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Abstract

Background: We have previously used the rat 4 day Complete Freund’s Adjuvant (CFA) model to screen
compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this
model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their
own gene expression profiles using the Connectivity Map approach.

Results: Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from
rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of
these data indicated that the two groups were distinguishable by differences in genes important in immune
responses, nerve growth and regeneration. This list of differentially expressed genes defined a “CFA signature”. We
used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that
had gene expression signatures that were inversely related (’negatively connected’) with our CFA signature. To test
the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic
receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic
activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia
comparable to that of Naproxen in this model.

Conclusion: Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of
the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.

Background
Several recent studies have characterized preclinical pain
models with the goal of defining gene expression pro-
files related to different kinds of pain [1-9]. An under-
standing of gene alterations associated with pain is
important as these may open up new pathways for tar-
geting pain. While there are studies that describe gene
expression profiles following nerve transection or nerve
ligation models in animals [1-5,9], reports defining gene
expression in studies that utilize inflammatory models
such as the Complete Freund’s Adjuvant (CFA) model
are scarce. The rat CFA model yields acute inflamma-
tion and pain as measured by tactile allodynia [10-12],
changes in weight bearing, and paw pressure withdrawal

thresholds [13]. We have used this model for screening
potential compounds for osteoarthritic pain [11-13]. The
non-steroidal anti-inflammatory drug (NSAID),
naproxen [14], is active in the CFA model, reducing
mechanical allodynia, weight bearing differentials and
increasing the paw pressure withdrawal thresholds and
is thus a clinically relevant positive control for this
model.
The Connectivity Map was recently described by

Lamb et al [15], as an approach to identify connections
between diseases and drugs, based on their gene expres-
sion signatures. This resource consists of a large public
database that includes hundreds of compound profiles
termed the “reference gene signatures” obtained from
cultured human cell lines treated with more than thir-
teen hundred pharmacologically active agents (Broad
Build02 database) [15]. The database is attached to a
pattern-matching tool. Gene signatures of interest from
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expression profiling studies can be compared to the
Connectivity Map database, and subjected to a pattern
matching algorithm that ranks similarities between the
gene signature of interest and the reference signatures
[15]. This can lead to identification of ‘connections’
between an investigator’s gene expression signature (e.g.
a disease tissue/model) and small molecule profiles in
the database. Several recent studies have used this
resource to identify novel agents for different indica-
tions, including hair growth and leukemia [16,17].
Dorsal Root Ganglia (DRG) are known to be impor-

tant sites for pain processing. In this study, we first gen-
erated gene expression profiles of the ipsilateral L4 and
L5 dorsal root ganglia (DRG) extracted from rats
injected with CFA in their left paws for 4 days and com-
pared them to profiles of L4 and L5 DRGs from naïve
rats. The gene signature of CFA-treated versus naïve
rats was created and queried in the Connectivity Map
database. Phenoxybenzamine - an alpha adrenergic
receptor antagonist and several other agents showed sig-
nificant inverse connectivity to the CFA signature. We
thus reasoned that these agents could potentially reduce
pain processing and have antinociceptive properties in
the CFA model. Here we describe the data leading to
the generation of this hypothesis and our subsequent
experimental confirmation of the activity of phenoxy-
benzamine in this model of inflammatory pain.

Methods and materials
Animals
Adult Male Sprague Dawley rats (200-250 g) were used
in all experiments. Rats were purchased from Harlan,
(Indianapolis, IN) and maintained on a 12/12 hr light/
dark cycle with food and water ad libitum. Rats were
acclimated for a week before use in experiments. The
Pfizer Institutional Animal Care and Use Committee
reviewed and approved the animal use in these studies.
The animal care and use program is fully accredited by
the Association for Assessment and Accreditation of
Laboratory Animal Care, International.

CFA-induced inflammation
Rats were anesthetized briefly with isoflurane (5%
induction, then 2% maintenance) and their left foot
swabbed with ethanol. 0.15 ml Complete Freund’s adju-
vant (CFA, SIGMA, St. Louis, MO) was injected subcu-
taneously into the plantar surface of the left hind paw
of the rat [10]. The CFA injection immediately induces
local inflammation, paw swelling and pain, which per-
sists for at least 2 weeks post-injection. For behavior
studies, rats were placed on the equipment and left to
acclimate for 30 minutes. On day 0, baseline measure-
ments were read and rats were injected with CFA there-
after. On day 3, post-CFA reads were taken and only

rats that met criteria of hyperalgesia were placed on the
study on day 4.

Mechanical allodynia and thermal hyperalgesia
To assess mechanical allodynia, rats were placed on an
elevated wire mesh platform, and to confine their move-
ment, a 15 × 22 × 25 cm plexiglass chamber was placed
over each animal. Mechanical paw withdrawal thresh-
olds (PWT) were measured by using a set of Semmes
Weinstein monofilaments (Stoelting, Wood Dale, IL)
using the Dixon up and down method [18]. Only rats
that displayed a PWT of 8 g or less on day 3 (post-
CFA) were placed on study. To assess thermal hyperal-
gesia rats were placed on glass plates with the source of
heat applied from the bottom. On day 3 (post-CFA) rats
that gave withdrawal latencies of 6 s or less were
included in the experiments. Rats were then randomly
assigned to either a vehicle group or drug group. On
day 4, rats were treated with either the vehicle (saline),
or drug and reads were taken 2 hrs after the treatment.
All measurements were performed fully randomized and
blinded and the reader did not know what treatment
each rat received.

Drug administration
All drugs/vehicle were administered by oral gavage at 5
mg/kg/ml. Naproxen and phenoxybenzamine hydro-
chloride were purchased from SIGMA (St. Louis MO).
Both were dissolved in saline, which was used as vehicle.
All measurements were taken 2 hr post dosing. A group
of naïve rats was also used in experiments, and these
were not injected with CFA, and were not dosed.

Statistical analysis of behavioral data
This was done on the raw data using a one way
ANOVA followed by the Student- Newman-Keul’s Post-
Hoc test.

RNA isolation and gene array profiling
A naive (control) group of rats (n = 6) and a group of
rats injected with CFA (n = 6) as described above, were
used for gene expression profiling experiments. On day
4, rats were euthanized and ipsilateral L4 and L5 dorsal
root ganglia (DRG) were extracted, pooled for each rat,
and immediately frozen in liquid nitrogen. DRG were
stored at -80°C until used. RNA isolation and processing
for gene arrays was done according to standard proto-
cols by Genelogic (Boston, MA). Briefly, dorsal root
ganglia tissues were homogenized in guanidium isothio-
cyanate with b-mercaptoethanol (GITC+BME), using
the Omni TH-115 homogenizer. Trizol was added and
mixed by repeated inversions. RNA aqueous phase was
separated using Heavy Phase Lock Gel tubes. Chloro-
form and sample homogenate were added to the tube
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and shaken vigorously to remove protein contaminants,
incubated on ice for 9-12 min, then centrifuged. The
aqueous phase was cleaned using the Qiagen RNEasy
Mini Kit (Cat # 74106). A bead cleanup was performed
using Agencourt RNAClean magnetic beads (Cat #
A29168) to further purify the RNA. RNA quality was
evaluated by an Agilent Bioanalyzer. Only the RNA
samples that passed the quality control measures pro-
ceeded for microarray. 12 high quality RNA samples
each from an individual animal were prepared. 1 RNA
sample from an animal in the control group had low
yield and did not get processed further. The remaining
11 RNA samples were each run on a separate microar-
ray. All 11 microarrays passed the quality control cri-
teria and proceeded to downstream analysis. In total, 5
microarrays each from the 5 animals in the control
group, and 6 microarrays each from the 6 animals in
the CFA group were analyzed.

Rat whole genome 4X44K one color microarray
processing
Sample preparation, hybridization, wash, scanning and
feature extraction was performed according to the stan-
dard protocol, ‘One-Color Microarray-Based Gene
Expression Analysis v.5.7 (P/N G4140-90040)’, by Agi-
lent Technologies. One exception was that Triton was
excluded from the wash buffer. Only the microarrays
that passed the quality control criteria proceeded to
downstream analysis.

Microarray data processing
The Agilent rat whole genome microarray signals were
normalized with a program developed internally. Briefly,
signal normalization against a common sample was per-
formed using a smoothed piecewise linear curve, trained
on the log intensities that differed by < 10% rank order
between two samples. Local background subtraction was
performed on each array prior to normalization. A com-
putational naïve control pool was created from the aver-
aged normalized signals of the individual naïve control
arrays. Within the naïve control arrays, a median array
was selected as the one least distant from the other
naïve control arrays. All naïve control arrays were nor-
malized against the median array prior to calculating the
averaged normalized signals of the control pool. Finally
each sample was normalized against the computational
naïve control pool. Fold changes between samples were
calculated, raising weak signals to a minimum value of
10 prior to comparison. Fold and p-values from stu-
dent’s t-test between groups was calculated.

Connectivity Map
The Broad’s Connectivity Map algorithm was implemen-
ted in-house. All compound profiles were downloaded

from Broad Build02 database [15]. A nonparametric,
rank-based pattern matching strategy based on Kolmo-
gorov-Smirnov statistics was devised and used in the
calculation of the Connectivity Score and p-value as
described in [15] and [19].

Gene Expression Pathway Analysis
Oligo probes that met the fold and p-value cutoff (arbitra-
rily set at 1.5 fold increase or decrease and p-value < =
0.05) were used for Functional Analysis using Ingenuity
Pathway Analysis (Ingenuity IPA 8.0 (content version
2602); Ingenuity® Systems, http://www.ingenuity.com).
Functional Analysis identified the biological functions
and/or diseases that were significant to the dataset.
Fischer’s exact test was used to calculate a p-value deter-
mining the probability that each biological function and/or
disease assigned to that dataset is due to chance alone.
Canonical Pathway Analysis identified the pathways from
the Ingenuity Pathways Analysis library of canonical path-
ways that were significant to the dataset. The significance
of the association between the data set and the canonical
pathway was measured in 2 ways: 1) A ratio of the number
of genes from the dataset that map to the pathway divided
by the total number of genes that map to the canonical
pathway is displayed. 2) Fisher’s exact test was used to cal-
culate a p-value determining the probability that the asso-
ciation between the genes in the dataset and the canonical
pathway is explained by chance alone.

Hierarchical Clustering
The transcript expression signal intensity was first mean
centered and normalized across samples and then a
complete linkage clustering method was applied on the
correlation similarity measure for hierarchical clustering
and heat map in Spotfire® DecisionSite.

Results
CFA-behavior studies
Injection of CFA significantly reduced mechanical paw
withdrawal thresholds (PWT) by 62% when compared
to naïve rats (P < 0.001, Figure 1A). Naproxen (10 mg/
kg) significantly reversed mechanical allodynia back to
about 73% (P < 0.01, Figure 1A) of naïve mechanical
thresholds. Injection of CFA significantly induced ther-
mal hyperalgesia as measured by a decrease of latencies
to withdraw by about 76% when compared to naïve rats
(P < 0.001, Figure 1B). Naproxen significantly reversed
the thermal hyperalgesia back to about 86% of naïve
controls (P < 0.001, Figure 1B). These effects are in
close agreement with previously reported data [11,12].

Gene expression microarray studies
Gene expression in DRG was compared between arrays
obtained from 4 day CFA-injected rats and from naïve
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rats. Genes that were up- or down- regulated by ≥ 1.5
fold (p ≤ 0.05), were used to generate a differential
expression list for CFA-treated versus naive rat DRG.
235 oligo probes met these criteria. 178 oligo probes
(representing 140 unique genes) have HUGO gene sym-
bols and further analysis was focused on these genes.
Hierarchical clustering indicated that these transcripts
could separate the CFA samples from naïve samples, as
shown in the heat map (Figure 2). We thus consider
these transcripts as a molecular signature of the 4 day
CFA model in the DRG tissue.

Overall, it appears that genes that mediate inflamma-
tion are suppressed, while genes that mediate neuron
growth/survival are enhanced in this 4 day CFA gene
signature. Ingenuity® Functional and Pathway Analysis
(IPA) was conducted on the genes decreased by CFA
treatment in the DRG to help understand the function
and canonical pathways perturbed. IPA is a web-based
application that enables the visualization, discovery and
analysis of molecular functions and pathways within
gene expression profiles. One function identified that
was significantly affected (p-value < 0.01) is suppression
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Figure 1 Oral naproxen is effective in reducing nociceptive behavior in 4 day CFA-injected rats. Naproxen reduced A) mechanical
thresholds and B) paw withdrawal latencies taken 2 hr post dose. n = 6-16 rats per group. For this and other figures, data is presented as mean
+/- s.e.m. **p < 0.01 and ***p < 0.001, significant differences from vehicle (saline) - dosed rats.
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of a group of genes that have a role in immune response
or inflammatory disorders (Table 1). Also noted is that
leucine rich repeat interacting protein 1 (Lrrfip1), a gene
that represses TNF alpha expression, is increased in the
DRG from CFA-treated rats compared to that from
naïve rats. This data suggests that the immune and
inflammatory response may play a role in regulating
pain processing in the CFA treated DRG. The eicosa-
noid signaling pathway was also significantly affected in
this model (p-value = 4E-3), with multiple pathway
components down-regulated in the DRG tissue of the
CFA-treated group 4 days after CFA treatment (Figure
3). These include the phospholipase A2 group IVA
(PLA2g4a), prostaglandin-endoperoxide synthase 1
(Ptgs1), and rat arachidonate 12/15-lipoxygenase. In
addition, several genes that might modulate the release
of eicosanoids, such as BCL6 [20], BTK [21] and CNR2
[22], were also reduced 4 days post-CFA injection.
Another group of genes suppressed by CFA encode

proteins that may contribute to T cell function. Among

these genes, IL21R [23], IL2RB [24], RHOH [25], CNR2
[26], IKZF1 [27], BCL6 [28], PTGS1 [29], CASP8 [30],
and CD52 [31] were all down-regulated. In addition,
several genes related to T-cell function were increased
(Table 2) in the CFA treated rat DRGs. Examples
include IL22RA2 [32]; CD7 [33]; Lgals2 (also called
galectin-2) [34], and IL2RG [35].
Genes that were up-regulated in the DRG of CFA

treated rats, include some that have been previously
shown to play a role in pain and neuronal growth, dif-
ferentiation and prevention of neuronal death. These
include neuromedin U, heptocyte growth factor, steroid-
5-alpha-reductase (SRD5A2), SLC30A3, PC4, SFRS1
interacting protein 1 (PSIP1), PER2, ZHX2 and ENC1.
The functions of these are discussed in the discussion
section.

Connectivity Map Results
Using the list of differentially expressed genes between
the CFA-treated and naive rats as a DRG CFA signature,
we evaluated an internal version of the Broad’s Connec-
tivity Map to identify compounds that display inverse
connectivity with this CFA signature. This approach
yielded five compounds that met the criteria with a p-
val < 0.005 and a connectivity score < -0.5 (Figure 4).
Based on their negative connectivity with the CFA sig-
nature, we hypothesized that these compounds could
potentially reduce pain in the CFA model. To test this
further, we selected one of the most strongly inferred
compounds, phenoxybenzamine, for follow up experi-
ments in the 4 day CFA model to examine its antinoci-
ceptive potential.

Phenoxybenzamine in the 4 day CFA assay
Phenoxybenzamine was evaluated in the 4 day CFA
model using mechanical allodynia as an outcome mea-
surement and with naproxen as a positive control.
When compared to the vehicle treated rats, naproxen
(10 mg/kg) reversed mechanical allodynia by 93% (P <
0.01, Figure 5). Phenoxybenzamine, at 10 mg/kg was
almost as efficacious as naproxen and reversed mechani-
cal allodynia by 82% (P < 0.05, Figure 5).

Discussion
In this study, we first conducted gene expression micro-
array experiments to examine transcriptional profiles in
the ipsilateral dorsal root ganglia (DRG) of adult rats in
a 4 day CFA model of inflammatory pain and generated
a rat CFA model gene signature. Our second aim was to
identify compounds that were negatively connected to
this CFA gene signature using the Connectivity Map
approach. Our third objective was to test the hypothesis
that compounds identified in this way could reduce
CFA-induced pain in this 4 day model. Reports on

Figure 2 Heat map of transcripts differentially expressed in the
DRG between naïve and CFA injected rats. The branch length in
the dendrogram represents the relation between the samples, the
shorter the branch, the higher the similarity between the samples.
Up-regulated genes are shown in yellow and down-regulated genes
are in blue.
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transcriptional profiling in inflammatory pain models
are scarce. Yang et. al. examined gene expression
changes in the inflamed tissues and the corresponding
DRGs in a carrageenan model using a mini-array con-
taining 100 cytokines, chemokines and related receptors
[8]. Parkitna et. al. conducted transcriptional profiling of
4000 genes in the lumbar section of rat spinal cord of a
3-day and a 14-day CFA model [4]. The authors found a
dramatic shift in the regulation of secretory vesicle traf-
ficking in the spinal cord in the CFA model. The
authors did not profile the L4-L5 DRG. However, they
selected 4 transcripts that were changed in the spinal
cord and tested them in the L4-5 DRG with qPCR.

Consistent with our results, none of the 4 transcripts
were significantly changed in the CFA DRG comparing
to the naïve rats. To the best of our knowledge, there
are no published DRG whole genome microarray studies
following 4 days CFA inflammation in rats. We used the
CFA model since commonly used NSAIDs such as
naproxen that are used to treat OA pain are effective in
this model and it is thus frequently used pre-clinically
to identify new therapies for OA pain [11,12].
By clustering differentially expressed genes by function

or related pathways, we identified a number of genes
that are implicated in the modulation of the immune
system. Surprisingly, we found that the expression of

Table 1 Immune and inflammatory response genes down-regulated in the DRG by intraplantar CFA

Gene Symbol Gene Name Fold

Adamts12 ADAM metallopeptidase with thrombospondin type 1 motif, 12 -1.6

Alox15 arachidonate 15-lipoxygenase -2.1

Bcl6 B-cell CLL/lymphoma 6 -1.6

Btk Bruton agammaglobulinemia tyrosine kinase -1.5

Ca6 carbonic anhydrase VI -1.6

Casp8 caspase 8, apoptosis-related cysteine peptidase -1.5

Cd22 CD22 molecule -2.2

Cd52 CD52 molecule -1.9

Cnr2 cannabinoid receptor 2 (macrophage) -1.7

Colec12 collectin sub-family member 12 -1.9

Cpa3 carboxypeptidase A3 (mast cell) -2.4

Ctgf connective tissue growth factor -1.6

Ctse cathepsin E -1.8

Cybb cytochrome b-245, beta polypeptide -1.6

Efna4 ephrin-A4 -1.5

F13a1 coagulation factor XIII, A1 polypeptide -1.8

Fgr Gardner-Rasheed feline sarcoma viral (v-fgr) oncogene homolog -1.5

Hcls1 hematopoietic cell-specific Lyn substrate 1 -1.8

Hecw2 HECT, C2 and WW domain containing E3 ubiquitin protein ligase 2 -1.6

Ikzf1 IKAROS family zinc finger 1 (Ikaros) -1.8

Il1r2 interleukin 1 receptor, type II -1.6

Il21r interleukin 21 receptor -1.5

Il2rb interleukin 2 receptor, beta -1.6

Klra7 killer cell lectin-like receptor, subfamily A, member 7 -1.6

Lox lysyl oxidase -1.6

Npas2 neuronal PAS domain protein 2 -1.7

Odz4 odz, odd Oz/ten-m homolog 4 (Drosophila) -1.5

Pdgfrl platelet-derived growth factor receptor-like -1.7

Pla2g4a phospholipase A2, group IVA (cytosolic, calcium-dependent) -1.9

Ptgs1 prostaglandin-endoperoxide synthase 1 -1.9

Rara retinoic acid receptor, alpha -1.6

Si sucrase-isomaltase (alpha-glucosidase) -1.6

Sit1 signaling threshold regulating transmembrane adaptor 1 -1.5

Spag16 sperm associated antigen 16 -1.6

Tnfrsf14 tumor necrosis factor receptor superfamily, member 14 -1.7

Tpsb2 tryptase beta 2 -1.5

Xdh xanthine dehydrogenase -1.9
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these genes is decreased in the CFA-treated rats, sug-
gesting suppression of the immune system at day 4
post-CFA treatment in this model system. These include
genes in the eicosanoid signaling pathway, including
phospholipase A2 group IVA (PLA2g4a), prostaglandin-
endoperoxide synthase 1 (Ptgs1), and rat arachidonate
12/15-lipoxygenase. In addition, several genes such as
BCL6, BTK and CNR2 that may modulate release of
eicosanoids [20-22] are also reduced in the ipsilateral
DRGs four days after CFA treatment. We speculate that
these genes are early players that initiate inflammation
and pain, and their signals are carried forth by other
pathways that maintain chronic pain/inflammation with
time.
Another group of genes down-regulated by CFA treat-

ment encode proteins that regulate T cell function.
These include IL21 receptor subtype II, IL2 receptor
beta, RHOH (Ras homolog gene family member H),
cannabinoid receptor 2, IKZF1, CASP8, and CD52
[23-31]. It is also noteworthy that IL22RA2, a soluble
receptor for IL22 that antagonizes IL22 which is primar-
ily produced by activated T cells [32], CD7 which pro-
motes T cell apoptosis [33], Lgals2 (galectin-2), a
proapoptotic effector of activated T-cells [34], and IL2
receptor gamma [35] are all increased in the CFA group
compared to the naïve group. This may represent a
mechanism of communication by the DRG that modu-
lates T cell activity during inflammation or pain

processing. In this regard, T cells have been recently
suggested to play a role in neuropathic pain [36,37]. In a
model where DRG inflammation was induced by admin-
istration of epidural zymosan in incomplete Freund’s
Adjuvant [7], an increase of CCL2 (MCP-1) among
other cytokines was observed, while IL-2 and IL-12 were
decreased on day 3 post inflammation. Similarly, in a
peripheral inflammation model induced by hind paw
injection of carrageenan, both the Scya2 (the CCL2
mRNA) and the gene product MCP-1 (CCL2) were up-
regulated following nociceptive stimuli [8]. In that study,
Scya2 mRNA was increased about 2-fold in the ipsilat-
eral versus contralateral rat DRG and lasted up to 72
hour post carrageenan. Scya2 mRNA was localized to a
subpopulation of vanilloid receptor 1 (TRPV1) contain-
ing neurons. Stimulation by a TRPV1 agonist, resinifera-
toxin increased expression of Scya2 mRNA. These
results are very similar to our findings where we found
increased expression of the CCL2 gene in the DRG fol-
lowing CFA injection. CCL2 has also been reported to
be up-regulated in the DRG in models of neuropathic
pain ([38] and [39] for review). Thus, CCL2 seems to be
a common signal elicited in different preclinical pain
models.
Other genes that are induced in the DRG of CFA

treated rats, include some that encode proteins either
known to play a role in pain, promote neuronal
growth/differentiation, or prevent neuronal death. One

Figure 3 The eicosanoid signaling pathway from Ingenuity Pathway Analysis software. Only part of the pathway is shown. The
highlighted genes (in yellow) were down-regulated in the 4 day CFA model of inflammatory pain. PLA2: phospholipase A2 group IVA; PTGS:
prostaglandin-endoperoxide synthase 1; ALOX12, ALOX15: rat arachidonate 12/15-lipoxygenase.
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Table 2 Genes up-regulated in the DRG by intraplantar CFA

Gene Symbol Gene Description Fold

Ccl2 chemokine (C-C motif) ligand 2 1.7

Enc1 ectodermal-neural cortex 1 1.8

Hgf hepatocyte growth factor 1.5

Nmu neuromedin U 1.5

Per2 period homolog 2 1.6

Psip1 PC4 and SFRS1 interacting protein 1 1.6

Slc30a3 solute carrier family 30 1.7

Srd5a2 steroid-5-alpha-reductase, alpha polypeptide 2 1.7

Zhx2 zinc fingers and homeoboxes 2 1.6

Cacna1d calcium channel, voltage-dependent, L type, alpha 1D subunit 1.5

Cd7 Cd7 molecule 2.7

Defb50 defensin beta 50 1.6

Dennd4b similar to brain specific protein 4 1.5

Dnah1 dynein, axonemal, heavy chain 1 1.5

Foxred2 similar to hypothetical protein FLJ23322 1.5

G1p2 interferon, alpha-inducible protein (clone IFI-15K) 1.5

Gmcl1 germ cell-less homolog 1 1.6

Hmgn2 high mobility group nucleosomal binding domain 2 1.6

Hnf4a hepatocyte nuclear factor 4, alpha 1.8

Hpse2 heparanase 2 1.6

Htr2b 5-hydroxytryptamine (serotonin) receptor 2B 2.1

IgG-2a gamma-2a immunoglobulin heavy chain 1.5

Il22ra2 interleukin 22 receptor, alpha 2 1.7

Il2rg interleukin 2 receptor, gamma 1.5

Klhl34 similar to hypothetical protein FLJ34960 1.6

Klk9 kallikrein related-peptidase 9 1.7

Lgals2 lectin, galactoside-binding, soluble 2 1.5

Lrrfip1 leucine rich repeat (in FLII) interacting protein 1 1.6

Muc4 mucin 4, cell surface associated 1.6

Olr1092 olfactory receptor 1092 1.5

Olr1229 olfactory receptor 1229 1.6

Olr1366 olfactory receptor 1366 1.5

Olr233 olfactory receptor 233 1.8

Olr327 olfactory receptor 327 1.8

Olr651 olfactory receptor 651 1.6

Olr859 olfactory receptor 859 1.9

Podxl podocalyxin-like 2.4

Pole4 polymerase (DNA-directed), epsilon 4 (p12 subunit) 1.6

Pot1b similar to Protection of telomeres 1 1.9

Ppp1r8 protein phosphatase 1, regulatory (inhibitor) subunit 8 1.5

Rnf43 ring finger protein 43 1.5

Scn7a sodium channel, voltage-gated, type VII, alpha 1.6

Sele selectin, endothelial cell 2.1

Spetex-2F Spetex-2F protein) 1.7

Stac2 SH3 and cysteine rich domain 2 1.6

Tm4sf20 transmembrane 4 L six family member 20 1.7

Tmbim4 transmembrane BAX inhibitor motif containing 4 1.6

Tmprss3 transmembrane protease, serine 3 1.5

Tmprss8 transmembrane protease, serine 8 (intestinal) 1.7

Ttll3 similar to tubulin tyrosine ligase-like family, member 3 1.6

Vom2r40 vomeronasal 2 receptor, 40 1.5
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Figure 4 Compounds identified following connectivity mapping of the CFA signature.

Figure 5 Effect of oral phenoxybenzamine administered to rats on day 4 of the CFA model of inflammatory pain. Mechanical thresholds
were read 2 hours post-dosing. n = 8-15 per group. *p < 0.05 and **p < 0.01, significant differences from vehicle (saline) - dosed rats.
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that stands out is neuromedin U (NMU) which has
been shown to have an emerging physiological role in
nociception upon binding to the NMU receptor 2 [40].
Mice deficient in NMUR2 displayed reduced thermal
nociceptive responses in the hot plate test, decreased
thermal hyperalgesia following capsaicin injection and
reduced the late phase response in the formalin test
[41]. In other studies, NMU inhibited inflammation-
mediated memory impairment and neuronal cell-death
in rodents [42]. Ketterer et. al. (2009) have shown
recently that NMU may signal via the hepatocyte
growth factor (HGF) c-Met pathway. In our study,
HGF is also increased in the DRG following CFA treat-
ment. HGF is a pleiotropic cytokine which partly func-
tions to promote neuronal survival and growth [43].
HGF cooperates with nerve growth factor (NGF) to
enhance axonal outgrowth from cultured dorsal root
ganglion (DRG) neurons. HGF also enhances the neu-
rotrophic activities of NGF in vivo where Met receptor
signaling is required for the survival of a proportion of
DRG neurons [44].
Another gene which is up-regulated in the DRG is the

steroid-5-alpha-reductase (SRD5A2) which is a key
enzyme in the conversion of several Δ4-3keto steroids,
such as testosterone, progesterone, aldosterone and cor-
ticosterone, into their respective reductase derivatives.
Morphine has been shown to increase SRD5A2 level
and SRD5A2 inhibitor finasteride potentiates the antino-
ciceptive effect of morphine, prevents the development
of morphine tolerance in rats, suggesting that SRD5A2
plays a role in pain perception [45]. SLC30A3 which is
also increased in the current study is responsible for
transport of zinc into synaptic vesicles. It may have a
role in neuropathic pain [46].
We also observed a number of genes whose expres-

sion in DRG is modulated by CFA, though their roles in
nociception have not been established, they may have
indirect linkages to pain plasticity. Two genes involved
in regulating circadian rhythm are modulated in the
DRG of CFA treated rats versus the naïve rats. Pain per-
ception is influenced by the circadian rhythm in humans
and in animals [47]. Expression of PER2 is increased,
whereas expression of NPAS2 is decreased. Per/Cry
form a heterodimer that interacts with the NPAS2/
BMAL1 heterodimer to inhibit the transcription of Per
and Cry [48]. SFRS1 interacting protein 1 (PSIP1, or
Lens epithelium-derived growth factor (LEDGF)) is up-
regulated in response to stress and enhances the survival
of neurons in the retina and optic nerve [49]. We specu-
late that the increased expression of PSIP1 we observed
may support neuronal growth in the DRG. ZHX2, a
transcriptional regulator of neural progenitor cells, is
also up-regulated in the DRG of CFA treated rats.
Blocking ZHX2 function causes neuronal differentiation,

whereas overexpression of ZHX2 or its ephrin-B1 intra-
cellular domain disrupts the normal differentiation of
cortical neural progenitor cells [50]. ENC1 (or NRP/B),
also a regulator of neuronal differentiation is increased
in the DRG of CFA treated rats. Overexpression of
NRP/B significantly induced neurite outgrowth in PC12
cells, whereas inhibition of NRP/B by antibodies or
siRNA inhibited neurite outgrowth and suppressed the
NGF-induced outgrowth of neurites [50,51]. In sum-
mary, we have found a number of genes which regulate
neuronal growth in the CFA model, suggesting a neuro-
nal growth component to this peripheral inflammation
model.
Using the Connectivity Map approach, we identified 5

compounds in the Broad database that were negatively
connected with the CFA signature. These compounds
belong to different chemical classes and their structural
properties are different. They also bind to different tar-
gets. Fenoprofen, an NSAID, was among them. Another
compound we identified with this approach was pyrvi-
nium, a non-competitive androgen receptor inhibitor
[52]. Intrathecal administration of testosterone, an
androgen derived from DHEA, has been shown to cause
analgesia in neuropathic rats [53]. Difenidol, also identi-
fied by Connectivity Mapping is used for treatment of
vertigo. The precise molecular target of this drug is not
known, although recently it was found to be a ligand for
muscarinic receptors: M1, M3 and M4 [54], and may
thus play a role in processing of pain stimuli [55].
Phenoxybenzamine, a non-selective a-blocker [56] was

also identified as having negative connectivity with the
CFA pain signature. Previous studies have reported effi-
cacy of phenoxybenzamine in patients with various pain
conditions. In one study, 40 patients with causalgia were
treated successfully for their pain with phenoxybenza-
mine [57]. In a case report, 3 out of 4 patients got relief
from complex regional pain syndrome type I with phe-
noxybenzamine [58]. In the current study, we examined
effects of phenoxybenzamine in the 4 Day CFA model
to determine whether the Connectivity Map approach
could identify compounds that had analgesic potential
in this model. Our data confirm the antinociceptive
properties of phenoxybenzamine; this effect may be due
to a direct blockade of adrenergic receptors that may
have become supersensitive to catecholamines or per-
haps due to possible sympathetic sprouting, as a result
of increased expression of nerve growth regulating
genes. Sympathetic sprouting in the DRG has been
shown to occur in a study that examined gene expres-
sion profiles at 3 days post zymosan in incomplete
Freund’s adjuvant [7]. Furthermore, antinociception has
been reported for phenoxybenzamine in the rat hot
plate test [59], the mouse tail flick test [60] and mouse
writhing tests [61]. Although we do not yet understand
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the basis for the diminished efficacy of phenoxybenza-
mine at the higher dose tested here (20 mg/kg), it is
possibly due to excessive antagonism of the adrenergic
receptors in addition to other mechanisms, such as its
agonist-antagonistic properties [60]. Regardless, our data
suggest that the CFA pain model may have broader uti-
lity for testing compounds that modulate pain involving
the sympathetic nervous system.

Conclusion
We have established a 4 day CFA signature in the DRG
that we subjected to a Connectivity Map approach and
identified a compound already known to have a role in
the treatment of pain, such as fenoprofen. Another of
these compounds, phenoxybenzamine, has been
reported in the literature to treat complex regional pain
syndrome, and our studies confirm the analgesic proper-
ties of this compound in the 4 day CFA model. We con-
clude that use of the Connectivity Map approach to
accompany gene expression microarray and behavior
studies, represents a potentially fruitful way to identify
novel pain therapies.
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