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Abstract

Background: The cellular and molecular programs that control specific types of pain are poorly understood. We
reported previously that the runt domain transcription factor Runx1 is initially expressed in most nociceptors and
controls sensory neuron phenotypes necessary for inflammatory and neuropathic pain.

Results: Here we show that expression of Runx1-dependent ion channels and receptors is distributed into two
nociceptor populations that are distinguished by persistent or transient Runx1 expression. Conditional mutation of
Runx1 at perinatal stages leads to preferential impairment of Runx1-persistent nociceptors and a selective defect in
inflammatory pain. Conversely, constitutive Runx1 expression in Runx1-transient nociceptors leads to an impairment
of Runx1-transient nociceptors and a selective deficit in neuropathic pain. Notably, the subdivision of Runx1-
persistent and Runx1-transient nociceptors does not follow the classical nociceptor subdivision into IB4+

nonpeptidergic and IB4- peptidergic populations.

Conclusion: Altogether, we have uncovered two distinct Runx1-dependent nociceptor differentiation programs
that are permissive for inflammatory versus neuropathic pain. These studies lend support to a transcription factor-
based distinction of neuronal classes necessary for inflammatory versus neuropathic pain.

Background
The sense of pain is initiated through the detection and
transduction of noxious stimuli by specialized sensory
neurons (called nociceptors), which are located in dorsal
root ganglia (DRG) and trigeminal ganglia [1-3]. Under
pathological conditions, such as tissue inflammation and
nerve injury, nociceptors and central relay neurons can
be sensitized by multiple pathways, leading to long-
lasting chronic pain states such as inflammatory pain
and neuropathic pain [2,4-8]. In the past decades, signif-
icant progress has been made in understanding the
molecular and cellular bases of acute and chronic pain
[9-13]. However, much less is known about how noci-
ceptor features associated with different pain behaviors
are established during development.
We and others have previously shown that Runx1, a

Runt-domain transcription factor, plays a pivotal role in

controlling nociceptor phenotypes and pain behaviors
[14-17]. Runx1 is initially expressed in most, if not all,
embryonic nociceptors marked by the expression of the
neurotrophin receptor TrkA. During perinatal and post-
natal development, Runx1 expression is retained in only
a subset of nociceptors that switch off TrkA and turn
on Ret, the receptor for the glial-derived growth factor
family of neurotrophins. The remaining nociceptors
switch off Runx1, most of which retain TrkA, although
a subset of them expresses Ret [14]. Analyses of condi-
tional knockout mice in which Runx1 was removed in
sensory precursors show that Runx1 is required for
proper development of Ret-expressing nociceptors,
including the expression of dozens of sensory channels
and receptors that are essential for thermal pain, inflam-
matory pain, and neuropathic pain [14].
A key unsolved question is which Runx1-dependent

differentiation programs control which individual pain
behaviors. In this study, we first made a conditional
Runx1 knockout at perinatal stages (around embryonic
day 17 or E17). In these late knockout mice, the
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expression of a subset of Runx1-dependent genes was
affected, namely those in Runx1-persistent nociceptors,
whereas expression of a separate set of Runx1-dependent
genes that are normally expressed in Runx1-transient
nociceptors was largely unaffected. Interestingly, beha-
vioral analyses showed that preferential defect in Runx1-
persistent nociceptors in these late knockouts led to a
selective impairment of inflammatory pain without
affecting neuropathic pain. Second, we made conditional
knock-in mice that drive constitutive Runx1 expression
in most of the nociceptors. This manipulation led to the
impairment of Runx1-transient nociceptors and a selec-
tive deficit in neuropathic pain. We thus uncover two
distinct Runx1-dependent differentiation programs that
contribute to inflammatory versus neuropathic pain.
Together, our study provides new insight into the mole-
cular and cellular bases of chronic pain.

Results
Two Runx1-dependent differentiation programs revealed
by analyzing late Runx1 conditional knockout mice:
Runx1F/F;Nav1.8Cre

To determine which Runx1-dependent differentiation
programs control specific types of pain, we wanted to
generate mice that contain a partial impairment of
Runx1-dependent nociceptor phenotypes. We made an
assumption that a conditional knockout of Runx1 at a
late developmental stage may preferentially eliminate
the expression of those genes that are expressed in
Runx1-persistent nociceptors. To do this, we crossed
mice carrying a conditional Runx1 allele [18] (referred
to as Runx1F) with a Nav1.8Cre mouse line that drove
Cre expression from the Nav1.8 sodium channel pro-
moter in most nociceptors at perinatal stages [19]. We
referred to these late Runx1 conditional knockout mice
(Runx1F/F;Nav1.8Cre) as L-CKO mice. Runx1F/F litter-
mates were referred to as control. In lumbar DRG of
L-CKO mice, Runx1 expression was not affected at
E14.5, detected robustly at E16, but virtually absent at
E17 (See Additional file 1). In wild-type lumbar DRG,
the onset of Runx1 expression occurs at E12.5 [14].
Thus, in L-CKO mice, Runx1 operates during a devel-
opmental window from E12.5 to E17. We previously
used Wnt1Cre mice [20] to make a Runx1 early condi-
tional knockout (Runx1F/F;Wnt1Cre), which was
referred here to as E-CKO mice, in which Runx1 was
removed in sensory precursors before the onset of
Runx1 expression [14] (Summarized in Fig. 1A). Since
pain behavior was measured from the hindpaws, all
nociceptor phenotype analyses were carried out in L4-
L5 lumbar DRG. Total neuron number in lumbar
DRG, as measured by the expression of the panneural
gene SCG10 [21], was not changed in L-CKO mice in
comparison with that in control mice (See Additional

file 1), suggesting that neuronal survival is unaffected
in this knockout.
We next observed that expression of a large set of

Runx1-dependent genes, revealed by loss of their
expression in E-CKO mice [14] (See Additional file 2),
was still eliminated in L-CKO mice (Fig. 1). These genes

Figure 1 Loss of a subset of Runx1-dependent genes in
Runx1F/F;Nav1.8Cre L-CKO mice. (A) Schematic showing the timing
of “early” Runx1 knockout (using Wnt1-Cre mice, removing Runx1
before the onset of Runx1 expression), and late Runx1 knockout
(using Nav1.8-Cre, removing Runx1 during E16-E17). (B-D) In situ
hybridization (ISH) using the indicated probes for Runx1-dependent
channels and receptors on transverse sections through adult lumbar
(L4/L5) DRG from Runx1F/F control mice and Runx1F/F;Nav1.8Cre L-
CKO mice. For Ret and P2X3, double labeling of mRNA (red) with
IB4 (green) is shown. For TRPV1 (D), both ISH (top pannels) and
immunohistochemistry (IHC) (bottom panels) data are shown. The
average numbers of Ret+ and P2X3+ neurons were decreased by
67%, from 599 ± 35 to 199 ± 10 (p < 0.01), and by 56%, from 630 ±
24 to 276 ± 30 (p < 0.001), respectively. Note that the remaining
Ret+ and P2X3+ neurons in mutant mice are IB4-. (E) Graph showing
the average (± SEM) of the total number of neurons expressing the
indicated probes per set of lumbar DRG sections of control (white
bar) and mutant (grey bar) mice. Note that the average number of
Mrgprb4+ neurons was not significantly changed: from 35 ± 4 to 29
± 10 (p > 0.05). The number of TRPV1high neurons (arrows) was
reduced by 75%, from 21 ± 3 to 5 ± 1 (p < 0.01), whereas the
number of TRPV1low (arrowheads) was unchanged, from 210 ± 22
to 218 ± 10 (p > 0.05).
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encode two members of the Mrgpr class of G-protein
coupled receptors (Mrgprd and Mrgprb5), the ionotro-
pic glutamate receptor GluR5/Grik1 (Fig. 1B), the pro-
tein kinase C ‘theta’ isoform PKCq (Fig. 1B), and two
transient receptor potential channels, TRPC3 and the
cold receptor TRPM8 [22]. We reported previously that
Runx1 is partially required for the expression of Ret and
the ATP-gated channel P2X3 [14]. Here we found that
high level Ret expression and P2X3 expression were
completely eliminated in IB4+ neurons in L-CKO mice
(Fig. 1B), whereas their expression in IB4-negative neu-
rons was largely unaffected (Fig. 1B). TRPA1 expression
in lumbar DRG was expressed at levels not detectable
by our in situ hybridization method. However, using
real time RT-PCR, we showed that TRPA1 expression
was reduced drastically in both E-CKO mice and L-
CKO mice (See Additional file 2).
Additional molecular and anatomical changes

occurred in IB4+ nociceptors. First, Runx1 is required to
suppress the expression of a set of peptidergic nocicep-
tor markers, such as TrkA, the neuropeptide CGRP
[23], and the acid-sensing channel DRASIC [14,15,17].
Expression of these markers was expanded into IB4+

neurons in E-CKO mice [14], and this expansion also
occured in L-CKO mice (See Additional file 3). Second,
IB4+ fibers innervated the superficial lamina of the dor-
sal spinal cord in both E-CKO and L-CKO mice, rather
than the inner lamina in control mice [14] (See Addi-
tional file 4).
In contrast, development of a separate group of

Runx1-dependent sensory neuron phenotypes was no
longer affected in L-CKO mice. For example, expression
of several Mrgpr class GPCRs (Mrgpra3, Mrgprb4, and
Mrgprc11), which was eliminated in E-CKO mice
[14,24], was fully “restored” in L-CKO mice (Fig. 1C).
Counting of Mrgprb4+ neurons in lumbar DRG showed
no differences in control versus L-CKO mice (Fig. 1E).
Expression of the capsaicin receptor TRPV1 is also par-
tially “restored” in L-CKO mice. TRPV1 expression is
allocated into two separate populations of DRG neurons
[25]. A small subset of DRG neurons express very high
levels of TRPV1 expression (TRPV1high), whereas a lar-
ger subset of DRG neurons express TRPV1 at low levels
[25]. Analysis of E-CKO mice showed that Runx1 is
required for TRPV1high expression, but dispensable for
TRPV1low expression [14]. In L-CKO mice, we found
that TRPV1high expression was only reduced by 75%,
meaning that there was a 25% of “restoration” in L-
CKO mice (Fig. 1D-E). Thus, by comparing mutant phe-
notypes in E-CKO and L-CKO mice, we have uncovered
two distinct Runx1-dependent nociceptor differentiation
programs, A and B. Program A controls a set of noci-
ceptor phenotypes that are impaired in both E-CKO and
L-CKO mice. Program B controls a separate set of

nociceptor phenotypes that are impaired in E-CKO
mice, but unchanged in L-CKO mice. Some Runx1-
dependent genes are controlled by both programs, as
indicated by partial “restoration” of their expression in
L-CKO mice, such as TRPV1high.

Program A and B Runx1 activities operate preferentially
in Runx1-persistent and Runx-1 transient neurons,
respectively
To determine how program A and B Runx1 activities
are related to dynamic Runx1 expression in DRG neu-
rons, we performed a series of double staining on lum-
bar DRG sections, by combining Runx1 immunostaining
(detecting the Runx1 protein in the nuclei) and in situ
hybridization (detecting the mRNA of genes of interest
in the cytoplasm). We found that a large subset of pro-
gram-A dependent genes was expressed in a group of
Runx1-persistent neurons marked by the expression of
Mrgprd. Mrgprd+ neurons represent nonpeptidergic
polymodal nociceptors that respond to noxious mechan-
ical stimuli and heat, and that innervate exclusively the
skin epidermis [26,27]. We found that 92% of Mrgprd
+neurons showed persistent Runx1 expression, and 45%
of Runx1+ neurons coexpressed Mrgprd (Fig. 2A). Using
Mrgprd-GFP (green fluorescent protein) reporter mice,
in which Mrgrpd+ neurons were marked by the expres-
sion of GFP [26], we then found that expression of sev-
eral other Runx1-dependent genes was confined to
Mrgprd+ neurons, including Mrgprb5, TRPC3, GluR5/
Grik1, and PKCq (See Additional file 5). Within IB4+

nociceptors, expression of P2X3 and Rethigh is confined
to Mrgprd+ neurons [26]. The selective loss of P2X3
and Rethigh expression in IB4+ neurons in E-CKO and
L-CKO mice suggests that program A-dependent
P2X3 and Rethigh expression is also confined to Runx1-
persistent Mrgprd+ neurons.
The second group of program A-dependent DRG neu-

rons is marked by the expression of TRPM8, which is
involved in cold sensation [22]. Again, a majority of
TRPM8+ neurons (nearly 80%) showed persistent Runx1
expression, with 9% of Runx1+ neurons coexpressing
TRPM8 (Fig. 2A). TRPM8+ neurons do not belong to
the classic set of nociceptors, shown both by the little or
no coexpression with CGRP and by the lack of IB4
labeling [28,29]. Thus, Runx1-persistent Mrgprd+ (IB4+)
and TRPM8+ (IB4-negative) neurons represent two dis-
tinct populations of sensory neurons.
As mentioned above, TRPV1high expression is con-

trolled by both programs. We found that 77% and 23%
of TRPV1high neurons showed persistent and transient
Runx1 expression, respectively (Fig. 2A), which matched
well with 75% and 25% of TRPV1high expression con-
trolled by programs A and B, respectively. We also
found that Runx1 expression was detected in 48% of
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TRPV1low neurons (Fig. 2A), even though TRPV1low

expression is independent of Runx1.
Conversely, based on our previous co-localization stu-

dies [24], program B-dependent genes were expressed
mainly in Runx1-transient DRG neurons. Mrgpra3+ neu-
rons have been implicated in transmitting itch evoked
by chloroquine [30], and these neurons do not show
persistent Runx1 expression [24]. Mrgprb4+ neurons
innervate exclusively the hairy skin [31], and again,
these neurons do not show persistent Runx1 expression
[24]. Another program B gene Mrgprc11 is expressed in
both Mrgpra3+ and Mrgprb4+ neurons [24]. It should
be noted that program B-dependent neurons can be
either nonpeptidergic, such as Mrgprb4+ neurons [31],
or peptidergic, such as 71% of Mrgprc11+ neurons (See
Additional file 6). Thus in lumbar DRG, program A and
program B Runx1 activities operate preferentially in
Runx1-persistent and Runx1-transient DRG neurons,
respectively, each of which represents a heterogeneous
population of sensory neurons (Fig. 2B).

A selective deficit of inflammatory pain in L-CKO mice
We next measured responses to acute noxious heat and
mechanical stimuli, as well as the sensitivity to inflam-
matory and neuropathic pain in L-CKO mice, with
Runx1F/F littermate mice as controls. L-CKO mice
exhibited no statistically significant difference in their
sensitivity to threshold mechanical stimuli (Fig. 3A),
suggesting that mechanical sensitivity was unaffected in
L-CKO mice as in E-CKO mice [14]. The latency in

Figure 3 Runx1F/F;Nav1.8Cre mice showed impaired
inflammatory pain but largely unaffected heat pain or
neuropathic pain. (A) Mechanical thresholds measured by Von Frey
filaments in control mice (n = 10) and L-CKO mice (n = 12). No
difference was observed (p > 0.05). (B) Heat sensitivity measured
using the hot plate assay. Controls, n = 10. Mutants, n = 12. No
difference was observed (p > 0.05). (C) Neuropathic pain (SNI
model). No difference was observed in mechanical allodynia over
the examined time course (controls, n = 10; mutants, n = 12) (p >
0.05, ANOVA). (D, E) Inflammatory Pain (CFA model), (D)
Measurement of mechanical allodynia using Von Frey filaments.
Controls showed an 84 ± 3% drop in mechanical threshold two
days after CFA injection (n = 9, ***p < 0.001), while mutants
showed only a 33 ± 8% drop (n = 14, **p < 0.01). This difference in
mechanical sensitivity drop was highly significant (†††p < 0.001). (E)
Measurement of heat hyperalgesia using the Hargreaves apparatus.
Controls (n = 8) were strongly sensitized (70 ± 4% drop in latency,
***p < 0.001) while mutants (n = 8) showed no significant
sensitization (p > 0.05). The difference in latency between controls
and mutants post-CFA was highly significant (†††p < 0.001). Error
bars indicate standard errors of the mean (SEM).

Figure 2 Expression of Runx1-dependent genes in Runx1-
persistent versus Runx1-transient neurons in the adult lumbar
DRG. (A) Double staining of Runx1 protein (green) and indicated
RNA probe (red) on transverse sections of wild-type P30 lumbar (L5)
DRG. Quantitative data are shown to the right of the panels. Note
that 44.9% (231/515) and 9.2% (72/785) of Runx1+ neurons
coexpressed Mrgprd and TRPM8, respectively. Note also that
TRPV1high neurons represent 9% of total TRPV1+ neurons (33/356).
Arrows indicate double-labeled neurons and arrowheads indicate
single-labeled neurons. For TRPV1, asterisks indicate TRPV1low

double-labeled neurons. (B) Schematic depicting the segregation of
Runx1-dependent genes in the adult DRG into Program A and
Program B, expressed predominantly in Runx1-persistent and Runx1-
transient nociceptors, respectively.
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response to noxious heat (on a 50°C hot plate) was not
statistically different between control mice and L-CKO
mice (Fig. 3B), indicating that this type of heat pain,
which was compromised in E-CKO mice (14), was
retained in L-CKO mice.
We next assayed neuropathic pain induction in L-

CKO mice. To that end, we used the spared nerve injury
model (SNI) [32] and measured the heightened pain
sensitivity in which normally innocuous tactile stimuli
illicit a pain withdrawal response, a phenomenon termed
mechanical allodynia that is a hallmark of neuropathic
pain [8]. We found that the development of mechanical
allodynia, indicated by the substantial lowering of the
paw withdrawal threshold, was not significantly different
between control and L-CKO mice (Fig. 3C, ANOVA, p
= 0.72), indicating a nearly complete retention of this
type of neuropathic pain in L-CKO mice. This result
was remarkable considering a virtual abolishment of
SNI-induced neuropathic pain in E-CKO mice [14].
Inflammatory pain responses were assayed by measur-

ing the development of mechanical allodynia and heat
hyperalgesia after intraplantar injection of complete
Freund’s adjuvant (CFA). CFA-induced edema occurred
normally in both control and L-CKO mice, as shown by
similar degrees of swelling in the hindpaws (see
Methods). Interestingly, the development of mechanical
allodynia after CFA injection was markedly impaired in
L-CKO mice, shown by a substantial elevation of the
paw withdrawal threshold compared with that in control
littermates (Fig. 3D). We next examined how CFA-
induced heat hyperalgesia was affected, using the Har-
greaves assay [33]. Before CFA injection, the latency in
response to radiant heat was comparable between con-
trol and L-CKO mice (Fig. 3E), consistent with the hot
plate assay showing no acute heat pain deficit. However,
CFA-induced heat hyperalgesia was significantly
impaired in L-CKO mice, shown by a substantial
increase in the latency in response to radiant heat (Fig.
3E). These results suggest that inflammatory pain is
impaired in both E-CKO and L-CKO mice [14]. Thus,
the selective loss of program A activity in L-CKO mice
leads to a selective defect in inflammatory pain, and the
retention of program B activity is sufficient to establish
heat pain and neuropathic pain.

Constitutive Runx1 expression in most nociceptors
caused a selective impairment of Runx1-transient
nociceptors
We next wanted to generate mice in which development
of Runx1-transient nociceptors was impaired. To do
this, we employed a genetic strategy that prevented
Runx1 downregulation in most nociceptors. We used
the conditional knock-in mice Tau-lox-STOP-lox-
Runx1-IRES-nlsLacZ-neo [17], referred to as Tau-

Runx1F. In this mouse line, Runx1 expression is under
the control of the panneuronal Tau promoter but is not
activated until the ’STOP’ cassette is removed through
Cre-mediated recombination. We crossed this line with
the Nav1.8Cre transgenic mouse line [19], with resulting
double heterozygous mice referred to as Tau-Runx1F;
Nav1.8Cre mice (See Additional file 7). In these mice,
Nav1.8Cre drove constitutive Runx1 expression in most
peptidergic and nonpeptidergic nociceptors [19]. Consis-
tently, the number of Runx1+ neurons increased by 88%
(See Additional file 7), implying that following constitu-
tive Runx1 expression, a significant portion of presum-
ably Runx1-transient sensory neurons must have
survived. However, the total neuron number, marked by
the expression of SCG10, was reduced by 25% (See
Additional file 7), suggesting some degree of neuronal
cell loss. Development of proprioceptors, marked by the
expression of Parvalbumin (PV), and low-threshold
mechanoceptors, marked by the expression of TrkB (the
receptor for the brain-derived neurotrophic factor or
BDNF), was unaffected (See Additional file 8).
We next examined nociceptor development in Tau-

Runx1F;Nav1.8Cre mice. Development of Runx1-
persistent nociceptors was unaffected, as suggested by a
normal expression of those genes predominantly
expressed in Runx1-persistent nociceptors, including
Mrgprd, Mrgprb5, GluR5, PKCq, P2X3, TRPC3,
TRPV1high, and TRPM8 (Fig. 4A). Counting of Mrgprd+

and TRPM8+ and TRPV1high neurons showed that the
numbers of these neurons were comparable between
Tau-Runx1F control mice and Tau-Runx1F;Nav1.8Cre

mice (Fig. 4D). Furthermore, we did not observe any
change in innervation of IB4+ fibers to the inner lamina
of the spinal cord (See Additional file 9).
Development of Runx1-transient neurons, however,

was impaired in Tau-Runx1F;Nav1.8Cre mice. For exam-
ple, expression of a set of Runx1-dependent genes that
are normally expressed in Runx1-transient neurons was
eliminated, including Mrgpra3, Mrgprb4, and Mrgprc11
(Fig. 4B). The number of TRPV1low neurons was
reduced by 65% in Tau-Runx1F;Nav1.8Cre mice (Fig. 4A
and 4E), consistent with our finding that 52% of
TRPV1low expression is distributed in Runx1-transient
neurons (Fig. 2).
TrkA+;CGRP+ peptidergic nociceptors represent a

separate group of Runx1-transient nociceptors. We had
previously used Islet1Cre to drive constitutive Runx1
expression in all DRG neurons, which resulted in a sup-
pression of CGRP at embryonic stages without affecting
embryonic TrkA expression. Those mice died at birth
[17]. Tau-Runx1F;Nav1.8Cre mice, on the other hand,
survived into adulthood, and thus allowed us to examine
postnatal development of TrkA+;CGRP+ neurons. We
found that expression of TrkA was not detected in P30
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lumbar DRG of Tau-Runx1F;Nav1.8Cre mice, either by in
situ hybridization or by immunostaining (Fig. 4C).
Expression of CGRP was also greatly reduced (by 78%)
(Fig. 4C and 4E). Therefore, development of a majority
of peptidergic nociceptors is impaired in Tau-Runx1F;
Nav1.8Cre mice. The incomplete suppression of CGRP is
consistent with the observation that in wild-type DRG,
about 15% of DRG neurons showed detectable Runx1
expression (See Additional file 6), suggesting that
Runx1-mediated CGRP suppression operates in a cell

context-dependent manner. Altogether, constitutive
expression of Runx1 led to a preferential impairment of
Runx1-transient nociceptors.

A selective deficit in neuropathic pain in Tau-Runx1F;
Nav1.8Cre mice
We assayed behavioral responses of Tau-Runx1F;
Nav1.8Cre mice to acute, neuropathic, and inflammatory
pain. Mechanical sensitivity, measured by the Von Frey
assay, was intact in Tau-Runx1F;Nav1.8Cre mice (Fig.
5A). The mutant mice also showed no significant defect
in their reaction times to 50°C noxious heat stimuli
using the hot plate assay (Fig. 5B). This is consistent
with the normal TRPV1high expression in Tau-Runx1F;
Nav1.8Cre mice (Fig. 4). CFA-induced edema occurred
normally, as indicated by a normal swelling in the hind-
paws (see Methods). Remarkably, despite the impair-
ment of several groups of Runx1-transient nociceptors
(such as TrkA+ peptidergic nociceptors), no marked def-
icits in CFA-induced mechanical allodynia or heat
hyperalgesia were observed in Tau-Runx1F;Nav1.8Cre

mice (Fig. 5D and 5E). However, NGF-induced inflam-
matory pain was impaired (Fig. 5F and 5G). Interest-
ingly, neuropathic pain using the SNI model was
severely impaired in Tau-Runx1F;Nav1.8Cre mice, as
shown by a substantial increase in the paw withdrawal
threshold in these mice compared to that in Tau-
Runx1F control littermates (Fig. 5C, ANOVA, p <
0.001). Thus, the impairment of Runx1-transient DRG
neurons following constitutive Runx1 expression led to
a selective deficit in neuropathic pain without affecting
inflammatory pain (Figs. 4 and 5)

Discussion
Distinct modes of Runx1 activities in controlling sensory
neuron development
We provide a new way to subdivide nociceptors based
on persistent or transient Runx1 expression. Notably,
dividing nociceptors based on Runx1 expression does
not follow the classic subdivision of nociceptors, namely
CGRP+ peptidergic nociceptors versus IB4+ non-
peptidergic nociceptors [1,23]. For example, while most
Runx1-persistent nociceptors, including TRPM8+ and
Mrgprd+ neurons, are nonpeptidergic [26,28,29], about
15% of adult CGRP+ neurons also show detectable
Runx1 expression (See Additional file 6). Similarly,
among Runx1-transient nociceptors, TrkA+ and 71% of
Mrgprc11+ neurons are peptidergic (See Additional file
6) [23], whereas Mrgprb4+ neurons are nonpeptdergic
[31]. IB4 is also distributed in both Runx1-persistent
and Runx1-transient nociceptors. For example, Runx1-
persistent nociceptors consist of IB4-;TRPM8+ cold
receptors and IB4+;Mrgprd+ polymodal neurons
[26,28,29,34]. Similarly, Runx1-transient neurons consist

Figure 4 Selective loss of Runx1-dependent genes in
prospective Runx1-transient nociceptors in Tau-Runx1F;
Nav1.8Cre mice. (A-C) In situ hybridization (ISH) using the indicated
probes on sections through adult lumbar (L4/L5) DRG of Tau-Runx1F

control and Tau-Runx1F;Nav1.8Cre mutant mice. For TrkA (C), both
ISH (top pannels) and immunohistochemistry (IHC) (bottom panels)
data are shown. Arrows indicate neurons expressing TRPV1high and
arrowheads indicate those with TRPV1low. (D, E) Graph showing the
average (± SEM) of the total number of neurons expressing the
indicated probes per set of lumbar DRG sections of control (white
bar) and mutant (gray bar) mice. The numbers of Mrgprd+, TRPM8+

and TRPV1high neurons per set of sections (D) were not significantly
changed in mutant versus control animals (249 ± 18 versus 243 ± 8
for Mrgprd+ neurons; 99 ± 6 versus 120 ± 9 for TRPM8+ neurons;
and 25 ± 2 versus 29 ± 1 for TRPV1high neurons) (p > 0.05).
However, CGRP+ and TRPV1low neurons in the mutants (E)
decreased from 533 ± 19 to 120 ± 6 (***p < 0.001) and from 231 ±
18 to 82 ± 12 (***p < 0.001), respectively.
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of IB4-;TrkA+ and IB4+; Mrgpra3/b4/c11+ neurons
[23,24,31].
By analyzing how Runx1-persistent and Runx1-

transient nociceptors were affected in various Runx1
mutant mice, we recognize several distinct modes of
Runx1 activity in controlling nociceptor development.
The first one is observed in Runx1-persistent Mrgprd+

neurons. Mrgprd expression was detected at E16 in L-
CKO mice (See Additional file 2), but eliminated in
adult L-CKO mice, implying that Runx1 is required to
both establish and maintain these neuron identities (Fig.
1). The second one is observed in neurons expressing
Mrgpra3, b4, and c11. Early Runx1 activity is necessary
to establish the expression of these genes [14,24], but
subsequent Runx1 extinguishment is required to main-
tain these neurons (Fig. 4). Mechanistically, we reported
previously that Runx1 switches from an activator at
early stages to a repressor at postnatal stages in regulat-
ing Mrgpra3, b4, and c11 [24], thereby explaining why
their expression can only be sustained in Runx1-transi-
ent nociceptors. The third mode of action is observed in
TrkA+;CGRP+ peptidergic nociceptors. So far, it is
unclear if Runx1 itself plays an essential role in these
neurons. What is clear, however, is that elimination of
Runx1 expression is absolutely essential for the develop-
ment of TrkA+;CGRP+ nociceptors (Fig. 4) [17]. In sum-
mary, dynamic Runx1 expression and activity play a
crucial role in generating nociceptor diversity.

Uncovering two Runx1-dependent differentiation
programs necessary for inflammatory and neuropathic
pain
Our studies show that Runx1-dependent nociceptor dif-
ferentiation can be divided into two programs. Program
A operates preferentially in Runx1-persistent nocicep-
tors, and controls nociceptor phenotypes that are
impaired in both E-CKO and L-CKO mice. Program B
operates mainly in Runx1-transient nociceptors and
controls a separate set of nociceptor phenotypes that are
impaired in E-CKO mice but unaffected in L-CKO mice.
Behavior analyses show that programs A and B are
required for inflammatory pain and neuropathic pain,
respectively. First, impairment of both programs in E-
CKO mice led to deficits in both inflammatory and neu-
ropathic pain [14]. Second, a selective defect in program
A in L-CKO mice led to impaired inflammatory pain
(CFA-induced mechanical allodynia and heat hyperalge-
sia), whereas the retention of program B activity in
these mice is sufficient to establish neuropathic pain
(SNI-induced mechanical allodynia). Third, constitutive
Runx1 expression in Tau-Runx1F;Nav1.8Cre mice led to
impairment of Runx1-transient neurons, including pro-
gram B-dependent nociceptors; these mice show a selec-
tive deficit in neuropathic pain.

Figure 5 Tau-Runx1F;Nav1.8Cre mice exhibited a defect in
neuropathic pain but maintained normal heat and CFA-
induced inflammatory pain. (A) Mechanical thresholds measured
by Von Frey filaments in controls (n = 16) and mutants (n = 10). No
difference was observed (p > 0.05). (B) Heat sensitivity measured
using the hot plate assay. No significant difference was observed
between controls (n = 16) and mutants (n = 10) (p > 0.05). (C)
Neuropathic pain (SNI). Measurement of mechanical allodynia using
Von Frey filaments. A significant difference was observed over the
examined time course (p < 0.001, ANOVA) between controls (n =
14) and mutants (n = 10). (D-E) Inflammatory pain (CFA), (D)
Measurement of mechanical allodynia. Both controls and mutants
were strongly sensitized two days after CFA injection (Controls: n =
15; ***p < 0.001. Mutants: n = 11, ***p < 0.001) with no significant
difference between the two genotypes post-CFA (p > 0.05). (E)
Measurement of heat hyperalgesia two days after CFA injection.
Both controls and mutants were sensitized (controls: n = 5, ***p <
0.001. Mutants: n = 5; ***p < 0.001). The degree of sensitization in
controls (63 ± 3% reduction in latency) was only slightly higher
than that in mutants (49 ± 4%) (†p < 0.05). (F-G) Pain
hypersensitivity in response to intraplantar NGF is impaired in
mutant mice. A significant difference between controls (n = 5) and
mutants (n = 4) was observed over the examined time course for
both mechanical allodynia (p < 0.00001, ANOVA) (F) and thermal
hyperalgesia (p < 0.00001, ANOVA) (G). Error bars indicate standard
errors of the mean (SEM).
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Program A-dependent Runx1-persistent DRG neurons
include Mrgprd+ polymodal nociceptors, TRPM8+ cold
receptors, 75% of TRPV1high neurons, and others.
Mrgprd+ neurons are partially required to establish
mechanical hypersensitivity induced by inflammation
[35]. TRPV1 is essential for inflammatory heat hyperal-
gesia [36,37]. Thus, the impairment of Mrgprd+ neurons
and the loss of 75% of TRPV1high expression in L-CKO
mice might contribute to the defect in CFA-induced
inflammatory pain in these mice.
One surprising finding is that inflammatory pain can

be established in the absence of TrkA signaling in noci-
ceptors, despite numerous reports suggesting that TrkA
signaling plays a crucial role in inflammatory pain con-
trol [4]. We found that in Tau-Runx1F;Nav1.8Cre mice,
despite the fact that TrkA expression was absent and
NGF-induced inflammatory pain was impaired, no
marked changes in CFA-induced mechanical allodynia
and heat hyperalgesia were observed. Two possibilities
(not necessarily mutually exclusive) are worth consider-
ing. First, TrkA signaling could be one of redundant
sensitization pathways activated by CFA injection. Alter-
natively, TrkA-signaling may operate in immune cells to
control inflammatory pain, and those cells were
untouched by Nav1.8Cre [38].
The neuropathic pain impairement observed in Runx1

gain-of-function mice (Tau-Runx1F;Nav1.8Cre mice)
could be due to the loss of Program B-dependent genes
or be additionally caused by the impairment of other
Runx1-transient neurons, such as TrkA+/CGRP+ neu-
rons (Fig. 4C). This complexity, however, does not affect
one key conclusion of this study: Runx1-transient DRG
neurons are critical for neuropathic pain, and Runx1-
persistent neurons, which remain intact in Runx1 gain-
of-function mice, are insufficient to allow neuropathic
pain.
The neuropathic pain defect in our Runx1 gain-of-

function mice seems to conflict with recent results from
Abrahamsen et al., regarding the cellular basis for neu-
ropathic pain. When using Nav1.8Cre mice (made in the
Wood lab) to ablate 85% of nociceptors, Abrahamsen et
al. found that these mice showed no defect in neuro-
pathic pain, indicating that Nav1.8-expressing neurons
are dispensable for neuropathic pain [39]. However,
when we used Nav1.8Cre mice (made in the Kuner lab)
to drive Runx1 expression, neuropathic pain was
impaired. This discrepancy could be due to the differ-
ence between cell ablation and gene knock-in approach.
Alternatively, it could be due to a specificity difference
between these two Cre lines. Wood’s Nav1.8Cre mice
were made by the knock-in strategy [40], whereas
Kuner’s Nav1.8Cre mice were made through a transgenic
approach [19]. This specificity difference is reflected by
the fact that TRPM8+ neurons are unaffected in Wood’s

ablation experiment [39], whereas TRPM8 expression
was absent in Runx1 L-CKO mice using Kuner’s
Nav1.8Cre line (Fig. 1B). Future comprehensive compari-
sons of these two Cre lines will be important for the
pain field.

Conclusion
Altogether, we have uncovered two distinct Runx1-
dependent nociceptor differentiation programs. Program
A operates preferentially in Runx1-persistent nocicep-
tors and controls a set of nociceptor phenotypes neces-
sary for inflammatory pain. Program B operates mainly
in Runx1-transient nociceptors and controls a set of
nociceptor phenotypes permissive for neuropathic pain.
Importantly, the subdivision of Runx1-persistent versus
Runx1-transient nociceptors does not follow classical
subdivisions of nociceptors. Rather, our studies lend
support to a transcription factor-based distinction of
neuronal classes mediating inflammatory versus neuro-
pathic pain.

Methods
Animals
The morning that vaginal plugs were observed was con-
sidered E0.5. For histochemical studies, adult mice at
P60 (and P30 where specified) were used. For behavioral
analyses, 2-3 month-old mutant and control mice were
used. PCR-based genotyping was performed. Primers for
the Cre allele and for Runx1 wild-type and floxed alleles
have been described previously [14]. The following pri-
mers were used for the Tau wild-type allele, 5′-AAT
GTC ACC TGC TTT AGT GGG-3′ and 5′-TGG GAA
GGT GAA TAT TCA ACC-3′; and for the Neo-contain-
ing Tau floxed allele, 5′-GAT CGG CCA TTG AAC
AAG ATG GAT TGC-3′ and 5′-AGC TCT TCA GCA
ATA TCA CGG GTA GCC-3′. All animal handling, sur-
geries, and behavioral test protocols (described below)
were approved by the Institutional Animal Care and Use
Committee at Dana-Farber Cancer Institute.

Real-time RT-PCR analysis of gene expression
Two biologically duplicated sets of total RNA were iso-
lated from lumbar DRG of adult Runx1F/F, Runx1F/F;
Wnt1Cre, or Runx1F/F;Nav1.8Cre mice using TRIZOL
(invitrogen, USA) and following the manufacturer’s pro-
tocol. Reverse transcription was performed with 2.5 μg
of RNA by using Superscript III first strand synthesis kit
(Invitrogen, USA). Real-time quantitative PCR was then
performed using SYBR green master mix (Invitrogen,
USA) in a 7500 Real-time PCR machine (Applied Bio-
systems, USA). The following primer pairs were used:
TRPA1 (Forward: 5′-GGAGACCCTGCTTCACAGAG-
3′, Reverse: 5′-AGTGGAGAGCGTCCTTCAGA-3′),
HPRT (Hypoxanthine phosphoribosyl transferase)
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(Forward: 5′-GGCCAGACTTTGTTGGATTTG-3′,
Reverse: 5′-TGCGCTCATCTTAGGCTTTGT-3′)

In Situ Hybridization and Immunostaining
Tissue preparation, the in situ hybridization (ISH) pro-
cedure, and the probes for TRPM8, TRPV1, Mrgprc11,
CGRP, Mrgprd, TRPC3, P2X3, Mrgpra3, Mrgprb4,
TrkA, SCG10, DRASIC, Ret, and GluR5/Grik1, have
been described previously [14,24,41]. The probes for
PKCq and Mrgprb5 were amplified with gene specific
sets of PCR primers from cDNA template from adult
mouse DRG. Immunohistochemistry (IHC) using rabbit
anti-Runx1 (T. Jessell, Columbia University), rabbit anti-
TrkA (L. Reichardt, UCSF) or IB4-biotin (10 μg/ml,
Sigma) was carried out as previously described [14].
IHC using rabbit anti-TRPV1 (1/4000, AbCam, USA)
was performed on floating sections as described pre-
viously [42]. ISH combined with rabbit anti-Runx1, rab-
bit anti-CGRP (Peninsula, USA) or IB4-biotin staining
has been previously described [14]. Fluorescent immu-
nostaining images were photographed first, followed by
the development of the ISH signals. The brightfield
images of ISH signals were inverted and then merged
with the fluorescence images. This sequential photo-
graphing avoids the masking of low-level fluorescent sig-
nals by non-fluorescent in situ signals, leading to a more
sensitive detection of the coexpression of Runx1, CGRP,
or IB4 with genes of interest. For GFP/ISH double stain-
ings, GFP fluorescent images were directly photo-
graphed on sections (in RNase-free PBS solution) and
then ISH was carried out as described above. The
brightfield images of ISH signals were inverted, and
then merged with the fluorescence images.

Cell Counting
To count DRG neurons, L4/L5 lumbar DRG were dis-
sected from two to three pairs of mutant and control
mice, sectioned in a series of eight slides at a 12 μm
thickness, and each set processed for immunostaining or
used for ISH [14]. The number of neurons per set of
sections was reported. Only cells containing nuclei and
showing levels of expression clearly above background
were counted. At least three independent L4 or L5 lum-
bar DRG were used for each counting. Averages and
standard errors of the mean (SEM) were calculated, and
the difference between wild-type and mutant samples
was subjected to a Student’s t test (Two-Sample Assum-
ing Unequal Variance), with p < 0.05 considered
significant.

Surgery
The spared nerve injury (SNI) model for neuropathic
pain was performed on adult mice (P60 to P90) as
described for rats [32]. The animals used were Runx1F/F

control and Runx1F/F;Nav1.8Cre mutant mice or Tau-
Runx1F control and Tau-RunxF;Nav1.8Cre gain-of-func-
tion mutant mice. Briefly, animals were anesthetized
with an IP injection of 30 μl of nembutal sodium solu-
tion (50 mg/ml, Ovation) or by exposure to isofluorane
(2%). An incision was made on the lateral mid-thigh,
and the underlying muscle was separated to expose the
sciatic nerve. The three branches of the sciatic nerve
(tibial, common peroneal, and sural nerves) were care-
fully separated while minimizing any contact with or
stretching of the sural. The tibial and common peroneal
nerves were then individually ligated with 6.0 silk
sutures and cut distally. 2-3 mm distal to the ligation of
each of the tibial and common peroneal nerves were
removed. The muscle and skin incisions were closed
with silk sutures (6.0). For CFA-mediated inflammation,
mice were briefly anesthetized with isofluorane (3-5 min
at 2%), and 15 μl of Complete Freund’s Adjuvant (CFA)
(Sigma) were injected into the plantar surface of the left
hindpaw. The thickness of the feet, before and two days
after CFA injection, was measured to examine edema
development. In 9 Runx1F/F control mice and 14
Runx1F/F;Nav1.8Cre mutant mice, the thickness of the
feet increased similarly from 2.31 ± 0.06 mm to 2.90 ±
0.09 mm (t-test, p < 0.001), and from 2.24 ± 0.09 mm
to 2.99 ± 0.07 mm (t-test, p < 0.001), respectively. There
was no significant difference in the thickness of CFA-
injected paws between these two genotypes (t-test, p >
0.05). In 15 Tau-Runx1F control mice and 11 Tau-
Runx1F;Nav1.8Cre mutant mice, the thickness of the feet
increased similarly from 2.61 ± 0.02 mm to 3.24 ± 0.05
mm (t-test, p < 0.01), and from 2.36 ± 0.09 mm to 3.10
± 0.11 mm (t-test, p < 0.001), respectively. There was
no significant difference in the thickness of CFA-
injected paws between these two genotypes (t-test, p >
0.05). For NGF-mediated inflammation, 10 μl of NGF
(Sigma, USA) diluted in saline at 5 ng/μl was injected
into the plantar surface of the left hindpaw.

Behavior
All animals were acclimatized to the behavioral testing
apparatus in three to five ‘habituation’ sessions. After
habituation, two baseline measures were recorded on
two consecutive days for each of the behavioral tests
prior to the surgery. After the surgical procedures (con-
sidered as day 0), the behavioral tests were performed at
defined intervals (see Figs. 3 and 5). The experimenter
was blinded to the genotype of the animals. To measure
mechanical pain, we placed the animals on an elevated
wire grid and the lateral plantar surface of the hindpaw
was stimulated with calibrated Von Frey monofilaments
(0.008-2 g). We started with the 0.16 g filament and
moved up if response is negative and down if response
is positive. The withdrawal threshold for the Von Frey
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assay was determined as the filament at which the ani-
mal withdrew, flicked or licked its paw at least twice in
ten applications. To measure surface heat pain, we
placed mice on a hot plate (IITC, USA) and the latency
to hindpaw flicking, licking, or jumping was measured.
The hot plate was set at 50°C, and all animals were
tested sequentially with at least 5 min between tests. A
cutoff time of 60 seconds was set for testing at 50°C. To
measure radiant heat pain, animals were put in plastic
boxes and the plantar paw surface was exposed to a
beam of radiant heat (IITC, USA) according to the Har-
greaves method [33]. Paw withdrawal latency was then
recorded (beam intensity was adjusted to result in a
latency of 8-12 seconds for control animals baselines).
The heat stimulation was repeated 3 times at an interval
of 5-10 min for each animal and the mean calculated. A
cutoff time of 18 seconds was set to prevent tissue
damage.

Statistical Analyses
Baseline data were calculated as the average of two inde-
pendent tests performed on two consecutive days. Post-
CFA data were taken from a single test performed two
days post-injection and subjected to the Student’s t-test
(Two-Sample Assuming Unequal Variance). Post-SNI
Von Frey time course measurements for Runx1F/F com-
pared to Runx1F/F;Nav1.8Cre and Tau-Runx1F compared
to Tau-Runx1F;SNSCre were analyzed by two-way
repeated ANOVA (R, R Development Core Team, Aus-
tria) followed by Bonferroni’s posttest. Von Frey results
in SNI animals were plotted using a log scale. p < 0.05
was accepted as statistically significant. Post-NGF time
course measurements (Von Frey and Hargreaves) for
Tau-Runx1F compared to Tau-Runx1F;SNSCre were ana-
lyzed by two-way repeated ANOVA (R, R Development
Core Team, Austria) followed by Bonferroni’s posttest.

Additional material

Additional file 1: Generation of Runx1F/F;Nav1.8Cre late conditional
knockout (L-CKO) in the DRG. (A) Schematic showing the conditional
Runx1 allele. Exon 4, encoding part of the DNA binding Runt domain,
was flanked by two loxP sequences (black triangles). Deletion of this
exon generated a null allele. The neo cassette was also flanked by loxP
sites. After crossing Runx1F/F mice with Nav1.8Cre mice, exon 4 and the
neo cassette were excised by Cre-mediated DNA recombination. This
Runx1 conditional knockout mouse line was referred to as Runx1F/F;
Nav1.8Cre. (B) Runx1 expression was unchanged in E14.5 L-CKO mutant
mice. Double immunostaining of Runx1 (green) and TrkA (red) at E14.5
on lumbar DRG sections from control mice and mutant mice (left). Note
that at this stage the percentage of Runx1+ in TrkA+ neurons was
unchanged, from 91% (631/687) in control mice to 92% (434/471) in
mutant mice as shown in the graph (right). (C) Runx1 expression was
eliminated by E17. Immunostaining of Runx1 on sections through lumbar
L-CKO DRG at E16 (left) and E17 (right). Note that Runx1 expression was
still strongly detected at E16 but completely lost at E17. (D) L4-L5 DRG
total neuronal number was not changed in Runx1 late knockouts. Graph
showing that the total number of neurons (as determined by the

expression of the panneuronal marker SCG10) per set of sections in P30
lumbar DRG in control versus mutant mice was not significantly changed
(from 1285 ± 50 versus 1314 ± 40 respectively, p > 0.05).

Additional file 2: Runx1 was required for Mrgprb5, GluR5, PKCq,
and TRPA1 expression, and for the maintenance of Mrgprd
expression. (A) In situ hybridization using the indicated probe on
lumbar L4/5 DRG from P30 Runx1F/F control mice and Runx1F/F;WntCre

early knockout mice. (B) Graph shows RT-PCR measuring mRNA levels of
TRPA1 using adult L4-5 DRG from Runx1F/F control, Runx1F/F;Wnt1Cre early
KO, and Runx1F/F;Nav1.8Cre late KO mice. RT-PCR data was normalized
with HPRT. Each bar represent n = 2 mice. (C) In situ hybridization using
an Mrgprd probe on sections through E16.5 lumbar DRG of Runx1F/F

control and Runx1F/F;Nav1.8Cre mutant mice. Note that Mrgprd was
detected in the mutant at E16.5 but lost at P30 (see Fig. 1), indicating a
maintenance role.

Additional file 3: Expression of Ret, TrkA, CGRP and DRASIC in
Runx1F/F;Nav1.8Cre late knockout mice. (A) In situ hybridization with a
Ret probe on transverse sections through adult lumbar DRG of control
Runx1F/F mice and mutant Runx1F/F;Nav1.8Cre mice. To the right of the
panels, a graph showed that the average (± SEM) number of neurons
expressing Ret per set of lumbar DRG sections was reduced from 630 ±
24 (control, white bar) to 276 ± 30 (mutant, gray bar) (p < 0.001). (B)
Expansion of peptidergic neuron markers in late Runx1 knockout. Single
In situ hybridization with indicated probes (top) or double labeling of
indicated mRNA (red) with IB4 (green) (bottom) in control and mutant
DRG. The number of TrkA+ neurons increased from 262 ± 18 to 900 ± 46
(p < 0.001), and TrkA expression in IB4+ neurons increased from 5.30% ±
0.05% to 80.4% ± 2.4% (p < 0.05). CGRP+ neurons increased from 434 ±
23 to 1171 ± 52 (p < 0.001), and CGRP+ in IB4+ neurons increased from
11.4% ± 0.4% to 81.5% ± 1.3% (p < 0.01). DRASIC+ in IB4+ neurons
increased from 0% to 57.1% ± 4.4% (p < 0.001). However, the expression
of the vesicular Glutamate transporters (VGLUT1 and VGLUT2) and Nav1.8
were not affected in late Runx1 knockout mice (data not shown).

Additional file 4: Afferent central innervation of IB4+ sensory fibers
in the dorsal horn was impaired in Runx1F/F;Nav1.8Cre late knockout.
Double staining of IB4 (green) and CGRP (red) on P30 dorsal horn
sections of control Runx1F/F and Runx1F/F;Nav1.8Cre mice. In control mice,
peptidergic CGRP+ fibers innervated the superficial lamina, while
nonpeptidergic IB4+ fibers innervated preferentially the inner lamina.
Similar to the phenotype in Runx1 early conditional mutant, IB4+ fibers in
Runx1F/F;Nav1.8Cre late mutants shifted their innervation from the inner
lamina to the more superficial lamina.

Additional file 5: Double labeling of GFP protein (green) and
indicated RNA probe (red) in lumbar DRG from P30 MrgprdΔEGFP

animals. Mrgprd was used here as a surrogate marker for Runx1+

neurons; see main text for details. Note that Mrgprb5, GluR5, TRPC3, and
PKCq were largely overlapping with GFP and were thus predominantly in
Runx1-persistent neurons. Quantitative data were shown to the right of
the panels.

Additional file 6: Double Staining of CGRP with Mrgprc11 and with
Runx1. (A) A majority of Mrgprc11+ neurons were peptidergic. Double
staining of CGRP protein (red) and Mrgprc11 mRNA (green) on sections
from P30 lumbar DRG from WT mice. Note that 71% of total Mrgprc11+

neurons (67 of 94) coexpressed CGRP (arrows). (B) Runx1 was expressed
in a small subset of peptidergic neurons. Double labeling of Runx1
protein (green) and CGRP mRNA (red) on P30 lumbar sections of DRG
from WT mice. About 15% of CGRP+ neurons (40 in 261) showed
detectable Runx1 expression (arrows).

Additional file 7: Generation of Tau-Runx1F;Nav1.8Cre mice that
drove constitutive Runx1 expression in most nociceptors. (A)
Schematic showing the conditional knock-in of the Tau-Runx1 allele. A
lox-STOP-lox-Runx1-IRES-nlsLacZ-neo cassette was inserted into exon 2
(black box) of the Tau locus. After crossing Tau-Runx1F mice with
Nav1.8Cre mice, The ‘STOP’ was excised by Cre-mediated DNA
recombination, allowing Runx1 to be expressed from the Tau locus. (B)
Expansion of Runx1 expression in Tau-Runx1F;Nav1.8Cre mutant mice.
Transverse sections through adult lumbar DRG of Tau-Runx1F control
mice (left) and Tau-Runx1F;Nav1.8Cre mice (right) were labeled by
immunostaining with Runx1. Arrowheads indicate Runx1-negative
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neurons while arrows indicate Runx1-positive neurons. (C) Graph
showing that the average (± SEM) of total number of neurons expressing
Runx1 (as detected by immunohistochemistry) per set of sections from
control (white bar) and mutant mice (gray bar) increased from 460 ± 14
to 864 ± 17 (***p < 0.001). Futhermore, the total neuron number (as
marked by the pan-neuronal marker SCG10) was reduced in the mutant
mice by 25% (from 1427 ± 52.8 to 1068 ± 33, p < 0.01).

Additional file 8: Development of proprioceptors and
mechanoceptors was unaffected in Tau-Runx1F;Nav1.8Cre mice. (A) In
situ hybridization using the indicated probes on sections through adult
lumbar (L4/L5) DRG of Tau-Runx1F control and Tau-Runx1F;Nav1.8Cre

mutant mice. (B) Graph showing the average (± SEM) of the total
number of neurons expressing the indicated probes per set of lumbar
DRG sections of control (white bar) and mutant mice (gray bar). Note
that the numbers of PV+ and TrkB+ neurons per set of sections were not
significantly changed in mutant versus control animals (from 177 ± 11 to
175 ± 5 for PV+ neurons and from 48 ± 2 to 42 ± 4 for TrkB+ neurons)
(p > 0.05).

Additional file 9: Examination of afferent central innervation in the
dorsal horn of Tau-Runx1F;Nav1.8Cre mutants. Double staining of IB4
(green) and CGRP (red) on P30 dorsal horn sections of Tau-Runx1F

control and Tau-Runx1F;Nav1.8Cre mutant mice. Note that the residual
CGRP+ fibers still innervated the superficial lamina, and IB4+ fibers also
showed normal innervation to the inner lamina of the spinal cord of
mutant mice.
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