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Nitric oxide synthase modulates CFA-induced
thermal hyperalgesia through cytokine regulation
in mice
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Abstract

Background: Although it has been largely demonstrated that nitric oxide synthase (NOS), a key enzyme for nitric
oxide (NO) production, modulates inflammatory pain, the molecular mechanisms underlying these effects remain
to be clarified. Here we asked whether cytokines, which have well-described roles in inflammatory pain, are
downstream targets of NO in inflammatory pain and which of the isoforms of NOS are involved in this process.

Results: Intraperitoneal (i.p.) pretreatment with 7-nitroindazole sodium salt (7-NINA, a selective neuronal NOS
inhibitor), aminoguanidine hydrochloride (AG, a selective inducible NOS inhibitor), L-N(G)-nitroarginine methyl ester
(L-NAME, a non-selective NOS inhibitor), but not L-N(5)-(1-iminoethyl)-ornithine (L-NIO, a selective endothelial NOS
inhibitor), significantly attenuated thermal hyperalgesia induced by intraplantar (i.pl.) injection of complete Freund’s
adjuvant (CFA). Real-time reverse transcription-polymerase chain reaction (RT-PCR) revealed a significant increase of
nNOS, iNOS, and eNOS gene expression, as well as tumor necrosis factor-alpha (TNF), interleukin-1 beta (IL-1b), and
interleukin-10 (IL-10) gene expression in plantar skin, following CFA. Pretreatment with the NOS inhibitors
prevented the CFA-induced increase of the pro-inflammatory cytokines TNF and IL-1b. The increase of the anti-
inflammatory cytokine IL-10 was augmented in mice pretreated with 7-NINA or L-NAME, but reduced in mice
receiving AG or L-NIO. NNOS-, iNOS- or eNOS-knockout (KO) mice had lower gene expression of TNF, IL-1b, and
IL-10 following CFA, overall corroborating the inhibitor data.

Conclusion: These findings lead us to propose that inhibition of NOS modulates inflammatory thermal
hyperalgesia by regulating cytokine expression.

Background
Several lines of evidence indicate a role for nitric oxide
(NO) as a mediator of inflammation [1,2]. NO, acting
as an inter- and intracellular messenger molecule in
the peripheral and central nervous system, also plays a
pivotal role in the development and maintenance of
hyperalgesia [3-6]. NO can be synthesized by three
well-characterized isoforms of NO synthase (NOS): the
constitutive neuronal NOS (nNOS), endothelial NOS
(eNOS), and the inducible NOS (iNOS) [7-9]. The
non-selective NOS inhibitor L-N(G)-nitroarginine
methyl ester (L-NAME) reduces thermal hyperalgesia
in inflammatory pain models [10-12]. Further studies
suggested beneficial effects of the selective NOS

inhibitors in reducing inflammatory hyperalgesia, while
the baseline nociceptive responses remained unaltered
[11,13-18].
Inflammatory pain hypersensitivity is the conse-

quence of alterations in transduction sensitivity of
high threshold nociceptors [19], activity-dependent
changes in the excitability of spinal neurons [20], and
phenotypic changes in sensory neurons innervating
the inflamed tissue [21]. These changes, both at the
inflamed site and throughout the nervous system, are
initiated by a complex pattern of chemical signals
interacting with the sensory fiber terminals. These
signals originate from infective agents, damaged host
cells or activated immune cells. Pro- and anti-inflam-
matory cytokines are small regulatory proteins that
are produced by white blood cells and a variety of
other cells including those in the nervous system.
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Inflammatory stimuli or tissue injuries stimulate the
release of cytokines, which play an essential role in
inflammatory pain. Pro-inflammatory cytokines, such
as tumor necrosis factor (TNF) and interleukin-1
beta (IL-1b), reduced thermal or mechanical pain
thresholds upon intraplantar application [22-24]. Pro-
inflammatory cytokine antagonists were further able
to reduce hyperalgesia in inflammation models, indi-
cating that the activation of pro-inflammatory cyto-
kines is an important step in the generation of
inflammatory pain [24,25]. To limit the deleterious
consequences of prolonged action of pro-inflamma-
tory cytokines, their release is followed by the release
of anti-inflammatory cytokines, such as IL-4, IL-10,
and IL-13, which inhibit the production and action of
the pro-inflammatory cytokines and are anti-hyperal-
gesic [24]. Correlations between tissue levels of cyto-
kines and pain and hyperalgesia have been described
in a number of painful states [26,27]. Although cyto-
kines have well-described roles in inflammatory pain,
it is poorly understood what regulates their produc-
tion and release.
It has been largely demonstrated that inhibition of

NOS attenuates inflammatory pain [11,13-18], how-
ever, the molecular mechanisms underlying these
effects remain to be clarified. NO is generated in sig-
nificant concentrations at sites of inflammation in
which multiple hyperalgesic inflammatory mediators,
such as cytokines, prostaglandin E2 (PGE2), or seroto-
nin, are also produced [3,28]. NO may facilitate the
hyperalgesia induced by those mediators using the
cAMP second messenger pathway and may also have
an independent cGMP-dependent hyperalgesic effect.
The literature pre-dominantly documents that pro-
inflammatory cytokines stimulate the production of
NO, suggesting that cytokines modulate pain by regu-
lating the release of NO [28-34]. In contrast, the effect
of NO on pro-inflammatory cytokines has rarely been
examined. One study reported that human immunode-
ficiency virus-1 (HIV-1) envelope glycoprotein gp120
stimulates pro-inflammatory cytokine-mediated pain
facilitation via activation of nNOS [35]. This finding
raises the intriguing possibility that reduction of
inflammatory hyperalgesia with NOS inhibitors may be
caused, at least in part, by reduced production of pro-
inflammatory cytokines. This led us to hypothesize
that cytokines, including pro- and anti-inflammatory
cytokines, may be involved in pain modulation by NOS
under inflammatory conditions. Here, we used a com-
plete Freund’s adjuvant (CFA)-induced inflammatory
pain model in mice, to investigate whether the expres-
sion of cytokines is involved in the NOS-mediated
inflammatory thermal hyperalgesia.

Results
Pretreatment with NOS inhibitors attenuates CFA-induced
thermal hyperalgesia
Thermal pain thresholds were not different between
groups at baseline, and not significantly changed after
NS injections (Fig. 1). At 6, 16, and 24 h after i.pl. injec-
tion of CFA, significant thermal hyperalgesia was
observed on the injected side (Fig. 1A).
Preemptive administration of 7-NINA, AG, or L-

NAME, but not L-NIO, at a dose of 50 mg/kg, dramati-
cally attenuated CFA-induced thermal hyperalgesia at 6,
16, and 24 h after injection (Fig 1A, P < 0.001). In mice
receiving NS, none of the inhibitors affected pain
thresholds throughout the observation period (Fig. 1B).

CFA increases both NOS and cytokine gene expression in
plantar skin
The gene expression of nNOS (Fig. 2A) and eNOS (Fig.
2C) was elevated in the ipsilateral plantar skin at 6 h
after CFA (P < 0.001), followed by a rapid decline to
baseline levels at 16 and 24 h, compared to controls.
INOS gene expression was increased at 6 h and peaked
at 24 h after CFA (Fig. 2B, P < 0.01 and P < 0.001).
As early as 6 h after CFA, TNF (Fig. 3A), IL-1b (Fig.

3B), and IL-10 (Fig. 3C) gene expression in plantar skin
was significantly increased compared to controls (P <
0.001) and remained elevated (with a decline for IL-10)
until 24 h (P < 0.01 and P < 0.001). IL-1b mRNA
showed the largest increase of expression compared to
control (× 2200~3000).

Pretreatment with the NOS inhibitors reduces the
increase of TNF and IL-1b gene expression and has a
differential effect on the increase of IL-10 in plantar skin
after CFA
Pretreatment with 7-NINA, AG, L-NIO, or L-NAME at
a dose of 50 mg/kg did not significantly alter cytokine
gene expression in plantar skin of control mice (data
not shown). However, all inhibitors significantly attenu-
ated the increase of TNF and IL-1b in mice receiving
CFA (Fig. 4A and 4B, P < 0.05, P < 0.01 and P < 0.001).
The increase of IL-10 was augmented in mice pretreated
with 7-NINA or L-NAME, but reduced in mice receiv-
ing AG or L-NIO, at 6 and 16 h after CFA (Fig. 4C, P <
0.05 and P < 0.001).

Cytokine gene expression in plantar skin is lower in NOS-
KO mice after CFA compared to WT mice
Baseline gene expression of TNF was not different
between nNOS-, iNOS- or eNOS-KO mice and WT
mice (Fig. 5A). However, the baseline gene expression of
IL-1b was significantly higher (Fig. 5B; P < 0.01) and
that of IL-10 lower (Fig. 5C; P < 0.01 and P < 0.001) in
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Figure 1 Effects of pretreatment with the NOS inhibitors 7-NINA, AG, L-NIO and L-NAME on CFA-induced thermal hyperalgesia
assessed by the paw withdrawal latency (PWL) tests. Following CFA injection, PWLs were markedly decreased within 6 h and continued
until 24 h post injection in the ipsilateral hindpaw (A, ***P < 0.001, NS + CFA vs NS + NS). Pretreatment with 7-NINA, AG and L-NAME, but not
L-NIO, dramatically attenuated thermal hyperalgesia in mice receiving CFA throughout the observation period (A, ###P < 0.001, inhibitor + CFA vs
NS + CFA). None of the inhibitors altered pain thresholds in mice receiving NS (B, inhibitor + NS vs NS + NS). n = 4 for each group.
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KO mice than in WT mice, except for IL-1b in eNOS-
KO mice, which was not different from WT (Fig. 5B).
After CFA, TNF (Fig. 5A), IL-1b (Fig. 5B), and IL-10

(Fig. 5C) gene expression in nNOS-, iNOS- or eNOS-
KO mice was lower than in WT mice at all time points
(P < 0.01 and P < 0.001), except for TNF in eNOS-KO
and IL-10 in iNOS-KO mice at 24 h, where they were
higher (Fig. 5A; P < 0.01) and equal (Fig. 5C),
respectively.

Discussion
The present study provided the following major find-
ings: 1) pretreatment with 7-NINA (a selective nNOS
inhibitor), AG (a selective iNOS inhibitor), or L-NAME
(a non-selective NOS inhibitor), but not L-NIO (a selec-
tive eNOS inhibitor), attenuated CFA-induced thermal
hyperalgesia in mice; 2) CFA caused an increase of
nNOS, iNOS and eNOS, as well as of TNF, IL-1b, and
IL-10 gene expression in plantar skin; 3) preemptive sys-
temic administration of the NOS inhibitors reduced

Figure 2 Relative gene expression of nNOS (A), iNOS (B) and
eNOS (C) in the ipsilateral plantar skin in mice receiving CFA
compared to control mice receiving NS (NS + CFA vs NS + NS).
NNOS (A) and eNOS (C) gene expression was increased at 6 h (***P
< 0.001), followed by a rapid decline to baseline levels at 16 and 24
h, after CFA. INOS gene expression was increased at 6 h, and
peaked at 24 h, after CFA (B, **P < 0.01 and ***P < 0.001). At each
time point n = 4.

Figure 3 Relative gene expression of TNF (A), IL-1b (B) and IL-
10 (C) in the ipsilateral plantar skin in mice receiving CFA
compared to control mice receiving NS (NS + CFA vs NS + NS).
Note the rapid increase at 6 h, followed by a second rise for TNF
and IL-1b at 24 h and a decline for IL-10 at 16 and 24 h, after CFA
(**P < 0.01 and ***P < 0.001). At each time point n = 4.
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Figure 4 Effects of pretreatment with the NOS inhibitors 7-NINA, AG, L-NIO and L-NAME on cytokine gene expression after CFA. All
treatments prevented the increase of TNF (A, *P < 0.05 and ***P < 0.001; inhibitor + CFA vs NS + CFA) and IL-1b (B, **P < 0.01 and ***P <
0.001; inhibitor + CFA vs NS + CFA) gene expression induced by CFA. In contrast to the effects of AG and L-NIO, which reduced the increase of
IL-10 gene expression at 6, 16, 24 h and at 6 and 16 h (C, ***P < 0.001; AG + CFA or L-NIO + CFA vs NS + CFA), respectively, both 7-NINA and
L-NAME at 6 and 16 h significantly enhanced the increase of IL-10 (C, #P < 0.05 and ###P < 0.001; 7-NINA + CFA or L-NAME + CFA vs NS + CFA),
after CFA. At each time point n = 4.
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Figure 5 Cytokine gene expression was lower in NOS-KO mice after CFA compared to WT mice. In control mice, there was no significant
difference in baseline gene expression of TNF between KO and WT (A); IL-1b in nNOS- and iNOS-KO, but not in eNOS-KO, was significantly
higher than in WT (B;##P < 0.01); IL-10 in KO was significantly lower than in WT (C; **P < 0.01 and ***P < 0.001). After CFA, the nNOS-, iNOS- and
eNOS-KO mice displayed lower TNF, IL-1b and IL-10 gene expression (A, B and C respectively; ***P < 0.001; nNOS-, iNOS- or eNOS-KO CFA vs WT
CFA), except that eNOS-KO mice had a higher TNF when compared to WT mice (A;###P < 0.001) and there was no difference in IL-10 between
iNOS-KO and WT mice (C), at 24 h. All measured samples were related to WT control. At each time point n = 4.
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CFA-induced increase of TNF and IL-1b, and produced
differential effects on IL-10; 4) following CFA, nNOS-,
iNOS- or eNOS-knockout (KO) mice had lower gene
expression of TNF and IL-1b, in accordance with the
inhibitor data. Together, the findings imply that NOS
mediates inflammatory thermal hyperalgesia by regulat-
ing cytokine expression.
Significant evidence links NO with the development

and maintenance of inflammatory pain (see introduc-
tion). In addition, NO has been described either as pro-
or anti-inflammatory and can produce both pro- and
anti-nociceptive effects. The dual effects of NO in
inflammatory pain may be related to the testing para-
digms, pain models, doses of NO donors and inhibitors,
etc [4]. In the present study, preemptive administration
of 7-NINA, AG, or L-NAME, at a dose of 50 mg/kg,
reduced thermal hyperalgesia caused by CFA, in line
with recent studies [10,13,15]. Compared to the anti-
hyperalgesic effects of 7-NINA and AG, we found that
L-NIO, a selective eNOS inhibitor, had no significant
effect on thermal hyperalgesia. This is in accordance
with the finding by Tao et al. [18] who found that L-
NIO did not affect carrageenan-induced thermal hyper-
algesia in mice.
NO may activate sensory fibers directly, and may

influence afferent fiber sensitivity indirectly by altering
the availability of mediators such as calcitonin gene-
related peptide (CGRP) and substance P (SP) [43]. In
various pain models, increased expression of one or
more of the three NOS isoforms has been shown in the
spinal cord of rodents after i.pl. injection of capsaicin
[44], formalin [45], carrageenan [17], or CFA [10,40].
However, to our knowledge, the expression of NOS in
peripheral tissues is poorly explored. In the present
study, iNOS gene expression in plantar skin was upregu-
lated after CFA, in line with the report by De Alba et al.
[13] who found that iNOS immunoreactivity in inflamed
paw tissue was increased after CFA. We have extended
these findings and have shown for the first time that
CFA injection also increased the nNOS and eNOS gene
expression. Together, these studies indicate that NOS
can be induced not only in the central nervous system
but also in the peripheral inflamed tissues after CFA,
indicating a role in central and peripheral sensitization
in inflammatory pain.
Proinflammatory cytokines like TNF and IL-1b induce

and facilitate neuropathic as well as inflammatory pain
[26,46-50]. On the other hand, the anti-inflammatory
cytokine IL-10, which can suppress pro-inflammatory
cytokine production, exhibits antinociceptive effects in
different pain models [51-54]. Both pro- and anti-
inflammatory cytokines can be released by local or
migrating cells, and their balance modulates pain sensi-
tivity. We found that CFA injection resulted in a

significant elevation of TNF and IL-1b gene expression
in the inflamed plantar skin, which is in accordance
with the change of TNF and IL-1b at the protein level
in the same tissue [47,49]. In addition, we detected for
the first time that CFA also induced an upregulation of
IL-10. Following CFA, mice pretreated with 7-NINA,
AG, L-NIO or L-NAME had a reduced increase of TNF
and IL-1b. CFA-induced upregulation of IL-10 was
increased in 7-NINA pretreated mice, but attenuated in
mice receiving AG or L-NIO. Interestingly, pretreatment
with L-NAME, a non-selective NOS inhibitor, augmen-
ted the increase of IL-10 in CFA mice. L-NAME has a
higher selectivity and potency for nNOS than for eNOS
and iNOS [55-58]; therefore, it might be possible that L-
NAME preferentially inhibited nNOS, but not eNOS
and iNOS, and thus produced the effect on IL-10, like
the selective nNOS inhibitor 7-NINA. The exact
mechanisms underlying the effects of the NOS inhibi-
tors on cytokine expression are still not clear. NO acti-
vates the cyclic adenosine monophosphate (cAMP)
cascade by S-nitrosylation activation of adenylate cyclase
and by phosphorylation of cAMP response element-
binding protein (CREB) through NO-activated cyclic
guanosine monophosphate (cGMP). These second mes-
sengers can lead to the activation of transcription factors
that modulate the expression of TNF, IL-1b, and IL-10
[59-61]. In addition, the NO signaling pathway can med-
iate the expression of CREB target genes by controlling
CREB-DNA binding, which is independent of CREB
phosphorylation [62].
We then tested whether the situation of altered cyto-

kine expression in mice receiving NOS inhibitors can
be mimicked in NOS-KO mice. Following CFA, TNF
and IL-1b gene expression in nNOS-, iNOS- or eNOS-
KO mice was significantly lower than in WT mice.
Our data suggest that both inhibition of NOS (using
the selective NOS inhibitors) and disruption of the
NOS gene (using knock-out mice) can produce similar
effects on TNF and IL-1b gene expression. In a similar
pattern, the reduced gene expression of IL-10 was con-
cordant between the iNOS inhibitor AG treated- and
iNOS-KO-mice, and the eNOS inhibitor L-NIO trea-
ted- and eNOS-KO-mice. Different from mice pre-
treated with the nNOS inhibitor 7-NINA, which had
an augmented IL-10 gene expression, nNOS-KO ani-
mals showed lower expression of IL-10. The factors
that may account for this discrepancy in IL-10 gene
expression between the nNOS inhibitor pretreated
mice and the nNOS-KO animals are still unknown.
Previous studies indicated that eNOS and iNOS can
compensate for the function of nNOS in nNOS-KO
mice in the carrageenan [18] and CFA [63] models of
inflammation, respectively. We speculate that nNOS
may be compensated by iNOS and eNOS in nNOS-KO
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mice here, which may lead to a lower gene expression
of IL-10.
Considering that TNF and IL-1b contribute to the

generation of inflammatory pain and that IL-10 has
anti-hyperalgesic effects, it is conceivable that both the
attenuation of the increase of TNF and IL-1b and an
augmentation of the increase of IL-10 by 7-NINA and
L-NAME may contribute to the mechanism by which
pretreatment with 7-NINA and L-NAME reduces
CFA-induced thermal hyperalgesia. In the same model,
however, changes in hyperalgesia were absent [10] or
less pronounced [63] in nNOS-KO mice. One possible
explanation for these differences is that disruption of
the nNOS gene not only reduces TNF and IL-1b, but
also decreases IL-10. Similarly, CFA-caused thermal
hyperalgesia was not significantly altered in mice either
receiving the eNOS inhibitor L-NIO (in the present
study) or disrupting the eNOS gene [63] because the
hyperalgesic TNF, IL-1b and the anti-hyperalgesic IL-
10 were simultaneously reduced for both treatments.
Interestingly, compared to the unchanged hyperalgesia
in the eNOS inhibitor L-NIO-treated mice after CFA,
thermal hyperalgesia was significantly attenuated by
the iNOS inhibitor AG, although AG also simulta-
neously reduced TNF, IL-1b and IL-10. Different from
what we observed in the iNOS inhibitor AG-treated
mice, the attenuation of CFA-induced thermal hyperal-
gesia was less pronounced in iNOS-KO mice [63]. The
mechanisms underlying these paradoxical phenomena
are still unknown. Inflammation triggers a bi-direc-
tional activation of neurons and immune cells with
subsequent balanced release of both pro-inflammatory
and anti-inflammatory cytokines which can act locally
or at a distance. Loss of this pro- and anti-inflamma-
tory balance may underlie different pain states [27].
Differences in this balance in mice receiving different
NOS inhibitors or in mice lacking different NOS genes
may underlie the differential effects on behavior. Simi-
lar discrepancies in pain behavior between NOS inhibi-
tor-treated mice and NOS-KO mice have been
observed by others, and are conceivable given the
probably large amount of uncontrolled compensatory
changes in KO mice [10,17,18]. Last, our study does
not exclude the possibility that other cytokines or che-
mokines and other pain mediators, such as bradykinin
or prostaglandins, play a role in the modulation of
inflammatory pain by NOS.

Conclusion
In summary, several lines of evidence indicate that cyto-
kines regulation is a novel mechanism by which inhibi-
tion of NOS modulates CFA-induced inflammatory
thermal hyperalgesia. Furthermore, our present data and
studies from other groups [28-34] suggest that there

might be a feedback loop between NO and cytokines
which modulates inflammatory pain.

Methods
Animals
Experiments were performed on adult (4-7 months, 25-
30 g body weight) male mice of C57BL/6J background.
These included wild type mice, mice deficient for iNOS
[36], eNOS [37], and mice deficient for nNOS of
129S4BL/6J background (The Jackson Laboratory, Bar
Harbor, Maine, USA) [38]. All mice were bred at the
animal facilities of the University of Würzburg. The ani-
mals were housed on a light:dark cycle of 14:10 h with
standard rodent chow and water available ad libitum.
All experiments were approved by the Bavarian state
authorities and performed in accordance with the Eur-
opean Communities Council Directive of November 24,
1986 (86/609/EEC) for the care and use of laboratory
animals.

Drugs and drug administration
Intraplantar (i.pl.) injections were performed with a
Hamilton syringe coupled to a 30-gauge needle under
light ether anesthesia. Control mice received 0.5 ml of
normal saline (NS) by intraperitoneal (i.p.) injection,
and, 30 min later, 10 μl of NS intraplantarly into the
surface of one hind paw (control group: NS + NS). For
induction of hindpaw inflammation, mice received i.pl.
injection of 10 μl of complete Freund’s adjuvant (CFA,
diluted 1:1 with PBS, 2 mg/ml; Mycobacterium tuber-
culosis; Difco Laboratories, Detroit, MI) 30 min after
the i.p. NS injection (CFA group: NS + CFA). For the
inhibitor experiments, the inhibitors including 7-
nitroindazole sodium salt (7-NINA, a selective nNOS
inhibitor; A.G. Scientific, Inc. Göttingen, Germany),
aminoguanidine hydrochloride (AG, a selective iNOS
inhibitor; Sigma, Munich, Germany), L-N(5)-(1-imi-
noethyl)-ornithine (L-NIO, a selective eNOS inhibitor;
Biotium Inc., Hayward, CA) and L-N(G)-nitroarginine
methyl ester (L-NAME, a non-selective NOS inhibitor;
Sigma) dissolved in NS except for 7-NINA in 20%
DMSO, were i.p. injected at a dose of 50 mg/kg 30
min prior to i.pl. injection of CFA or NS (inhibitor
pretreated CFA and control groups: inhibitor + CFA
and inhibitor + NS).
Mice deficient for nNOS, iNOS and eNOS (KO mice)

were i.p. injected with 0.5 ml of NS 30 min before i.pl.
administration of 10 μl of CFA or NS (NOS-KO CFA
and control groups).

Behavioral testing
Sensitivity to noxious heat was assessed using the device
of Hargreaves et al. [39] purchased from Ugo Basile
(Comerio, Italy). A radiant heat source was focused on
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the plantar surface of the hindpaw; the latency from the
initiation of the radiant heat until paw withdrawal (paw
withdrawal latency, PWL) was measured automatically.
A maximal cutoff of 20 s was used to prevent tissue
damage. The injected paw was tested two times; the
mean withdrawal latency was calculated. The interval
between two trials on the same paw was at least 3 min.
Mice were tested 1 d before i.pl. injection of CFA or NS
to determine baseline thresholds, and then at 6, 16 and
24 h after injection.

Quantitative real-time PCR
Plantar skin of the hindpaw was removed 24 h after
behavioral testing from control, CFA, and inhibitor
pretreated CFA and control groups. In separate mice
without behavioral testing, including CFA and inhibitor
pretreated CFA groups, plantar skin was harvested at 6
and 16 h after injection. In addition, the same tissue
was also dissected out from nNOS-, iNOS-, and
eNOS-KO mice at 24 h after NS injection (NOS-KO
control groups), and at 6, 16 and 24 h after CFA
(NOS-KO CFA groups). At each time point, specimens
from one treatment group were pooled (n = 4), imme-
diately shock frozen in liquid nitrogen and stored at
-80°C before further processing. Tissue homogeniza-
tion and RNA isolation were performed as described
previously [40]. The frozen tissue was incubated in
TRIzol reagent® (Invitrogen, Karlsruhe, Germany) and
homogenized with a Polytron homogenizer (Kinema-
tica, Luzern, Switzerland). Afterwards chloroform was
added and the samples were centrifuged at 13,000 g
and 4°C for 15 min. Then, the upper phase was mixed
with glycogen and propanol. After incubation over
night at -20°C the samples were washed with 75%
ethanol and the extracted RNA was dissolved in 33 μl
of diethylpyrocarbonate (DEPC) treated water. The
total RNA yield was photometrically quantified
(Eppendorf, Hamburg, Germany).
Relative NOS and cytokine mRNA expressions were

quantified with real-time PCR using the fluorescent Taq-
Man technology. 500 ng of total RNA were reverse tran-
scribed (TaqMan Reverse Transcription Reagents, Applied
Biosystems, Germany) using random hexamers. PCR pri-
mers and probes specific for mouse nNOS (Assay-ID:
Mm00435175_m1), iNOS (Mm00440485_m1), eNOS
(Mm00435204_m1), TNF (Mm00443258_m1), IL-1b
(Mm00434228_m1), IL-10 (Mm00439616_m1) and 18s
rRNA were obtained from TaqMan Predeveloped Assay
Reagents for gene expression (Applied Biosystems, Ger-
many). 18s rRNA was used as an endogenous control.
PCR was performed with equal amounts of cDNA in the
GeneAmp 7700 sequence detection system (Applied Bio-
systems, Germany) using TaqMan Universal PCR Master
Mix (Applied Biosystems). Reactions (total volume 50 μl)

were incubated at 50°C for 2 min, at 95°C for 10 min fol-
lowed by 40 cycles of 15 s at 95°C and 1 min at 60°C. The
comparative Ct method was used for relative quantifica-
tion of gene expression. The amount of NOS and cytokine
mRNAs, normalized to the endogenous control (18s
rRNA) and relative to a calibrator (tissue from wild-type
(WT) control animals), is given by 2-ΔΔCt, with Ct indicat-
ing the cycle number at which the fluorescence signal of
the PCR product crosses an arbitrary threshold set within
the exponential phase of the PCR, and ΔΔCt = [(Cttarget
(unknownsample) - Ctend.control (unknownsample))] - [(Cttarget
(calibratorsample) - Ctend.control (calibratorsample))]. The absolute
value of the calibrator was set one and all measured
samples were related to this sample. In order to guarantee
primer specificity and to exclude genomic contamination,
negative controls without cDNA template were run on
each RT-PCR well plate.
To test the quality of the total RNA, the samples were

photometrically quantified (Eppendorf, Hamburg, Ger-
many) and the 260/280 ratio was measured for the
integrity of the extracted RNA. In addition, agarose gel
electrophesis of the housekeeping gene glyceraldehyde-
3-phosphate dehydrogenase (GAPDH) PCR product was
analyzed. PCR amplification of GAPDH was performed
at 94°C for 5 min and 35 cycles of 94°C for 45 sec, 58°C
for 45 sec and 72°C for 45 sec, followed by 72°C for 10
min, using sequence specific primers (Sigma, Munich,
Germany) 5’-TCACCACCA TGGAGAAGGCTG-3’
(sense) and 5’-CCCTGTT GCTGTAGCCATATTC-3’
(antisense). PCR products were loaded on 1% agarose
gel containing ethidium bromide, and bands were visua-
lised under UV rays. To assess the kinetics of RT-PCR,
TNF primer was selected for RT-PCR amplification with
decreasing concentrations of samples (diluted by 1:1,
1:2, 1:4, and 1:6). These data as above are provided in
Additional files 1 and 2.

Data Analysis
For statistical analysis, SPSS software (Version 11.5; Chi-
cago, IL) was used. As described previously [41,42], each
sample was measured in triplicate, and data are given as
means ± SD. The data were analyzed by one-way analy-
sis of variance (ANOVA) followed by least significant
difference (LSD) post hoc test to determine differences
between groups. P < 0.05 was considered to be statisti-
cally significant.

Additional file 1: Six RNA samples were randomly selected to show
the quality of total RNA. The result of gel electrophoresis using GAPDH
primers gave an expected band at 666 bp (A), and the ratio of OD260/
OD280 was around 1.9, indicating that the samples were highly purified
and largely intact (A and B).
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1744-8069-6-13-
S1.PPT ]

Chen et al. Molecular Pain 2010, 6:13
http://www.molecularpain.com/content/6/1/13

Page 9 of 11



Additional file 2: Six RNA samples and TNF primer were randomly
selected to show the kinetics of RT-PCR. TNF RT-PCR amplification
plots with decreasing concentrations of samples suggested that Ct-
values increase with further dilutions at 1:1, 1:2, 1:4 and 1:6.
Click here for file
[ http://www.biomedcentral.com/content/supplementary/1744-8069-6-13-
S2.PPT ]
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