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Purinergic receptors are involved in tooth-pulp
evoked nocifensive behavior and brainstem
neuronal activity
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Abstract

Background: To evaluate whether P2X receptors are involved in responses to noxious pulp stimulation, the P2X3
and P2X2/3 receptor agonist a,b-methyleneATP (a,b-meATP) was applied to the molar tooth pulp and nocifensive
behavior and extracellular-signal regulated kinase (ERK) phosphorylation in trigeminal spinal subnucleus caudalis
(Vc), trigeminal spinal subnucleus interpolaris (Vi), upper cervical spinal cord (C1/C2) and paratrigeminal nucleus
(Pa5) neurons were analyzed in rats.

Results: Genioglossus (GG) muscle activity was evoked by pulpal application of 100 mM a,b-meATP and was
significantly larger than GG activity following vehicle (phosphate-buffered saline PBS) application (p < 0.01). The
enhanced GG muscle activity following 100 mM a,b-meATP was significantly reduced (p < 0.05) by co-application
of 1 mM TNP-ATP (P2X1, P2X3 and, P2X2/3 antagonist). A large number of pERK-LI cells were expressed in the Vc,
Vi/Vc, C1/C2 and Pa5 at 5 min following pulpal application of 100 mM a,b-meATP compared to PBS application to
the pulp (p < 0.05). The pERK-LI cell expression and GG muscle activity induced by 100 mM a,b-meATP pulpal
application were significantly reduced after intrathecal injection of the MAPK/ERK kinase (MEK) inhibitor PD 98059
and by pulpal co-application of 1 mM TNP-ATP (p < 0.05).

Conclusions: The present findings suggest that activation of P2X3 and P2X2/3 receptors in the tooth pulp is
sufficient to elicit nociceptive behavioral responses and trigeminal brainstem neuronal activity.

Background
Adenosine 5’-triphosphate (ATP) is considered a neuro-
modulator in primary afferent neurons. Release of ATP
from sympathetic nerve terminals, endothelial, Merkel or
tumor cells is known to be involved in excitation of
unmyelinated primary afferent neurons [1]. One of ATP
receptors activated by ATP binding is the P2X family of
ATP receptors; it has been classified into seven subtypes,
P2X1-7 (for review, see [2-8]). All of them, except the
P2X7 receptor, are expressed in various primary sensory
neurons including tooth pulp neurons [9-13]. In particu-
lar, the P2X3 homomeric and P2X2/3 heteromeric recep-
tors have been associated with peripheral nociceptive

mechanisms, since these subtypes occur in a subset of
putative nociceptive sensory neurons [10-12,14-16], and
their activation produces nocifensive behavior that can be
attenuated by peripheral [17-20] or central [16,21] admin-
istration of P2X3,2/3 receptor antagonists. Also activation
of pulpal P2X3,2/3 receptors produces central sensitization
in functionally identified nociceptive brainstem neurons
in the trigeminal subnucleus caudalis (Vc) [16,22]. Pulpal
administration of capsaicin, mustard oil or other inflam-
matory substances are known to strongly activate Vc
neurons suggesting that TRPV1 and TRPA1 receptors
or other receptors related to inflammation are involved
in tooth pulp pain [23,24]. It is very important to know
which receptors in the pulpal nerve terminals are
involved and how these receptors mediate tooth pulpal
pain, in order to understand the neuronal mechanisms of
tooth pulp inflammatory pain. ATP is known as one of
the important neuro-modulators involved in tooth pulp

* Correspondence: iwata-k@dent.nihon-u.ac.jp
6Department of Physiology, Nihon University School of Dentistry, Nihon
University School of Dentistry, 1-8-13 Kanda-Surugadai Chiyoda-ku, Tokyo,
101-8310, Japan
Full list of author information is available at the end of the article

Adachi et al. Molecular Pain 2010, 6:59
http://www.molecularpain.com/content/6/1/59 MOLECULAR PAIN

© 2010 Adachi et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in
any medium, provided the original work is properly cited.

mailto:iwata-k@dent.nihon-u.ac.jp
http://creativecommons.org/licenses/by/2.0


inflammatory pain [9-12]. However, how ATP is involved
in pulpal pain during inflammation remains unclear. We
thus introduced a,b-meATP as a P2X2/3 receptor agonist
to exclude the effect of substances other than ATP.
The phosphorylated extracellular signal-regulated

kinase (pERK), one of the mitogen-activated protein
kinases (MAPKs), has been recognized as a marker of
activation of spinal dorsal horn (DH) neurons following
a variety of noxious stimuli applied to peripheral tissues
[25,26]. ERK can be phosphorylated in Vc and upper
cervical spinal cord (C1/C2) neurons within 10 min fol-
lowing peripheral noxious stimulation, and the number
of pERK-positive neurons progressively increases as sti-
mulus intensity is increased. We have recently reported
that pERK-positive neurons are expressed in Vc and the
Vc/C1 transition region as well as in the transition zone
between the trigeminal spinal subnucleus interpolaris
(Vi) and Vc (Vi/Vc) following noxious stimulation of
orofacial regions including the tooth pulp [23,27,28].
These findings suggest that the phosphorylation of ERK
is strongly correlated with excitation of Vi/Vc, Vc and
C1/C2 neurons following noxious stimulation of the
orofacial region.
Given these various findings, it is of interest to study

the distribution pattern of Vi/Vc, Vc and C1/C2 nocicep-
tive neurons that can be activated by specific stimulation
of tooth pulp purinergic receptors, in order to clarify the
involvement of these receptors in tooth pulp-induced V
central sensitization. However, the distribution pattern of
the Vc, Vi/Vc and C1/C2 neurons sensitized by the acti-
vation of tooth pulp purinergic receptors is unknown.
Therefore, we have investigated the effects of pulpal
application of purinergic receptor agonist on the expres-
sion of pERK in Vi/Vc, Vc and C1/C2 neurons and if
their activation is associated with nocifensive behavior
reflected as an increase in electromyographic (EMG)
activity of masticatory muscles. Some of the data have
been published in abstract form [29].

Methods
Animals
Seventy-five male Sprague-Dawley adult rats (300-360 g)
were used in this study. The rats were housed in indivi-
dual cages (27 × 45 × 20 cm) in a temperature-con-
trolled (21 ± 1°C) and humidity-controlled (50 ± 5%)
room under a 12 hr light/dark cycle (lights on at 07:00
am) with free access to food and water. All procedures
were approved by the University of Toronto Animal
Care Committee in accordance with the regulations of
the Ontario Animal Research Act (Canada) and animal
experimentation committee in Nihon University School
of Dentistry.

Drugs
The drugs used were a,b-methylene adenosine
5’-triphosphate, (a,b-meATP, Sigma-Aldrich, St. Louis,
MO, USA), a P2X1, P2X3 and, P2X2/3 agonist, and
2’,3’-O-(2,4,6-trinitrophenyl) adenosine 5’-triphosphate
(TNP-ATP, Sigma-Ardrich), a P2X1, P2X3 and, P2X2/3

antagonist; both were dissolved in 1 mM phosphate-
buffered saline (PBS; pH = 7.4). The agonist and antago-
nist (or vehicle PBS) were cocktailed for combined
application. The solution (approximately 0.2 μl) was
applied to the tooth pulp by a soaked dental paper
point. The mitogen-activated extracellular signal-regu-
lated kinase (MEK) inhibitor PD 98059 (Calbiochem, La
Jolla, CA, USA) was dissolved into 10% Dimethyl sulfox-
ide (DMSO) and the solution placed into a mini-osmo-
tic pump (model 2001, Durect Co. Cupertino, CA, USA)
that was implanted under the skin of rat neck, so that
PD 98059 could be continuously (1 μl/h) diffused
intrathecally for one week before EMG and/or immuno-
histochemical experiment [27,30,31].

Electromyographic (EMG) recording
Anesthesia was maintained by 1-2% halothane (Halocar-
bon Products Corp., River Edge, NJ, USA) for the
implantation of bipolar EMG electrode wires and for pre-
paration of an occlusal cavity in the right maxillary first
molar [23]. During the period of the subsequent experi-
ment, the concentration of halothane was reduced to
< 0.9%. Body temperature was maintained at 37-38°C by
a feedback-controlled blanket (Model 73A, YSI, Yellow
Springs, OH, USA). Heart rate was continuously moni-
tored and maintained at physiological levels of 330-430
beats/min. Pairs of EMG electrodes (40-gauge, Teflon®-
insulated stainless wires; Cooner wire, Chatsworth, CA,
USA) were implanted into the right masseter (MA), ante-
rior digastric (AD) and genioglossus (GG) muscles to
record any tooth pulp-evoked muscle activities (Fig. 1
and Table 1), as previously described [24]. The placement
of EMG electrodes was confirmed by muscle twitches
induced by electrical stimulation of the EMG electrodes
(12 × 0.2 ms pulses, 333 Hz, 100-200 μA).
The occlusal cavity (< 0.7 mm in diameter and

0.6-0.8 mm in depth) in the molar tooth pulp was pre-
pared by a dental drill (at low speed) carrying a car-
bide bur (0.5 mm in diameter). During drilling, the
molar occlusal surface was cooled by a cotton pellet
soaked with cool saline. Then, the cavity was immedi-
ately filled with a small piece of cotton pellet soaked
with isotonic saline. Any exposed pulp manifesting
intense bleeding was considered to be severely injured
and was excluded from the subsequent experiments.
To allow for unrestricted orofacial muscle movements,
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the rat’s head was held upright, with the rat in the
prone position, by means of metal rods which were
fixed on the skull with stainless-steel screws and dental
acrylic. The mandible could thus be gently pulled
down to obtain enough space to access the maxillary
molar, so that prior to drug application the saline
soaked cotton pellet could be removed from the cavity
and a segment of dental paper point soaked with drugs
or vehicle could be applied into the tooth pulp through
the cavity and filled with dental temporary cement
(Cavit®, 3 M, St. Paul, MN, USA) [16,24]. Either 10
mM (n = 2) or 100 mM (n = 8) a,b-meATP, 1 mM
TNP-ATP (n = 2), 100 mM a,b-meATP with 0.1 mM
TNP-ATP (n = 3), 100 mM a,b-meATP with 1 mM
TNP-ATP (n = 3) or PBS (n = 5) was applied to the
cavity. Since two of rats in each group were received
drug application to both side of maxillary first molar,
respectively, the sample number of each group for data
analysis was 10 (n = 4) or 100 (n = 10) mM a,b-
meATP, 1 mM TNP-ATP (n = 4), 100 mM a,

b-meATP with 0.1 mM TNP-ATP (n = 5), 100 mM a,
b-meATP with 1 mM TNP-ATP (n = 5) and PBS (n =
7) (Table 1). An additional 6 rats pretreated with PD
98059 also received 100 mM a,b-meATP. Muscle
activities were continuously recorded before, during
and after PBS or a,b-meATP administration to the
pulp, and the mean value of EMG activity was calcu-
lated at every 1 min before and after drug application.
In order to test whether the pulpal application of the

P2X3 and P2X2/3 receptor agonist a,b-meATP causes an
increase in the EMG activity in MA, AD or GG under
our anesthetic condition, noxious mechanical stimulus
was applied to the facial skin and the threshold intensity
for evoking EMG activity in each muscle was measured
in another 6 rats. Animals were placed in a stereotaxic
apparatus immediately after EMG wire implantation and
filaments of varying forces were applied to the surface
of the left temporomandibular joint (TMJ) region in
ascending order. Since it has reported that the TMJ is
an appropriate region for stimulation to determine the

Figure 1 GG muscle EMG activity induced by pulpal application of ab-meATP. A: GG muscle EMG activity induced by pulpal application
of a,b-meATP (100 mM). The arrow indicates the timing for drug application. Aa: Onset latency was determined from the time lag between the
drug application and onset of EMG activity above 2 SDs. B: Relative area under curve of genioglossus muscle EMG activity induced by pulpal
application of a,b-meATP. The data were obtained during 1 min after pulpal application of a,b-meATP (0, 10 and 100 mM). Data were analyzed
using one-way ANOVA with repeated measures followed by Bonferroni multiple comparison test (**: P < 0.01).

Table 1 Incidence, onset latency and duration of muscle activities induced by chemical administration to the tooth
pulp

PBS a,b-meATP (10 mM) a,b-meATP (100 mM) a,b-meATP (100 mM)
+

TNP-ATP (0.1 mM)

a,b-meATP (100 mM)
+

TNP-ATP (1 mM)

Muscle Incidence Latency (s) Incidence Latency (s) Incidence Latency (s) Incidence Latency (s) Incidence Latency (s)

GG 2/7 1.71 ± 0.46 2/4 2.13 ± 0.33 10/10 2.15 ± 0.53 4/4 3.56 ± 1.07 5/5 1.24 ± 0.46

AD 2/7 1.70 ± 0.45 2/4 1.80 ± 0.00 10/10 1.85 ± 0.46 2/4 3.76 ± 0.96 2/5 6.21 ± 2.42

MA 0/7 - 0/4 - 2/10 1.33 ± 0.00 0/4 - 0/5 -

Duration (s) Duration (s) Duration (s) Duration (s) Duration (s)

GG 2/7 0.05 ± 0.00 2/4 1.87 ± 1.85 10/10 31.78 ± 8.04 4/4 2.30 ± 1.25 * 5/5 4.86 ± 2.10 *

AD 2/7 0.03 ± 0.02 2/4 0.03 ± 0.01 10/10 1.12 ± 0.52 2/4 0.02 ± 0.00 2/5 0.03 ± 0.01

MA 0/7 - 0/4 - 2/10 1.53 ± 0.19 0/4 - 0/5 -

GG, ipsilateral genioglossus muscle; AD, ipsilateral anterior digastric muscle; MA, ispilateral masseter muscle. Latency and duration were expressed as mean ±
SEM. *: P < 0.05 (vs 100 mM a,b-meATP, Bonnferroni multiple t-test).
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reflex threshold (reflex sensitivity) of each orofacial
muscle [32,33]. Each filament was applied for a maxi-
mum of 10 s and for 5 stimulus trials. When the EMG
activity induced in each muscle by such stimulation
exceeded mean baseline amplitude over +2SD after drug
application was considered to be positive response and
the force which induced 3 positive responses of 5 trials
was defined as the threshold for that muscle.
As previously described [34,35], the EMG activity was

amplified (gain 1000×, filtered [bandpass 100-5 kHz];
model 1700, A-M systems, Carlsborg, WA, USA) and
digitized (10 × 103 samples/s) by an A/D converter and
Spike2 software (CED 1401 plus, Cambridge Electronic
Design, Cambridge, UK) with a PC and continuously
recorded for more than 40 min during mechanical sti-
mulation or application of drugs, then was processed
off-line analysis. For each contralateral muscle of pulpal
drug(s) application, EMG activities were rectified and
digitally smoothed (moving average, 4-ms window). The
mean baseline activity was obtained from the 10 ms per-
iod before drug application. When the EMG activity
exceeded mean baseline amplitude over +2SD after drug
application, it was defined as a positive response and its
onset latency and duration were determined. The area
under the curve (AUC) of EMG activity was measured
for 10 min before and after drug application (Fig. 1 and
Table 1).

pERK immunohistochemistry
For immunohistochemical experiments, 42 rats were
divided to 7 groups (n = 6/group). Under general
anesthesia by 1-2% halothane, the pulp of the right max-
illary first molar was exposed, and drugs (PBS, 100 mM
a,b-meATP, 1 mM TNP-ATP and 1 mM TNP-ATP +
100 mM a,b-meATP) were applied to the cavity as
described above. To test whether jaw opening procedure
caused an activation of TMJ noxious afferents affecting
Vc neuronal excitability lidocaine (50 μl) was injected
into the ipsilateral TMJ capsule in the halothane-
anesthetized rats. Thirty min after TMJ injections, rats
received 100 mM a,b-meATP pulpal application. After
appropriate survival times (5 min), rats were perfused
transcardially with 500 ml 0.9% saline followed by 500
ml 4% paraformaldehyde in 0.1 M phosphate buffer (PB,
pH 7.4). The same procedure was carried out on the
animals which received infusion pump implantation one
week before and those were received 100 mM a,b-
meATP pulpal application. The whole brain including
medulla and upper cervical cord was removed and post-
fixed in the same fixative for three days at 4°C. The tis-
sues were then transferred to 20% sucrose (w/v) in PBS
for several days for cryoprotection. Thirty-micron-thick
sections were cut from the brain stem including trigem-
inal spinal subnucleus caudalis and upper cervical spinal

cord with a freezing microtome, and every 4th section
was collected in PBS. Free-floating tissue sections were
rinsed in PBS, 10% normal goat serum in PBS for 1 h,
and then incubated in rabbit anti-phospho-p44/42 MAP
kinase antibody (1:1000, Cell Signaling Technology Inc.,
Danvers, MA, USA) for 72 h at 4°C. Next, the sections
were incubated in biotinylated goat anti-rabbit IgG
(1:600; Vector Labs, Burlingame, CA, USA) for 2 h at
room temperature. After washing, the sections were
incubated in peroxidase-conjugated avidin-biotin com-
plex (1:100; Vector Labs) for 2 h at room temperature.
After washing in 0.05 M Tris buffer (TB), the sections
were incubated in 0.035% 3,3’-diaminobenzidine-tetra
HCl (DAB, Sigma-Ardrich), 0.2% nickel ammonium sul-
fate and 0.05% peroxide in 0.05 M TB (pH 7.4). The
sections were washed in PBS, serially mounted on gela-
tin-coated slides, dehydrated in alcohols and cover
slipped. The pERK-LI cells were drawn 1 or more inves-
tigators under blind design to avoid inter experimenter
error under a light microscope using camera-lucida
drawing tube. The number of pERK-LI cells was
counted from every eighth section. The total number of
pERK-LI cells from three of every section was calcu-
lated, and the mean number of pERK-LI cells (three sec-
tions/rat) was obtained from each animal in order to
avoid the variability of the number of immunoreactive
neurons in each section. Double-immunofluorescence
histochemistry was also used to determine whether the
pERK-LI cells expressed a neuronal label NeuN in the
Vc and C1-C2 of 100 mM a,b-meATP-treated rats.

Statistical analysis
Statistical analysis was performed using one-way analysis
of variance followed by Bonferroni multiple comparison
tests. Student’s and Paired t-test were used for compari-
son between two groups when appropriate. Differences
were considered significant at P < 0.05. Results are
presented as mean ± SEM.

Results
EMG activities following pulpal P2X receptor stimulation
A number of studies have reported that the transient
increase in the MA and AD muscle activities can be
recorded following noxious stimulation of the orofacial
region in anesthetized rats [23,24,36,37]. To define
threshold intensity to evoke EMG activity in MA, AD or
GG muscles under the present anesthetic condition, nox-
ious mechanical stimulus was applied to the facial skin to
measure mechanical threshold evoking EMG activity in
MA, AD and GG muscles. The mechanical threshold
evoking EMG activity was significantly lower in GG com-
pared with AD and MA (GG: 54.3 ± 5.7 g, AD: 126.7 ±
39.6 g, MA: 166.7 ± 33.7 g, respectively, F(2,15) = 4.15,
P < 0.05; ANOVA followed by Bonferroni multiple
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t-test). Incidence, onset latency and duration of GG, AD
and MA activity following pulpal application of a,
b-meATP and/or TNP-ATP are shown in Table 1.
Consistent EMG activity could only be recorded in GG
following pulpal application of 100 mM a,b-meATP
(Table 1). Thus, GG activity was analyzed as the indicator
of the reflex response following stimulation of the tooth
pulp in the present study.
Typical GG muscle activity and mean EMG activity

are illustrated in Fig. 1A. A rapid and significant
increase in EMG activity could be recorded in GG
(2.15 + 0.53 s) after 100 mM a,b-meATP application,
but not 10 mM a,b-meATP, application compared to
PBS administration (F(2,20) = 14.09, P < 0.01,
ANOVA followed by Bonferroni multiple t-test)
(Table 1, Fig. 1A, B).

pERK-LI neurons following P2X receptor stimulation
A number of pERK-like immunoreactive (LI) cells were
expressed in Vc, Vi/Vc, C1/C2, paratrigeminal nucleus
(Pa5), caudal ventral reticular nucleus (CVR) and
nucleus tractus solitarii (NTS) 5 min after PBS or 100
mM a,b-meATP application into the right maxillary
first molar pulp (Fig. 2A). The pERK-LI cells showed
round soma and many fibers distributed around the
soma as illustrated in Fig. 2Ba; all of them showed
NeuN immunoreactivity (e.g. as shown by the arrows in
Fig. 2Bb, Bc and 2Bd), suggesting that all pERK-LI cells
observed in the present study could be classified as neu-
rons. The rostro-caudal distribution of pERK-LI cells
and the mean number of pERK-LI cells are illustrated
in Fig. 3. In all of these areas, pERK-LI cells were
observed in both ipsilateral and contralateral sides to
the a,b-meATP application to the pulp. The number of
pERK-LI cells was larger in Vc and C1/C2 regions com-
pare to those in the contralateral side to injection. The
pERK-LI cells were distributed in Vc and C1/C2 rostro-
caudally, with a peak at about 0.0-0.7 mm caudal to the
obex (Fig. 3A). At the obex level, many pERK-LI cells
were observed from the dorsal to ventral portion of the
Vc. On the other hand, there were no obvious peaks in
the rostro-caudal distribution of pERK-LI cells in Pa5
(Fig. 3B). While pERK-LI cells were also expressed after
PBS injection into the tooth pulp, pulpal application of
100 mM a,b-meATP produced a significantly larger
number of pERK-LI cells in the Vc and Pa5 compared
to PBS-injected rats (Vc ipsi: F(3, 23) = 20.08,
P < 0.01; Vc cont: F(3, 23) = 11.70, P < 0.01; Pa5 ipsi:
F(3, 23) = 7.49, P < 0.01; Pa5 cont: F(3, 23) = 3.93, P <
0.05, ANOVA; Vc ipsi, Vc cont and Pa5 ipsi: P < 0.01,
respectively, Bonferroni multiple comparison test,
Fig. 3C and 3D).
In order to elucidate whether the sensory input from

the TMJ could have influenced the Vc and C1/C2

neuronal activity since the mouth had to be widely
opened to allow access to the pulp, we also analyzed
pERK-LI cell expression in Vc and Pa5 following lido-
caine injection into the TMJ region bilaterally. No dif-
ferences were observed in the number of pERK-LI cells
in Vc and Pa5 between TMJ-anesthetized rats and intact
rats following 100 mM a,b-meATP into the tooth pulp
(data not shown).

Effect of TNP-ATP and PD98059 administration on pERK-
LI cell expression
The number of pERK-LI cells was significantly larger in
both sides of Vc and in ipsilateral Pa5 following pulpal
application of a,b-meATP compared to PBS-injected
rats (Fig. 3C). The numbers of pERK-LI cells in Vc and
Pa5 were significantly smaller in those rats receiving co-
application of 1 mM TNP-ATP (P2X1, P2X3 and, P2X2/3

antagonist) with 100 mM a,b-meATP compared with
those receiving 100 mM a,b-meATP application alone
(see above for detail of ANOVA; Vc ipsi, Vc cont and
Pa5 ipsi: P < 0.01, respectively; Pa5 cont: P < 0.05, Bon-
ferroni multiple t-test, Fig. 3C and 3D).
Furthermore, the numbers of pERK-LI cells on both

sides of Vc and Pa5 were significantly smaller in those
rats receiving pretreatment of intrathecal administration
of PD 98059 and a,b-meATP pulpal application com-
pared to those receiving 100 mM a,b-meATP pulpal
application alone (Vc ipsi: P < 0.01, Vc cont: P < 0.01,
Pa5 ipsi: P < 0.01, Pa5 cont: P < 0.05, Student’s t-test,
Fig. 4).

Effect of TNP-ATP and PD98059 on GG EMG activity
Onset latency of GG muscle activity was not signifi-
cantly different between a,b-meATP-injected and a,b-
meATP +TNP-ATP-injected rats (Table 1). On the
other hand, the duration of EMG activity was signifi-
cantly longer in GG following pulpal administration of
100 mM a,b-meATP (F(2,16) = 7.62, P < 0.01;
ANOVA followed by Bonferroni multiple t-test) com-
pared to that following co-administration of 100 mM
a,b-meATP with 0.1 mM (P < 0.05) or 1 mM (P <
0.01) of TNP-ATP. The GG activity following 10 mM
a,b-meATP application was significantly smaller in
those rats receiving pulpal co-application of 1 mM
TNP-ATP than that in rats receiving a,b-meATP
application alone (F(2,18) = 4.69, P < 0.05, ANOVA
followed by Bonferroni multiple t-test). However, we
could not observe any significant effect or GG activity
of pulpal co-application of 0.1 mM TNP-ATP with
100 mM a,b-meATP compared to 100 mM a,b-
meATP application alone (Fig. 5A). GG EMG activity
following 100 mM a,b-meATP application was signifi-
cantly smaller in those rats receiving intrathecal
administration of PD98059 compared with that of the
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rats receiving a,b-meATP pulpal application alone
(P < 0.01, Student’s t-test, Fig. 5B).

Discussion
Both P2X3 homomultimer and P2X2/3 heteromultimer
receptors have been reported in a variety of tissues,
including tooth pulp [9-13], stimulation of which causes
a barrage of action potentials in tooth pulp afferents
that are conveyed to the rat Vc and C1/C2, resulting in
a purinergic-dependent central sensitization of Vc and
C1/C2 nociceptive neurons [16,38-40]. Recently it has
been found that Vc central sensitization can be pro-
duced by specifically stimulating these P2X receptors in
the pulp [22].

In the present study, we observed that GG muscle
activity could be evoked by pulpal application of the
P2X3,2/3 receptor agonist a,b-meATP 100 mM and was
significantly larger in the rats when compared with PBS-
administration to the pulp. The GG activity was signifi-
cantly reduced in the rats receiving co-application of
100 mM a,b-meATP with the P2X3,2/3 receptor inhibi-
tor TNP-ATP (1 mM). A large number of pERK-LI cells
were also expressed in the Vc, Vi/Vc, C1/C2 and Pa5
5 min after pulpal application of 100 mM a,b-meATP.
The pERK-LI cells and GG activity were significantly
reduced after intrathecal injection of the MEK inhibitor
PD98059. In addition, the number of pERK-LI cells
was significantly reduced in rats receiving pulpal

Figure 2 pERK-LI cells in the bilateral medulla and upper cervical cord following pulpal administration of PBS or a, b-meATP. A:
Camera-lucida drawings of pERK-LI cells in the ipsilateral (ipsi) and contralateral (cont) medulla and upper cervical cord following pulpal
administration of PBS or a,b-meATP (100 mM). Vc; trigeminal spinal subnucleus caudalis. NTS; nucleus tractus solitarii. CVR; caudal ventral reticular
nucleus. Ba: Photomicrograph of pERK-LI cells in Vc. Bb: NeuN-Li cells (red) in Vc, Bc: pERK-Li cells (green) in Vc, Bd: Double labeling of pERK
(green) and NeuN (red) in Vc. Arrows indicate both NeuN and pERK double-labeled cells in Vc.
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co-application of 100 mM a,b-meATP with 1 mM
TNP-ATP compared with rats receiving 100 mM a,
b-meATP alone.

Technical considerations
In the present study, dental paper points soaked with
PBS, a,b-meATP or TNP-ATP were inserted into the
tooth pulp. The insertion of a paper point into the
tooth pulp may itself cause strong mechanical stimula-
tion of pulpal nerve fibers. We observed some GG activ-
ity and many pERK-LI cells were expressed in the Vc,

C1/C2 and Pa5 following pulpal insertion of a PBS-
dipped paper point. Thus, the GG activity and pERK-LI
cells expression were likely a reflection of both mechani-
cal stimulation of the tooth pulp as well as activation of
purinergic receptors when a,b-meATP was applied.
Nonetheless, the use of PBS as a vehicle control allowed
for separation of the effects of a,b-meATP per se.
Indeed, the GG activity was significantly larger following
pulpal application of 100 mM (but not 10 mM) a,b-
meATP when compared with PBS application. Likewise,
pERK expression was significantly larger with 100 mM

Figure 3 Effect of TNP-ATP on mean number of pERK-LI cells in the bilateral medulla and upper cervical cord following pulpal a,b-
meATP administration. Mean number and rostro-caudal distribution of pERK-LI cells in ipsilateral (ipsi) and contralateral (cont) Vc and C1/C2
(A), and Pa5 (C) region induced by pulpal drug application (PBS, a,b-meATP and a,b-meATP +TNP-ATP). Mean number of pERK-LI cells in
ipsilateral and contralateral Vc and C1/C2 (B), and Pa5 (D) region induced by pulpal drug application (PBS, a,b-meATP and a,b-meATP +TNP-ATP)
or a,b-meATP application following lidocaine injection into TMJ. Data were analyzed using one-way ANOVA with repeated measures followed by
Bonferroni multiple comparison test (*: P < 0.05, **: P < 0.01).
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a,b-meATP than PBS. The dose of a,b-meATP required
was higher than that reported in other parts of the body
(e.g., reduction of hind paw withdrawal threshold, hind
paw lifting and licking) [41-43]. This may be due to
damage of ATP receptors in tooth pulp nerve fibers
during the preparation of the pulp for subsequent drug
administration since it has been reported that pulpal
P2X3 receptors are highly concentrated in the odonto-
blastic layer [9,12] and thus susceptible to damage by
cavity preparation. This may explain why a high concen-
tration of ATP was necessary to produce a reflex effect
and ERK phosphorylation. Thus, the high concentration
of ATP is needed for reflex and other effects relative to
other body regions.

We could not observe significant activation of MA or
DA muscle following a,b-meATP administration. Pri-
mary afferent activity is not sufficiently strong to acti-
vate MA motor neurons relative to GG muscle,
following noxious mechanical stimulation of facial skin,
based on our EMG recordings as described in the
Results section. Furthermore, P2X receptor density is
lower in the tooth pulp relative to other receptors [13].
Therefore, the tooth pulp-MA and tooth pulp-DA path-
ways have a higher threshold for activation by tooth pul-
pal administration of ATP agonists compared with the
tooth pulp-GG pathway.

Involvement of P2X receptor activation of tooth pulpal
afferents
It is well known that peripheral inflammation or tissue
injury causes peripheral ATP release from non-neuronal
cells in the injured region [9,10,17]. The ATP released
from the non-neuronal cells binds to purinergic recep-
tors such as P2X3 and/or P2X2/3 receptors in C-fiber
terminals, resulting in peripheral sensitization of the pri-
mary afferent neurons [1,10,11,17,44]. We observed
strong activation of GG activity following pulpal applica-
tion of a,b-meATP, indicating that activation of pulpal
P2X3 and/or P2X2/3 receptors in the tooth pulp is suffi-
cient for activation of the GG reflex. The increase in
GG muscle activity with a,bme-ATP and its 1-2 sec
latency are consistent with other studies of muscle (MA
or DA muscle) responses evoked by tooth pulp stimula-
tion [24] or other orofacial stimuli, eg. TMJ [36,37].
Shigenaga et al. [45,46] have reported that tooth pulp
afferents project to the Vc and trigeminal spinal sub-
nucleus interpolaris (Vi), and many Vi neurons send
projection axons to GG muscle motor neurons [47].
Furthermore, previous electrophysiological studies have
also reported that GG or hypoglossal motor neuron
activity is modulated by trigeminal nerve stimulation,
suggesting that the trigeminal afferent is involved in
modulation of GG muscle activity [48,49]. Previous

Figure 4 Mean total number of pERK-LI cells in ipsilateral (ipsi)
and contralateral (cont) Vc and C1/C2 (A, C), and Pa5 (B, D)
region induced by pulpal application of a,b-meATP (100 mM)
following intrathecal administration of PD98059. Data were
analyzed using one-way ANOVA with repeated measures followed
by Bonferroni multiple comparison test (*: P < 0.05, **: P < 0.01).

Figure 5 Relative area under curve of GG muscle EMG activity induced by pulpal application of a,b-meATP (100 mM) together with
TNP-ATP (A), or following intrathecal administration of PD98059 (B). The data were obtained during 1 min after pulpal application of a,b-
meATP. Data were analyzed using one-way ANOVA with repeated measures followed by Bonferroni multiple comparison test (*: P < 0.05).
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studies have also reported that the pulpal application of
mustard oil or capsaicin induces EMG activity in the
MA and DA muscles simultaneously, and these excita-
tions could last more than 1 min [23,24]. On the other
hand, pulpal application of a,b-meATP in the present
study caused a significant increase in EMG activity only
in the GG muscle, and the duration of GG activity was
less than 1 min. These differences between the studies
might be explained by different experimental conditions
in the studies or that the tooth pulp afferent-GG reflex
pathway especially involves P2X3,2/3 receptors.
Together with previous results our findings suggested

that tooth pulp nerve fibers were sensitized by ATP
released from the non-neuronal pulpal cells following
tooth pulp inflammation or injury, resulting in the bar-
rage of action potentials in the tooth pulp nerve fibers
which were conveyed to Vc and C1/C2 neurons.

Sensitization of Vc, C1/C2 and Pa5 neurons
It has been documented that noxious inputs from the
orofacial region are somatotopically organized in the
Vc complex and C1/C2 regions, and nociceptive neu-
rons in these areas are involved in the localization of
orofacial pain [50]. Anterograde tracing studies have
revealed that the rat’s tooth pulp afferents are distribu-
ted in the ipsilateral Vc, C1/C2 and Pa5 [45,46,51-55].
In particular, the maxillary first molar pulp afferent
projects to the ipsilateral Vc, Vi/Vc, Pa5 and C1/C2
regions [54]. Shimizu et al. have also reported that pul-
pal application of capsaicin produces pERK-LI cell
expression in these regions suggesting that neurons in
Pa5, Vc, Vi/Vc and Vc/C2 regions are involved in
tooth pulp nociceptive processing [23]. Consistent with
these previous studies, the present study documented
expression of pERK-LI cells following a,b-meATP pul-
pal application in the dorsal portion of the ipsilateral
Vc, Vi/Vc, C1/C2 and bilaterally in the Pa5 region. It
is well established that Vc, Vi/Vc and C1/C2 nocicep-
tive neurons manifest marked central sensitization fol-
lowing orofacial inflammation or trigeminal nerve
injury [40,56,57]. It is also known that a barrage of
action potentials is elicited in primary afferent fibers
following tooth pulp inflammation [58]. Peripheral
inflammation is thought to be involved in enhance-
ment of a variety of receptor activities, including puri-
nergic receptor in peripheral nerve terminals [42],
which results in the peripheral and central sensitiza-
tion of the trigeminal nociceptive system [16,22].
Together, these data and the present results suggest
that purinergic receptors in pulpal nerve terminals are
involved in peripheral sensitization of the trigeminal
nociceptive system. It has also been reported that Pa5
neurons are involved in autonomic regulation as well
as in nociceptive processes [59].

ERK is one of the MAPK families, and has been docu-
mented in the spinal DH as well as dorsal root ganglion
neurons that are phosphorylated by noxious peripheral
stimulation in an intensity-related manner [60-64]. ERK
has also be shown to be phosphorylated in Vc and C1/
C2 neurons within 5 min after noxious stimulation of
the orofacial region [28], strongly suggesting that ERK
phosphorylation is involved in the activation of nocicep-
tive neurons in the Vc and C1/C2 soon after orofacial
noxious stimulation. Consistent with these findings, we
observed that many pERK-LI cells were expressed in Vc,
Vi/Vc, C1/C2 and Pa5 regions 5 min after pulpal appli-
cation of a,b-meATP, and showed that the pERK-LI
cells in Vc showed NeuN immunoreactivity, indicating
that the phosphorylation of ERK occurred in neurons.
Furthermore, following intrathecal administration of the
MEK inhibitor PD 98059 [27,30,31,65], the pERK-LI
cells were significantly reduced in Vc, Vi/Vc, C1/C2 and
Pa5 in rats receiving pulpal administration of a,b-
meATP, suggesting that the intracellular ERK cascade is
involved in the activation of Vc, Vi/Vc, C1/C2 and Pa5
nociceptive neurons. We also observed that the GG
activity evoked by pulpal application a,b-meATP was
significantly suppressed by intrathecal administration of
PD 98059. Since it has been reported that Vc neurons
are involved in masticatory muscle activity evoked by
noxious stimulation of orofacial tissues [66,67], the ERK
phosphorylation in Vc neurons was likely involved in
our documented enhancement of GG activity following
pulpal administration of a,b-meATP.

Conclusions
The present findings suggest that P2X3 and P2X2/3

receptors may be involved in the activation of tooth pul-
pal nerve fibers following tooth pulp injury, resulting in
central sensitization of Vc, Vi/Vc, C1/C2 and Pa5 neu-
rons through the intracellular MAP kinase cascade. The
findings underscore the importance of purinergic recep-
tor mechanisms in tooth pulp nociceptive processes.
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