table 1). The pain-related neural activities within each
area are shown in Fig. 2. The general response characteris-
tics of SI, VPL, ACC and MD neurons are consistent with
what we described before [19].

Effects of morphine on response properties of single 
neurons evoked by noxious stimuli
The intraperitoneal injection of morphine induced a glo-
bal depression of the pain-related responses in SI, VPL,
ACC and MD (Figs. 2 and 3), as compared with the NS
session. Fig. 2 shows an example of morphine's effect with
and without pretreatment of systemic naloxone (4 mg/kg)
on neuronal responses within each region. As can be seen

Effect of morphine pretreatment on the thermal pain thresh-olds in ratsFigure 1
Effect of morphine pretreatment on the thermal 
pain thresholds in rats. Noxious radiant heat was used as 
painful stimulation, which was randomly applied to the 
plantar surface of the rats' hindpaws. Baseline paw with-
drawal latency was measured. Morphine (5 mg/kg) or equiva-
lent volume of NS (n = 8) was injected intraperitoneally and 
pain-related activities were recorded 10 min later. For NAL 
+ MOR treatment, rats were pre-treated with 4 mg/kg 
naloxone 10 min prior to administration of morphine (n = 4). 
The ANOVA revealed that pre-treatment with morphine 
produced significantly longer withdrawal latency than that of 
any other session (P < 0.001). The effect of morphine was 
antagonized by naloxone pretreatment prior to morphine 
administration. NAL: naloxone; MOR: morphine; NS: normal 
saline.
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in Fig. 2A, noxious stimulation alone evoked significant
activation of thalamic and cortical neurons. Following
morphine administration, the noxious heat induced
responses were remarkably suppressed. These effects were
always reversed by naloxone pretreatment (Fig. 2B). Injec-
tion of normal saline did not cause a change in the mag-
nitude of pain-related response within all recorded areas
(Fig. 2C). The mean pain-related responses of SI, VPL,
ACC and MD neurons before and after administration of
morphine are illustrated in Fig. 3. Comparison indicated
that morphine significantly attenuated the neural
response magnitude in all of the four areas.

Cluster analysis revealed that the recorded cortical and
thalamic areas contain units with several different tempo-
ral coding patterns for the noxious radiant heat (Fig. 4A).
Except for 7 neurons with inhibitory activities and 68 neu-
rons without obvious responses (C4 and C5, respec-
tively), the neurons with excitatory responses were
classified as three categories according to the responding
duration: long- (20-30 sec, C1), medium- (10-15 sec, C2)
and short-response neurons (<10 sec, C3). Twenty-seven
percent (58/218) units displayed long-duration
responses, whereas 16% (35/218) had medium
responses, and 23% (50/218) exhibited short responses.
All of the three types of excitatory responses were short-
ened by systemic injection of morphine (Fig. 4B). The
majority of the activation lasted no longer than 5 sec after
morphine administration.

In addition, morphine suppressed the activation by reduc-
ing the fraction of responding neurons. The percentage of
responsive neurons in each recording area before and after
injection of morphine or NS is illustrated in Table 2. There
is a significant reduction in proportion of responsive neu-
rons in the recorded cortical and thalamic areas after mor-
phine injection. The change in percentage of responding
neurons in SI, VPL, ACC and MD over time is shown in
Fig. 5.

Effects of morphine on response properties of neural 
ensembles evoked by noxious stimuli
Effects of morphine on discriminant performance of neural 
ensembles
The capability of neural ensembles in each brain area to
discriminate noxious, sham and no stimulation before

and after morphine injection is illustrated in Fig. 6. For SI
and VPL, the cluster standing for noxious heat stimulation
trials is well separated from the clusters standing for sham
and no stimulation trials (Fig. 6A). Similarly, neurons in
ACC and MD could also discriminate different sensory
modalities although the discriminant capability was not
as good as that of SI and VPL, demonstrated by the fact
that the three clusters overlapped to a more extent than SI
and VPL. This implies that neurons in the thalamocortical
pathways could differentiate noxious stimulation from
sham and no stimulation without pre-treatment of mor-
phine. Interestingly, the three clusters are mixed up after
morphine injection (Fig. 6B), suggesting that morphine
could attenuate the ability of thalamic and cortical neu-
rons to discriminate noxious from non-noxious stimuli.
The correct discriminant percentage of neural ensembles
in each recorded area was calculated and shown in Fig. 7.
The ability of neurons in SI, VPL, ACC and MD to discrim-
inate pain from non-pain stimuli after morphine injection
was significantly decreased as compared to pre-injection
data.

Change of information flow pattern by morphine
The amount and direction of information flow among
four recorded regions under different experimental condi-
tions were determined using PDC analysis. The results of
PDC analysis between each pair of brain areas from 8 rats
are illustrated in Fig. 8. Before morphine injection, the
amount of directed coherence from medial to lateral path-
way significantly increased with 0.5 sec latency (Fig. 8A).
The increases of the information flow lasted for at least 10
sec. By contrast, no significant change was observed in the
PDC following morphine administration (Fig. 8B). The
averaged PDC changes across all frequencies are shown in
Fig. 9. As can be seen, the information flow in each direc-
tion was very sensitive to morphine treatment (Fig. 9A).
After a single dose of morphine, only a small amount of
directed coherence from medial to lateral pathway was
detected. In the control session, no significant changes in
the PDC values were observed after NS injection (Fig. 9B).

Histological localization of recording sites
Recording sites were localized by a potassium ferricyanide
staining method to reveal the iron deposited at the tips of
selected microwires. In the cingulate cortex, most of the
iron deposits were found in the anterior areas except that

Table 1: Summary of percent of responding units according to response type

ACC MD SI VPL

Total number of neurons 42 61 62 53
Excitatory 20 (47.6%) 27 (44.3%) 48 (77.4%) 50 (94%)
Inhibitory 1 (2.4%) 2 (3.3%) 3 (4.8%) 0
Sum 21 (50%) 29 (47.5%) 51 (82.3%) 50 (94%)
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Changes of neuronal response magnitude following morphine (A), NAL + MOR (B) or NS (C) treatmentFigure 2
Changes of neuronal response magnitude following morphine (A), NAL + MOR (B) or NS (C) treatment. 
Raster and perievent histograms show the noxious induced responses in the four recorded areas. Figures in the top two rows 
in each panel illustrate typical excitatory responses before and after drug administration in each brain regions. Figures in the 
bottom row show the results of comparison of the pain-evoked neural activities before (black lines) and after (gray lines) mor-
phine, NAL + MOR or NS administration. The trapezoid markers along the x-axis indicate the statistically significant difference 
between two sessions (Student's t-test, P < 0.01). Time = 0 on the axis corresponds to the time of noxious stimulation start. 
Note that a single dose of 5 mg/kg morphine significantly reduced the noxious heat induced activation in all the recorded areas 
(A), which can be reversed by naloxone pretreatment (B). No change was observed after NS injection (C). NAL: naloxone; 
MOR: morphine; NS: normal saline.
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in two rats the iron recording tips deflected from the target
area. In the somatosensory cortex, most of the recording
tips were in the hind limb region. In the thalamic nuclei,
tips were mainly found in the mediodorsal and ventro-
posterior parts except that a VPL electrode did not reach
the target depth. Electrophysiological data from elec-
trodes that missed the targets were excluded from the
analysis.

Discussion
The present study investigated the morphine modulation
of nociceptive processing in the rat medial and lateral
pain pathways. The data demonstrates that: (i) at single-
unit level, the increased neuronal activities in ACC, MD,
SI, and VPL to noxious stimulation were significantly
depressed by morphine. The depressive effects included
the decrease in the neuronal response magnitude, the
reduction in the fraction of responsive neurons, and the
shortening of the response duration; (ii) at neural ensem-
ble level, the cortical and thalamic capability discriminat-
ing pain from non-pain stimuli was decreased by

morphine within both medial and lateral pathways.
Meanwhile, morphine suppressed the pain-evoked
changes in the information flow from medial to lateral
pathway and from cortex to thalamus. These effects may
be directly attributable to opioid receptors because they
were reversed by naloxone.

Pain is an unpleasant sensory and emotional experience.
Several lines of evidence suggest that the sensory and
affective components of pain are mediated by separate
neural pathways [13,20]. Morphine can activate opioid
receptors and produce a strong analgesic effect. Numerous
clinical and psychological data support that morphine
profoundly reduces the emotional reaction of pain per-
ception [14,15]. Clinical research has shown that after
morphine administration, "patients frequently report that
the pain is still present but that they feel more comforta-
ble" [21]. LaGraize et al. (2006) [22] reported that both
systemic administration and microinjection of morphine
into the ACC produced a decrease in the aversiveness of
noxious cutaneous stimulation in nerve-damaged ani-
mals, with no alteration of response to mechanical stimu-
lation. Using the conditioned place aversion (CPA)
paradigm, known to be a model for evaluating the affec-
tive component of pain in rats [23], van der Kam et al.
(2008) [24] has reported that low doses of morphine are
able to yield a therapeutic effect on carrageenan-induced

Comparison of neuronal response magnitude before and after the administration of morphineFigure 3
Comparison of neuronal response magnitude before 
and after the administration of morphine. Neuronal 
responses to noxious stimulation were evaluated using a slid-
ing window technique, in which a 1-s time window was slid 
through the entire period of a trial at 1-bin step. The bin 
counts of each window were compared with those of a base-
line window by Student's t-test. Only a change of firing rates 
from the baseline exceeds the limit of P < 0.01 for at least 
three consecutive windows were taken as a response. The 'P 
values' were then converted into the information theory 
concept surprise by performing logarithmic transformation, 
i.e., -ln P. The surprise values were also compared using the 
sliding window method (1-s time window, 0.1-s step, P < 0.01 
for three consecutive windows). Significant differences (trap-
ezoid markers along the x-axis) between the response magni-
tude before (solid lines) and after (dashed lines) morphine 
administration were observed in all of the recorded areas.

Cluster plot depicted changes of the temporal distribution patterns of neural activity before (A) and after morphine administration (B)Figure 4
Cluster plot depicted changes of the temporal distri-
bution patterns of neural activity before (A) and after 
morphine administration (B). A clustering analysis was 
performed to classify neuronal responses depending on the 
similarities in patterns of excitation or inhibition around 
stimulation events. The firing rates were transferred into z-
scores and neurons with z-scores > 2 were accepted as sig-
nificantly excited and < -2 as significantly inhibited. Colorbar 
indicates z-scores (light yellow for highest and light blue for 
lowest). Each line of the image represents normalized activity 
of one neuron. C1-C5 represent different categories accord-
ing to the response patten. The cluster analysis revealed that 
the cortical and thalamic areas contain units with five clusters 
of coding patterns in response to the noxious radiant heat 
(A). All of the excitatory responses were weakened by sys-
temic injection of morphine (B).
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inflammatory pain by preferentially reducing the affective
component.

The present study simultaneously recorded many single
units in the emotional pathways (ACC and MD thalamus)
in rats under the condition of acute thermal pain, instead
of employing a CPA model to specifically asses the emo-

tion-related behavior. The results showed that the pain-
related activation in ACC and MD was abrogated by mor-
phine administration with a dose known to reduce nocic-
eptive behavioral responses (5 mg/kg) in the rat,
indicating that the medial pain system has a role in medi-
ating morphine analgesia. ACC and MD are suggested to
have particular importance in the mediation of pain emo-

Comparison of percentage of neurons responding to noxious stimulation before (solid lines) and after (dashed lines) morphine or NS deliveryFigure 5
Comparison of percentage of neurons responding to noxious stimulation before (solid lines) and after (dashed 
lines) morphine or NS delivery. Chi-square tests were used to detect the percentage differences between different ses-
sions over time. Consistent with the result of neuronal response magnitude, the number of responding neurons in all recorded 
areas was also decreased after injection of morphine. By contrast, NS treatment did not affect the nociceptive related 
responses.

Table 2: Number and percentage of responsive and non-responsive neurons in each recording area before and after morphine or NS 
administration

Pre Post

Treatment Brain areas n Responsive Non-responsive Responsive Non-responsive

Morphine SI 62 51 (82%) 11 41 (66%)* 21
VPL 53 50 (94%) 3 30 (57%)*** 23
ACC 42 21 (50%) 21 10 (24%)* 32
MD 61 31 (51%) 30 11 (18%)*** 50

NS SI 69 57 (83%) 12 55 (80%) 14
VPL 51 44 (86%) 7 47 (92%) 4
ACC 42 22 (52%) 20 19 (45%) 23
MD 58 28 (48%) 30 26 (45%) 32

* P < 0.05, *** P < 0.001, Chi-square test, compared with pre-treatment.
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Scatter plots depicted the capability of neural ensembles in each brain area to discriminate noxious, sham and no stimulation before (A) and after morphine administration (B)Figure 6
Scatter plots depicted the capability of neural ensembles in each brain area to discriminate noxious, sham and 
no stimulation before (A) and after morphine administration (B). The linear discriminant analysis (LDA) was used to 
investigate whether morphine administration affected the capability of neural ensembles to discriminate different types of sen-
sory stimulation. The noxious thermal evoked firing rates were chosen for discriminant analysis. The firing rates of multiple 
principle components around noxious, sham, or no-stimulation (randomly selected points where no events occurred within 30 
seconds around) events were calculated and the discriminant function coefficients were estimated. As can be seen, the three 
categories can be well separated before the delivery of morphine (A), as indicated by the dashed line circles. In contrast, the 
three categories are mixed up after morphine injection (B).



Molecular Pain 2009, 5:60 http://www.molecularpain.com/content/5/1/60
tion [20,25,26]. Patients with lesions of the ACC lost the
emotional reactions to painful stimuli although pain
could be further correctly localized [27]. Electrolytic
lesions of MD thalamus in rats significantly decrease the
avoidance behavior in the place escape/avoidance para-
digm for quantifying the level of pain affect [28]. Deyama
et al. (2007) [29] has provided evidence regarding the
effects of morphine on the neural systems mediating the
affective component of pain by showing that morphine
suppresses pain-induced aversion through inhibition of
glutamatergic transmission within the basolateral amy-
gdaloid nucleus. Using both laser evoked potential and
multiple single-unit recording techniques, Tsai et al.
(2004) [30] demonstrated that systemic morphine signif-
icantly attenuated the long-latency but not the short-
latency component of cortical responses. The long-latency
component was thought to reflect C-fiber evoked
response and stand for the second pain sensation (i.e., the
emotional aspect of pain). Therefore, it is likely that mor-
phine alters the affective dimension of pain through act-
ing on the anterior cingulate cortex and medial thalamus.

ACC is a critical structure for generating emotional
response, triggering behavioural withdrawal, and integrat-
ing sensory information in the processing of pain. Direct
stimulation of ACC produced fear-like behaviour and
induced long-term fear memory in mice [31]. Short- and
long-term plasticities of ACC synaptic responses have

been believed to be the cellular basis for the development
of chronic pain [32-35]. NMDA receptors, particularly
NR2B, in the ACC have been demonstrated to play an
important role in the synaptic plasticity and the expres-
sion of fear memory [36]. Application of NR2B antagonist
reduces the long-term potentiation in the ACC as well as
the expression of analgesic tolerance to morphine. Chen
et al (2008) found that the analgesic effect of morphine
was mediated by GABAergic interneurons in addition to
opioid interneurons in the ACC circuitry [37]. Although it
is still unclear about the cellular and molecular mecha-
nisms of morphine analgesia, evidence supported that
morphine-induced opioid-receptor activation results in
the enhancement of phosphorylation of mitogen-acti-
vated protein kinase (MAPK) in ACC, SI and locus ceru-
leus [38].

Another finding of the present study is that morphine sig-
nificantly reduced the nociceptive related activities and
discriminant ability of neural ensemble between noxious
and innocuous stimuli in the lateral pain pathway (SI cor-
tex and VPL thalamus), suggesting that opiates could
attenuate the sensory aspect of pain as well. Although it
has been believed that morphine has a greater effect on
affective-cognitive rather than sensory-discriminative
components of pain based on clinical observation, opioid
receptor distribution in brain, and its effects in specific
pain relay sites [39], there is psychophysical evidence that
opioids can reduce both affective and sensory pain com-
ponents in a dose-dependent manner [17]. Fentanyl, a μ-
opioid receptor agonist, strongly attenuates noxious cold
stimulation evoked responses in SI [10]. Systemic admin-
istration of morphine reduced mechanical nociception in
rats with a minimal effective dose (MED) of 1 mg/kg
while reduce the carrageenan-induced CPA with a MED of
0.03 mg/kg [24]. In the present study, the neuronal activ-
ities evoked by nociceptive stimuli in SI and VPL were
attenuated by systemic administration of morphine, indi-
cating an inhibition of nociceptive sensation. These
results are consistent with those mentioned above as well
as our previous study, in which nociceptive neural activi-
ties in SI and VPL were depressed by peripheral electrical
stimulation (PES) [40]. PES exerts analgesic effect through
activation of endogenous opioid system. The depression
of nociceptive activities in lateral system may result from
the second order effect of inhibition of medial system or
activation of endogenous modulation system by mor-
phine. This was corroborated by the observation that the
information flow from medial system to lateral system
significantly decreased by morphine, an indication for less
influence on lateral system by medial pathway. In addi-
tion, the increased descending information flow (i.e.,
those from SI to VPL) elicited by noxious stimulation was
attenuated by morphine. These imply that the underlying
morphine analgesia mechanisms may be associated with

Effects of morphine on the temporal distribution of discrimi-nant capability of neural ensembles in ACC, MD, SI and VPLFigure 7
Effects of morphine on the temporal distribution of 
discriminant capability of neural ensembles in ACC, 
MD, SI and VPL. The correct percentage of neural ensem-
bles to differentiate three types of sensory inputs was com-
pared before and after morphine injection. As can be seen, 
the ability of neural ensembles to discriminate pain from non-
pain stimuli significantly decreased after morphine adminis-
tration. The markers along the x-axis indicate the statistically 
significant difference in disciminant performance before (solid 
lines) and after (dashed lines) injection of morphine.
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Partial directed coherence (PDC) among different brain regions induced by noxious stimuli before (A) and after (B) injection of morphineFigure 8
Partial directed coherence (PDC) among different brain regions induced by noxious stimuli before (A) and 
after (B) injection of morphine. The PDC values were normalized to z-scores relative to the mean and variance of baseline 
PDC (i.e., before noxious stimulation). The normalized PDCs exceeding 95% confident interval of the baseline were displayed 
in pseudo color (yellow and red for the increase and cyan and blue for the decrease). Arrows indicate the direction of informa-
tion flow. (A) Before morphine injection, the amount of directed coherence from medial to lateral pathway significantly 
increased with a latency of 0.5 sec. (B) No significant change was observed in the PDC following morphine administration
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Comparison of averaged PDC across all frequencies between pre- (red lines) and post-treatment (blue lines) of morphine (A) or NS (B)Figure 9
Comparison of averaged PDC across all frequencies between pre- (red lines) and post-treatment (blue lines) 
of morphine (A) or NS (B). For each frequency band, the PDC values were normalized to z-scores relative to its mean and 
variance of baseline PDC. Then the PDC values of all 50 frequency bands were averaged over time. As can be seen in this fig-
ure, following morphine injection, the amount of directed coherence was significantly decreased in each direction in compari-
son to the pre-morphine condition. Data are presented as mean ± S.E.
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interfering in the process of information flowing between
brain nuclei. Furthermore, the present results cannot rule
out the possibility that morphine has direct action on lat-
eral system. Recent neuroimaging studies have shown that
opioid receptors do not only abundantly present in the
regions which are relevant to pain emotion, such as ACC
and medial thalamus, but also exist in lateral pain system
including somatosensory cortex in rat, dog and horse
[18,41,42]. It is highly possible that morphine binds to
these receptors and provides antinociceptive effect. There-
fore, this study supports the notion that sensory pain
component may be influenced by morphine.

A limitation of this study should be addressed here.
Although PDC is a powerful tool to detect the causal rela-
tionship between brain regions that were recorded from
different electrodes, the interpretations of PDC are diffi-
cult. A higher partial directed coherence does not neces-
sarily indicate a higher coupling between the processes in
brain [43]. On the other hand, it is not clear how changes
in the estimated causal strength between different elec-
trodes relate to the actual changes in the synaptic weights
[44]. Thus, in the future more advanced analysis tools and
a combination of varied techniques are needed to assess
the complicated interactions within brain network.

Conclusion
Our results provide evidence that morphine can inhibit
nociceptive related activities in both lateral and medial
pain systems. This inhibition includes attenuation of neu-
ral activation and reduction of descending control. The
data imply that morphine provides relief of pain by
depressing not only the affective dimension but also the
sensory processing of pain.

Methods
Animals and surgery procedures
All experiments were performed on twelve adult male
Sprague-Dawley rats (300-350 g) in accordance with the
Institutional Animal Care and Use Committee of Peking
University. Animals were housed individually under a
reversed light/dark cycle (lights off from 7:00 A.M. to 7:00
P.M.) for 7 days before surgery. Food and water were avail-
able ad libitum.

Prior to chronic implants of microelectrode array, initial
anesthesia was administered by an intraperitoneal injec-
tion of ketamine anesthesia (100 mg/kg, i.p.). Supple-
mentary doses (one-third of the original) of ketamine
were given as needed to maintain proper anesthetic depth
during surgery. Rats were mounted on a stereotaxic appa-
ratus (David Kopf Instruments, Tujunga, CA) and four
arrays of eight stainless steel Teflon-insulated microwires
(50-μm diameter, Biographics, Winston Salem, NC) were
slowly lowered into primary somatosensory cortex (SI, AP

= -1.0 mm, ML = 2.0 mm, and DV = 2.0 mm down; meas-
urements relative to bregma); anterior cingulate cortex
(ACC, AP = 3.2 mm, ML = 0.8 mm, and DV = 2.8 mm
down); medial dorsal thalamus (MD, AP = -2.3 mm, ML
= 0.8 mm, and DV = 5.5 mm down); and ventral postero-
lateral thalamus (VPL, AP = -3.0 mm, ML = 3.0 mm, and
DV = 6.0 mm down) according to the atlas of Paxinos and
Watson. Six stainless steel screws were screwed into the
skull to serve as anchors for cementing the microwires in
place after implantation. Animals received penicillin
(16,000 U, i.m.) before surgery to prevent infection. Ani-
mals were allowed to recover for 1 week before recording
sessions commenced.

Electrophysiological recording
To record the neuronal activities, rats were placed in a
plastic chamber (44 × 44 × 44 cm3) in a quiet room kept
at 22 ± 1°C and allowed unrestricted movement during
the entire recording session. Neural spike recording
started after the rats become familiar with the experimen-
tal environment. Extracellular signal were collected by the
chronically implanted microwire assemblies which are
connected to a preamplifier via a head stage plug and two
light-weight cables. The outputs of the preamplifier were
filtered (0.5 and 5 kHz, 6 dB cut-off) and sent to a mul-
tichannel spike-sorting device (Biographics, Inc) for on-
line signal processing. Individual waveforms were dis-
criminated by setting multiple time-voltage windows
using a PC-based software Magnet (Biographics, Inc.). The
time stamps of these waveforms were then stored on a per-
sonal computer for off-line analyses. Graphical capture of
waveforms, interspike interval histograms and autocorre-
lograms were used to validate the on-line sorting of single
units. Spike train activity was analyzed with the PC-based
programs Stranger (Biographics, Inc.) and NeuroExplorer
(Plexon, Dallas, TX).

Radiant heat stimulation
Noxious radiant heat from a 12.5-W projector bulb was
used as painful stimulation, which was randomly applied
to the plantar surface of the rats' hindpaws contralateral to
the electrode implantation via a 4-mm diameter opening
and through a glass floor (1 mm thick). During the exper-
iment, a plastic frame was placed at proper position under
the thin glass board, to protect it against the weight of rats.
The nocifensive responses were measured by paw with-
drawal elicited by the radiant heat. The focused light was
manually turned off when the rat lifted the paw. Time
stamps (resolution, 1 ms) of the light onset and paw lift
were recorded and synchronized with the neural activities.
The intensity of heat stimulus was adjusted by changing
the voltage of electricity to obtain a latency within the
range of 2-4 s and stimulation of identical intensity was
used throughout this experiment. To avoid tissue damage,
a cut-off limit of 10 s was used. To minimize sensitization
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and habituation, the interval between two consecutive
noxious stimuli was longer than 3 min. Turning on the
light without focusing on the paw was used as sham stim-
ulation. The order of stimulus presentation was rand-
omized. Both real and sham stimuli were delivered only
when the animal was quiet and showed no voluntary
motor activity. The well-isolated single unit activities were
recorded simultaneously throughout the duration of all
stimulation.

Systemic administration of morphine
The effect of morphine on the pain-evoked neural
responses in SI, VPL, ACC and MD were tested in 8 rats. At
baseline, neuronal activities evoked by noxious heat stim-
ulation were recorded from the abovementioned four
areas. Then morphine (5 mg/kg) or equivalent volume of
NS was injected intraperitoneally and pain-related activi-
ties were recorded 10 min later. The sequence of the injec-
tion of morphine or NS was random and different
injections were given by a separation of ≥2 days.

To ensure specificity of the morphine effect, four animals
were pre-treated with 4 mg/kg naloxone 10 min prior to
administration of morphine. A repeated neuronal record-
ing was obtained 10 min following morphine injection.

Data analysis
Behavioral data were expressed as mean ± S.E. Statistical
differences between treatments and sessions were ana-
lyzed by two-way ANOVA followed by Bonferroni post
tests, with significance being defined as P < 0.05.

Electrophysiological data were processed offline with
NeuroExplorer (Plexon, Inc., Dallas, TX) program for basic
analysis and with MatLab (The MathWorks, Natick, MA)
and SPSS (Chicago, IL) for advanced statistics. Bin counts
per trial (0.1-s bin size) were calculated using NeuroEx-
plorer program and the results were exported to Matlab in
spreadsheet form. Neuronal responses to noxious stimu-
lation were evaluated using a sliding window averaging
technique, in which a 1-s time window was slid through
the entire period of a trial at 1-bin step. The bin counts of
each window were compared with those of a baseline win-
dow (-5~-1s) by Student's t-test. Only a change of firing
rates from the baseline exceeds the limit of P < 0.01 for at
least three consecutive windows were taken as a response.
The 'P values' were converted into the information theory
concept surprise by performing logarithmic transforma-
tion, i.e., -ln P, to highlight the significance of the
responses distributed over a time period. These values
were used to plot the mean ensemble significance of neu-
ronal responses over time. To compare neural responses
between different sessions (for example, pre-morphine vs.
post-morphine session), firing rates or surprise values were
also compared using the sliding window method (1-s

time window, 0.1-s step, P < 0.01 for three consecutive
windows). The firing rates for all neurons were normal-
ized and arranged into a spreadsheet. A clustering analysis
(K-means, SPSS) was performed to classify neuronal
responses depending on the similarities in patterns of
excitation or inhibition around stimulation events. Chi-
square tests were used to detect the percentage differences
between different sessions.

Linear discriminant analysis (LDA) is a well-known
method for classification and feature extraction. The aim
of LDA is to find the linear combination of features which
best separate several classes of objects or events. In this
paper, LDA was used to investigate whether morphine
affected the capability of neural ensembles to discriminate
different types of sensory stimulation. The evoked firing
rates were chosen for discriminant analysis. The analysis
was performed using the MatLab platform and the SPSS
package program. Principal component analyses (PCA)
were first performed throughout the recording session for
neurons within each recorded area. The firing rates of
multiple principle components (PCs) around noxious,
sham, or no-stimulation (randomly selected points where
no events occurred within 30 seconds around) events
were then exported into SPSS. The discriminant function
coefficients were estimated, and the correct percentage to
differentiate sensory inputs was compared before and
after morphine injection.

Partial directed coherence (PDC) analysis was used to
determine the amount and direction of information flow
among SI, VPL, ACC and MD. The process of PDC analysis
has been described in detail elsewhere [45-47]. To be
brief, PDC is a frequency-domain approach of the key
concept of Granger-causality to uncover the link between
two neuronal groups [48]. Similar to LDA, we firstly per-
formed principal component analyses for neurons in each
brain area. Then the first principal component (PC1) of a
given brain area was exported into MatLab to calculate
PDC (in 1-50 Hz range). These values for each trail were
then averaged. The results were normalized to Z scores rel-
ative to baseline data.

Histology
After completion of the experiment, animals were deeply
anesthetized with pentobarbital and selected tip positions
of the electrodes were marked electrolytically (10-20 μA,
10-20 s, anode current). The animals were then sacrificed
and perfused with 4% paraformaldehyde-5% potassium
ferricyanide solution. The brains were extracted and post-
fixed with the same solution used for the perfusion for 48
h. Coronal sections of 40 μm thick were cut through the
SI, ACC, and thalamus. In these sections, recording sites
were then determined as blue dots. Data of those sites
deflecting from the target areas were out of analysis.
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