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ASIC3 Channels Integrate Agmatine and Multiple
Inflammatory Signals through the Nonproton
Ligand Sensing Domain
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Abstract

Background: Acid-sensing ion channels (ASICs) have long been known to sense extracellular protons and
contribute to sensory perception. Peripheral ASIC3 channels represent natural sensors of acidic and inflammatory
pain. We recently reported the use of a synthetic compound, 2-guanidine-4-methylquinazoline (GMQ), to identify a
novel nonproton sensing domain in the ASIC3 channel, and proposed that, based on its structural similarity with
GMQ, the arginine metabolite agmatine (AGM) may be an endogenous nonproton ligand for ASIC3 channels.

Results: Here, we present further evidence for the physiological correlation between AGM and ASIC3. Among
arginine metabolites, only AGM and its analog arcaine (ARC) activated ASIC3 channels at neutral pH in a sustained
manner similar to GMQ. In addition to the homomeric ASIC3 channels, AGM also activated heteromeric ASIC3 plus
ASIC1b channels, extending its potential physiological relevance. Importantly, the process of activation by AGM was
highly sensitive to mild acidosis, hyperosmolarity, arachidonic acid (AA), lactic acid and reduced extracellular Ca2+.
AGM-induced ASIC3 channel activation was not through the chelation of extracellular Ca2+ as occurs with
increased lactate, but rather through a direct interaction with the newly identified nonproton ligand sensing
domain. Finally, AGM cooperated with the multiple inflammatory signals to cause pain-related behaviors in an
ASIC3-dependent manner.

Conclusions: Nonproton ligand sensing domain might represent a novel mechanism for activation or sensitization
of ASIC3 channels underlying inflammatory pain-sensing under in vivo conditions.

Background
Acid-sensing ion channels (ASICs) represent a new sub-
group of the epithelial sodium channel/degenerin
(ENaC/DEG) family of ion channels. To date, functional
cloning studies revealed four genes that give rise to at
least six ASIC informs (ASIC1a, ASIC1b, ASIC2a,
ASIC2b, ASIC3, and ASIC4) [1]. These isoforms, which
are composed of cytosolic N and C termini, two trans-
membrane helices, and a disulfide-rich, multi-domain
extracellular region, can associate into homo- or hetero-
trimers [1,2]. ASICs are amiloride-sensitive voltage-inde-
pendent cationic channels that are activated by a

decrease in extracellular pH [3]. Protons trigger a transi-
ent inward current that desensitizes rapidly in all forms
of ASICs except ASIC3, which displays a sustained cur-
rent that does not fully desensitize despite prolonged
exposure to acidic extracellular pH [4-7]. ASIC3 is pre-
dominantly expressed in sensory neurons and has been
shown to be a sensor of acidic and primary inflamma-
tory pain [8,9]. In addition to protons, a synthetic com-
pound, 2-guanidine-4-methylquinazoline (GMQ) has
been found to activate ASIC3 channels at physiologically
normal pH in a sustained manner [10]. Furthermore,
GMQ acts at a site on the ASIC3 that is separate from
the known proton binding sites [10]. The identification
of this nonproton ligand sensing domain argues that
natural ligands beyond protons may activate ASICs
under physiological conditions.
Arginine is one of the most versatile amino acids in

mammals and has multiple metabolic fates. Not only is
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it metabolically interconvertible with the amino acids
proline and glutamate, but it also serves as a precursor
for synthesis of protein, nitric oxide (NO), agmatine
(AGM), polyamines, ornithine, and urea [11]. Among
these, AGM and polyamines (including spermine, sper-
midine, and putrescine) are positively charged at physio-
logical pH and thus can interact electrostatically with
negatively charged nucleic acids and proteins, including
receptors and ion channels. For example, extracellular
AGM binds to imidazoline receptors [12,13], and blocks
N-methyl-D-aspartate (NMDA) receptors [14] and other
ligand- or voltage-gated cation channels [15-17]. How-
ever, intracellular spermine and spermidine contribute
to the rectification of inward rectifier K+ channels
[18,19] and certain types of glutamate receptors [20,21].
Furthermore, polyamines block the Transient Receptor
Potential Melastatin (TRPM) channels, TRPM4 [22] and
TRPM7 [23], and serve as potent ligands for the capsai-
cin receptor Transient Receptor Potential Vanilloid
Type 1 (TRPV1) [24] and the calcium-sensing receptor
[25], a G-protein-coupled receptor that contributes to
the regulation of calcium homeostasis. In addition, sper-
mine produces complex effects on NMDA receptors,
with either stimulating activity [26,27] or inducing a vol-
tage-dependent blockade [28]. Interestingly, spermine
shifts the steady-state desensitization of ASIC1a chan-
nels to more acidic pH conditions [29] and contributes
significantly to ischemic neuronal injury through enhan-
cing ASIC1a activity [30].
Furthermore, peripheral AGM and polyamines are

implicated in inflammation and pain signaling. Levels of
AGM and polyamines are increased during infection,
trauma, and cancer [31,32]. In a previous study, we have
shown that extracellular AGM and its structural analog
ARC (Figure 1A) activate ASIC3 at neutral pH [10]. In
this study, we further showed that AGM-induced activa-
tion of ASIC3 is profoundly potentiated by mild acido-
sis, hyperosmolarity, increased arachidonic acid (AA), or
reduced extracellular Ca2+, conditions that occur during
inflammation and many other pathophysiological pro-
cesses [8,33-39]. Furthermore, AGM cooperated with
the multiple inflammatory signals to cause pain-related
behaviors in an ASIC3-dependent manner.

Results & Discussion
AGM but Not Polyamines Activates ASIC3 Channels
The fact that AGM directly activates ASIC3 channels
[10] prompted us to look for the effects of polyamines
and other arginine metabolites [11] (Figure 1A). Con-
ventional whole-cell patch clamp recordings were per-
formed in Chinese Hamster Ovary (CHO) cell lines
transiently expressing ASIC3 tagged with GFP to mea-
sure the functional activation of ASIC3 channels under
voltage clamp conditions. At a concentration of 1 mM,

only AGM and its analog ARC (Figure 1B), but not
polyamines (including spermine, spermidine, and putres-
cine), nor L-arginine, nor L-ornithine, were able to acti-
vate the ASIC3 channel at pH 7.4. The resistance
of ASIC3 to polyamines differs from the modulation of
ASIC1a by spermine [29,30] and the modulation of
TRPV1 by polyamines [24], arguing for multifunctional
roles of arginine metabolites in inflammatory responses
[40]. Therefore, as two major sensors for inflammatory
pain, ASIC3 and TRPV1 sense different arginine meta-
bolites (AGM of ASIC3 vs. polyamines of TRPV1,
respectively).
AGM is widely and unevenly distributed in mamma-

lian tissues [41]. Observed first in the rat brain, AGM
was shown later that its concentration in the brain (2.40
ng/g) is lower than in others, such as stomach (71.00
ng/g), intestine, spleen and liver (5.63 ng/g) [42]. The
relative low concentration of AGM in normal tissues
together with the relative low potency of AGM on

Figure 1 Effects of Arginine and Its Metabolites on ASIC3
Channels. (A) Chemical structure of GMQ, arcaine (ARC), arginine
and its metabolites. (B) Summary (periphery) of and sample traces
(inset) showing the effects of compounds on ASIC3 channels at
neutral pH. Each compound was applied at a concentration of 1
mM. The first above trace represents the baseline level without drug
application (zero level), followed by the current induced by AGM,
ARC, and GMQ, respectively. Data points are means ± S.E.M. of four
to six measurements normalized to GMQ-induced response. **p <
0.001 vs. baseline level.
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ASIC3 channels (3.3 ± 0.3% of the GMQ’s response,
Figure 1B) argue for the negligible contribution of AGM
under physiological conditions. However, AGM is
detectable in human plasma and higher concentrations
have been observed in depressed patients [43]. Similarly,
levels of peripheral AGM and polyamines are elevated
during infection, trauma, and cancer [31,32]. Interest-
ingly, AGM evokes ASIC3-dependent pain-behavior in
mice [10], suggesting that AGM-ASIC3 interaction may
become functionally relevant under pathological
conditions.

Synergic Effect of AGM and Mild Acidosis on ASIC3
Channels
Pain conditions are associated with multiple inflamma-
tory signals (mild acidosis, hyperosmolarity, increased
arachidonic acid, or reduced extracellular Ca2+). To
understand the functional relevance of AGM-ASIC3
interaction, we examined the pH dependence of AGM
action by applying graded pH to the CHO cell expressing
ASIC3 channels, in the presence or absence of AGM
(Figure 2A). We found that when the typical biphasic
ASIC3 responses were evoked by a pH reduction, AGM
dramatically enhanced the sustained component (Figure
2A, C), without altering the peak component (Figure 2A,
B). The effect was most evident under mild acidosis con-
ditions (pH 7.2~6.8). This enhancement could be simply
the summation of two independent currents induced by
AGM and mild acidosis, respectively. To address this
issue, we explored the interaction between AGM and pH
7.0 more specifically (Figure 2D-F). We found that pH
7.0 significantly potentiated AGM response and the
potentiation was always more than additive with pH
reduction regardless the sequence of agonist application
(Figure 2D, E), a characteristic that is opposite to the
accelerated ASIC desensitization caused by pretreatment
with acidic solution [36]. This potentiation occurred only
under the simultaneous presence of two ligands (i.e., H+

and AGM) (Figure 2D, E, panels I and III), suggesting
coincident detection of proton and nonproton ligands by
ASIC3 channels in vivo. Remarkably, a significant poten-
tiation was observed even when AGM was applied at
lower concentrations (~100 μM, Figure 2F). The inability
of AGM pretreatment to enhance ASIC3 response to
mild acidosis (Figure 2D, E, panel II) suggests a novel
mechanism underlying the observed synergy between H+

and AGM that differs from the allosteric effect of taran-
tula toxin psalmotoxin 1 (PcTX1) on ASIC1 channels
[44,45].
It is well known that peripheral pH falls to < 7 dur-

ing inflammation, infection, ischemia, hematomas, and
exercise [1]. Moreover, such acidosis is well recognized
to activate nociceptors and to produce pain in humans
that can be attenuated by the ENaC/DEG inhibitor

amiloride [46-48]. Additionally, inflammatory media-
tors, such as nerve growth factor (NGF), serotonin (5-
HT), interleukin-1, bradykinin, and brain-derived neu-
rotrophic factor (BDNF) can stimulate ASIC3 tran-
scription, which perhaps contributes to the pain-
enhancing effects of these mediators [49,50]. Thus,
ASIC3 channels seem to act as a major inflammatory
pain integrator [8,9]. Considering that both AGM pro-
duction [31,32] and ASIC3 expression [51,52] are
increased during inflammation, the positive synergy
between H+ and AGM in activating ASIC3 channels
adds a new level of complexity to the molecular events
that can lead to inflammatory pain. The dramatic
enhancement under pH 7.2-6.8 (Figure 2C) is reminis-
cent of a previous observation reporting sustained
‘window’ current through ASIC3 channels at modest
pH changes presumably contributing to myocardial
ischemia [36]. Whether AGM regulates cardiac pain-
sensing [36] and other forms of muscle pain [9,52,53]
awaits further investigations.

Synergy between AGM and Hyperosmolarity
In inflamed or injured tissues, multiple mediators meet
in the interstitial fluid and form an inflammatory
exudate, the content of which is acidic [34] and hyperos-
motic [37]. Previous studies have shown that hyperosmo-
larity increases neuronal excitability in DRG neurons [8],
affecting preferentially the sustained component of ASIC3
currents. These previous studies promoted us to examine
the synergy among hyperosmolarity, acidosis, and AGM.
ASIC3-expressing CHO cells were exposed to AGM and
mild acidosis in the absence or presence of hyperosmolar-
ity (Figure 3). The hyperosmolarity (600 mosmol kg-1 with
mannitol) itself did not induce any detectable current (Fig-
ure 3A) but significantly potentiated the ASIC3 currents
evoked by a pH reduction to 7.0 (Figure 3), an effect pre-
viously observed in rat DRG neurons or an ASIC3 expres-
sing F-11 DRG cell line [8]. Similarly, the current induced
by AGM was markedly enhanced by hyperosmolarity (Fig-
ure 3). Interestingly, AGM caused further increase over
the current induced by the combination of pH 7.0 and
hyperosmolarity (Figure 3), suggesting that AGM, mild
acidosis, and hyperosmolarity act synergically to facilitate
ASIC3 opening, which may explain the enhanced sensory
neuronal excitability under conditions of inflammation [8]
or cardiac ischemia [36].

Synergy between AGM and Arachidonic Acid
Next, we tested arachidonic acid (AA), a pro-inflamma-
tory and ischemic factor which enhances ASIC currents
induced by acid and increases neuronal excitability
[8,54,55]. At the physiological normal pH, AA induced
negligible currents from ASIC3-expressing CHO cells
(Figure 4A). As expected, AA significantly potentiated
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Figure 2 Mild Acidosis Potentiates AGM-Induced ASIC3 Channel Activation. (A) Representative traces showing currents induced by acid
with graded pH as indicated in the absence (black) or presence (grey) of AGM (1 mM). (B, C) Pooled data as shown in (A) illustrating pH-
dependent interaction between AGM- and acid-induced transient (B) or sustained (C) inward currents. Each point is the mean ± S.E.M. of
four to five measurements and the solid (black) or dashed (grey) lines are fits to the Hill equation. *p < 0.05, represents the significant
difference of current amplitude in the absence or presence of AGM (1 mM). The pH at half maximal activation (pH50) values are 6.74 ± 0.02
(n = 3.6 ± 0.4) and 6.81 ± 0.02 (n = 3.8 ± 0.6) in the absence or presence of AGM, respectively. (D-F) Synergistic interaction between AGM (1
mM) and mild acidosis (pH 7.0). ‘I’, ‘II’, and ‘III’ in (D) indicate co-, pre-, and pre + co-administrations of AGM (1 mM) and mild acid (pH 7.0)
as also represented in (E), respectively. The synergistic interaction between AGM and mild acidosis (pH 7.0) is suggested by the two-way
ANOVA analysis (p < 0.0001). (F) Concentration-dependence of AGM under mild acidosis (pH 7.0). AGM was co-applied as shown in protocol
I of (D). Data points are means ± S.E.M. of four to five measurements normalized to pH 7.0-induced currents (control, dashed line). Expected
value is the linear summation of normalized currents induced by pH 7.0 and AGM individually. **p < 0.001.
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AGM (1 mM)-induced currents (Figure 4). The rela-
tively slow developing kinetics of the AGM current fol-
lowing addition of AA (Figure 4A) presumably reflects
the slow onset of AA effect which requires several min-
utes to be fully established [8]. Therefore, AGM not
only activates ASIC3 by itself at normal pH (Figure 1;
Ref. [10]), but also exerts positive cooperative effect
when administrated with other inflammatory factors
such as mild acidosis, hyperosmolarity, and AA, further
strengthening the notion that ASIC3 channels act as a
multiple sensor to integrate diverse signals present in
the pathophysiological environment [8,9].

AGM, Ca2+, and ASIC3 Channel Activation
We also investigated the sensitivity of AGM-induced
currents to alterations of extracellular Ca2+, which has
marked effect on the GMQ response [10]. As shown in
Figure 5A, B, the presence of 10 mM extracellular Ca2+

completely abolished the AGM currents, whereas redu-
cing Ca2+ significantly potentiated AGM-induced
currents. Low Ca2+ itself evoked a significant inward
current (Figure 5A, left panel), consistent with a pre-
vious report [56]. Thus, similar to GMQ [10], AGM-
ASIC3 interaction is highly sensitive to altered extracel-
lular Ca2+. The extracellular Ca2+ concentration can
decrease from a resting value of around 1.2-1.8 mM to
values as low as 0.08 mM under certain conditions [38],
suggesting that the signaling cascade induced by AGM-
ASIC3 interaction might be markedly amplified under
such conditions. Moreover, lactate produced by anaero-
bic metabolism reduces extracellular Ca2+ concentration
and results in the enhancement of the acid-induced
ASIC currents in ischemia-sensing neurons [39]. Like-
wise, AGM-evoked currents were increased about 3-
folds when lactate and AGM were co-applied (Figure
5C, D). These results suggest that ASIC3 channels may
be gated in vivo by the combined actions of reduced
extracellular Ca2+, mild acidosis, and AGM through
synergic interactions reported here.
It is, however, possible that AGM-induced ASIC3

channel activation was through the chelation of extra-
cellular Ca2+ as observed with lactate [39,56] at neutral
pH. To clarify this possibility, we recorded ASIC3
response to AGM in Ca2+-free external solution. We
found that AGM activated ASIC3 channels regardless
the presence or absence of extracellular Ca2+ (data not
shown). That AGM activates ASIC3 channels indepen-
dent of Ca2+ chelation is consistent with the notion
that AGM modulates ASIC3 activation via novel
mechanisms (Figure 2D, E).

Critical Role of the Nonproton Ligand Sensing Domain
Next we asked how AGM activates ASIC3 channels in a
manner similar to GMQ, given the difference in their
structural flexibility (linear AGM vs. circular GMQ with
a heterocycle, Figure 1A) [10]. In a previous study, we
have shown that the nonproton ligand sensing domain
plays a critical role in mediating AGM and GMQ effects
on ASIC3 [10]. While its critical role for GMQ was sup-
ported by the fact that covalently linking circular GMQ
or TNB to C79 activated ASIC3E79C channels (with the
GMQ-dimer or DTNB treatment) [10], the role of the
same site for the linear AGM was not established. For
comparison, we tested 2-aminoethyl-methanethiosulfo-
nate (MTSEA), a linear thiol-reactive compound on ASI-
C3E79C channels, in which the residue Glu79 was
replaced by a cysteine, thus mimicking AGM-E79

Figure 3 Hyperosmolarity Potentiates AGM-Evoked ASIC3
Activation. (A) Typical traces showing a lack of response to
hyperosmolarity (600 mosmolkg-1 with mannitol, H-Osm), and
currents induced by mild acid (pH 7.0), mild acid with
hyperosmolarity (H-Osm + pH 7.0), AGM (1 mM), AGM (1 mM) with
hyperosmolarity (H-Osm + AGM), AGM (1 mM) plus mild acid (pH
7.0 + AGM), and AGM (1 mM) with the combined mild acid and
hyperosmolarity (H-Osm + pH 7.0 + AGM). (B) Pooled data as
shown in (A). Data points are means ± S.E.M. of five to six
measurements normalized to pH 7.0-induced current (dashed line).
*p < 0.05, **p < 0.001, demonstrate the significant difference of
current amplitude in the absence or presence of hyperosmolarity;
&p < 0.05, demonstrates the significant difference of current
amplitude in the absence or presence of mild acid (pH 7.0); @p <
0.05, demonstrates the significant difference of current amplitude in
the absence or presence of AGM (1 mM).
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interaction (Figure 6A). Bath application of 0.2 mM
MTSEA persistently activated ASIC3E79C channels at pH
7.4 (Figure 6B, D). By contrast, MTSEA (0.2 mM) was
ineffective in CHO cells expressing wild-type (WT, data
not shown) or ASIC3E423C channels (Figure 6B). Interest-
ingly, 2-(trimethylammonium)ethyl methanethiosulfonate
(MTSET, 0.5 mM), a MTS reagent in which the amino
group is replaced by a trimethylamine, failed to induce any
detectable currents in ASIC3E79C-expressing CHO cells
(Figure 6C), suggesting that the amino group in AGM
plays an essential role in activating ASIC3 channels, as has
been shown in GMQ-ASIC3 interaction [10]. Together,
these data strongly support that activation of ASIC3 by
AGM relies on polar, steric, and electrostatic interactions
with the nonproton ligand sensing domain in the channel
[10], regardless whether the ligand is linear and flexible
(i.e. AGM) or circular and rigid (i.e. GMQ).

ASIC Subunit Specificity
Most ASIC-like acid-evoked currents in DRG neurons
are mediated by heteromers of ASIC3, -2, and -1 [57].
To address ASIC subunit specificity, we recorded AGM
or ARC responses in CHO cells expressing different
combinations of ASIC subunits (Figure 7). Similar to
GMQ [10], none of the homomeric channels ASIC1a,
ASIC1b, or ASIC2a were activated by either AGM or
ARC (Figure 7A, C). However, heteromeric ASIC3 plus
ASIC1b channels responded to AGM and ARC (Figure

7B, D) in a manner similar to homomeric ASIC3 chan-
nels (Figure 7A, C). On the other hand, heteromeric
combinations of ASIC3 plus ASIC1a, ASIC2a, or
ASIC2b were insensitive to these ligands (Figure 7B, D).
This subunit specificity together with the restricted
distribution pattern of ASIC3 [9] suggests that an
AGM-dependent regulatory pathway most likely occurs
in peripheral tissues expressing homomeric ASIC3 and/
or heteromeric ASIC3 + 1b channels [8,36,58]. Alterna-
tively, AGM may act as a co-agonist sensitizing the
apparently-unresponsive heteromeric ASIC3 channels
(i.e., ASIC3 + 1a, 2a, or 2b) (Figure 7) to protons. In
addition, according to a recent report [59], AGM may
also act on the ASIC3 channels through coincident
detection of multiple ligands (i.e., AGM, H+, and other
factors such as ATP) by cross-activating an as yet uni-
dentified ion channel. In addition, the emergence of new
ASIC isoforms [60] adds an additional possibility under-
lying the ASIC3-dependent pain-behavior induced by
AGM in vivo [10].

ASIC3 Channels Integrate Multiple Inflammatory Signals
in vivo
Finally, to gain insights into the pathophysiological rele-
vance of ASIC3-dependent integration of AGM and
multiple inflammatory signals, we performed in vivo
pain-related behavioral tests [10] following the injection
of AGM and hyperosmolarity, arachidonic acid (AA), or

Figure 4 Arachidonic Acid (AA) Potentiates AGM-Induced ASIC3 Channel Activation. (A) Representative traces showing currents induced
by AA (10 μM, dark grey), AGM (1 mM) in the absence (black) or presence (light grey) of AA (10 μM). (B) Pooled data as shown in (A). Data
points are means ± S.E.M. of five measurements normalized to AGM (1 mM)-induced current (dashed line). Expected value is the linear
summation of normalized currents induced by AA (10 μM) and AGM (1 mM) individually. **p < 0.001.

Li et al. Molecular Pain 2010, 6:88
http://www.molecularpain.com/content/6/1/88

Page 6 of 12



lactate into the right hindpaw of asic3+/+ and asic3-/-

mice. We measured the total time the animals spent
licking the injected paw during a 30-min period. As
shown previously, control asic3+/+ mice showed a signif-
icant increase in paw-licking time after AGM (10 mM)
injection compared to saline-injected controls [10]. In
consideration of the high AGM concentration used, we
re-evaluated the paradigms by injecting 1 mM AGM
(Figure 8). Similarly, asic3+/+ mice showed a significant
increase in paw-licking time after AGM (1 mM) injec-
tion, though less intense than that observed following
10 mM AGM injection [10]. As expected, the reaction
of asic3-/- mice to AGM was significantly reduced

(Figure 8). When AGM (1 mM) was co-applied with
hyperosmolarity (H-Osm, 600 mosmol kg-1 with manni-
tol), AA (10 μM), or lactate (15 mM, keeping the pH
neutral), the injection elicited more intense response in
asic3+/+ mice while failed to elicit the comparable
response in asic3-/- mice. Interestingly, asic3+/+ mice
showed a significant increase in paw-licking time follow-
ing the treatment of H-Osm (600 mosmol kg-1 with
mannitol), AA (10 μM), or lactate (15 mM) alone com-
pared to saline-injected controls. These behavioral
responses were similarly reduced in asic3-/- mice (Figure
8), supporting an essential role of ASIC3 in sensing
multiple inflammatory signals [9], including AGM.

Figure 5 Reduced Extracellular Ca2+ Potentiates AGM-Induced ASIC3 Channel Activation. (A) Representative traces showing currents
induced by reduced extracellular Ca2+ (left) and 1 mM AGM applied under low Ca2+ (right). (B) Pooled data as shown in (A). Data points are
means ± S.E.M. of four to five measurements normalized to currents evoked with 0.01 mM Ca2+ (dashed line). Expected value is the linear
summation of normalized currents induced by reduced Ca2+ and 1 mM AGM under low Ca2+ conditions individually. *p < 0.05, **p < 0.001. The
two-way ANOVA analysis suggests the synergetic interaction between AGM and Ca2+ reduction (p < 0.01). (C) Representative traces showing
currents induced by lactate (15 mM, keeping the pH neutral, light grey), AGM (1 mM) in the absence (black) or presence (dark grey) of 15 mM
lactate. (D) Pooled data as shown in (C). Data points are means ± S.E.M. of five measurements normalized to AGM (1 mM)-induced currents
(dashed line). Expected value is the linear summation of normalized currents induced by lactate (15 mM) and AGM (1 mM) individually.
**p < 0.001.
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Conclusions
ASIC3 channels sense extracellular protons and nonpro-
ton ligands, including the endogenous molecule AGM,
which is a metabolite of arginine. In this study, we
extended the previous finding that ASIC3 can be acti-
vated by small molecules with basic groups such as
GMQ, AGM, and ARC by uncovering the functional
interactions of AGM with multiple inflammatory factors
such as hyperosmolarity, arachidonic acid, and lactate.
Cysteine modification with a linear thiol-reactive com-
pound that mimics AGM binding induces ASIC3 open-
ing in a sustained manner similar to AGM, supporting
the critical role of the newly identified nonproton ligand
sensing domain. In vivo tests using both asic3+/+ and
asic3-/- mice revealed that AGM cooperates with the
multiple inflammatory signals to cause pain-related
behaviors in an ASIC3-dependent manner. Thus, the
present findings suggest a new mechanism for activation
or sensitization of ASIC3 channels underlying inflamma-
tory pain-sensing under in vivo conditions.

Methods
Cell Culture and Transfection
All constructs were expressed in CHO cells as described
previously [10]. In brief, CHO cells were cultured at 37 °
C in a humidified atmosphere of 5% CO2 and 95% air.
The cells were maintained in F12 medium (INVITRO-
GEN) supplemented with 1 mM L-glutamine, 10% fetal
bovine serum, 50 units/ml penicillin, and 50 μg/ml
streptomycin. Transient transfection of CHO cells was
carried out using Lipofectamine™2000 (INVITROGEN).
Electrophysiological measurements were performed
24-48 h after transfection.

Solutions and Drugs
The ionic composition of the incubation solution (SS,
see Figures 2E, F and 6B) was (mM): 150 NaCl, 5 KCl, 1
MgCl2, 2 CaCl2, 10 HEPES, and 10 glucose, aerated
with 95% O2/5% CO2 to a final pH of 7.4. The standard
external solution contained (mM): 150 NaCl, 5 KCl, 1
MgCl2, 2 CaCl2, and 10 glucose, buffered to various pH

Figure 6 Effects of MTS Reagents on ASIC3E79C Channels at Neutral pH. (A) Models showing the structural similarity between MTSEA and
AGM in activating ASIC3. (B) Sample traces showing effects of MTSEA (0.2 mM) on ASIC3E79C (upper trace) and ASIC3E423C mutated channels
(lower traces) at pH 7.4. Similar results were obtained from other four measurements. (C) Sample traces showing a lack of effects of MTSET (0.5
mM) on ASIC3E79C. (D) Maximal currents induced in ASIC3E79C by MTSEA (0.2 mM, 2 min) and MTSET (0.5 mM, 5-10 min). Data points are means
± S.E.M. of five measurements normalized to pH 5.0-induced peak currents.
**p < 0.001 vs. baseline level. #indicates no detectable changes upon exposure to MTSET (0.5 mM, 5-10 min).

Li et al. Molecular Pain 2010, 6:88
http://www.molecularpain.com/content/6/1/88

Page 8 of 12



values with either 10 mM HEPES, pH 6.0-7.4, or 10 mM
MES, pH < 6.0. For the Na+-free medium (Figure 6B), Na
+ was substituted with equimolar N-Methyl-D-glucamine
(NMDG). The patch pipette internal solution for whole-
cell patch recording was (mM): 120 KCl, 30 NaCl, 1

MgCl2, 0.5 CaCl2, 5 EGTA, 2 Mg-ATP, and 10 HEPES.
The internal solution was adjusted to pH 7.2 with Tris-
base. The osmolarities of all these solutions were main-
tained at 300-325 mOsm (Advanced Instrument, Nor-
wood, MA). Hyperosmotic (H-Osm) conditions were

Figure 7 Subunit Specificity of Agmatine (AGM) and Arcaine (ARC) in CHO Cells Transfected with One or Two Different ASIC Subunits.
(A, B) Representative traces showing the response of AGM (1 mM) or ARC (1 mM) on CHO cells transfected with one (A) or two (B) different
ASIC subunits. (C, D) Polled data as shown in (A, B). AGM (1 mM) and ARC (1 mM) directly activate ASIC3 homomeric channels (A, C) and
heteromeric ASIC3 + 1b channels (B, D) but not ASIC1a nor ASIC1b nor ASIC2a homomeric channels (A, C), nor heteromeric ASIC3 + 1a, ASIC3 +
2a, ASIC3 + 2b channels (B, D) at the neutral pH (pH = 7.4). Data are means ± S.E.M. n = 3-5.
**p < 0.001 vs. baseline level.
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obtained by adding mannitol to the standard external
solution (or saline) as indicating in the text.
Solutions with different composition were applied

using a rapid application technique termed the “Y-tube”
method throughout the experiments [10]. This system
allows a complete exchange of external solution sur-
rounding a cell within 20 ms.

Site-Directed Mutagenesis
The cDNA of rat ASIC3 was subcloned into the
pEGFPC3 vector (Promega Corporation, Madison, WI,
U.S.A.). Each mutant was generated with the Quik-
Change® mutagenesis kit (Stratagene, La Jolla, CA) in
accordance with the manufacturer’s protocol using high-
performance-liquid-chromatography-purified or PAGE-
purified oligonucleotide primers (Sigma-Genosys, The
Woodlands, TX). Individual mutations were verified by
DNA sequence analysis, and the predicted amino acid
sequences were determined by computer analysis.

Electrophysiology
The electrophysiological recordings were performed
using the conventional whole-cell patch recording con-
figuration under voltage clamp condition. Patch pipettes
were pulled from glass capillaries with an outer diameter
of 1.5 mm on a two-stage puller (PP-830, Narishige Co.,
Ltd., Tokyo, Japan). The resistance between the record-
ing electrode filled with pipette solution and the refer-
ence electrode was 3-5 MΩ. Membrane currents were
measured using a patch clamp amplifier (Axon 700A,
Axon Instruments, Foster City, CA) and were sampled
and analyzed using a Digidata 1320A interface and a

computer running the Clampex and Clampfit software
(version 8.0.1, Axon Instruments). In most experiments,
70-90% of the series resistance was compensated. Unless
otherwise noted, the membrane potential was held at
-60 mV throughout the experiment under voltage clamp
conditions. All the experiments were carried out at
room temperature (23 ± 2 °C).

Pain-Related Behavioral Assays
Animals were acclimatized for 30 min before experi-
ments. A total volume of 10 μl solution (in 0.9% NaCl)
containing either saline (0.9% NaCl only), or AGM (1
mM), or hyperosmolarity (H-Osm, 600 mosmol kg-1

with mannitol), or AA (10 μM), or lactate (15 mM), or
AGM + H-Osm, or AGM + AA, or AGM + lactate was
injected intraplantarly using a 30G needle and paw-lick-
ing behavior was quantified for 30 min [10].

Data Analysis
Results were expressed as means ± S.E.M. Unless other-
wise noted, statistical comparisons were made with the
Student’s t test.*, or &, or @, p < 0.05 or **p < 0.001 was
considered significantly different. To test the synergic
interaction between two factors (i.e., mild acidosis and
AGM, or AGM and Ca2+ reduction) on ASIC3 currents,
additional two-way ANOVA analyses were made (Fig-
ures 2 and 5, p < 0.05 was considered significant). Con-
centration-response relationships for pH-dependent
activation of ASIC3 channels were obtained by measur-
ing currents in response to acidic solutions with graded
pH values. Each acidic solution was tested on at least
three CHO cells and all results used to generate a con-
centration-response relationship were from the same
group. The data were fit to the Hill equation: I/Imax =1/
[1+(EC50/[Ligand])

n], where I is the normalized current
at a given pH, Imax is the maximum normalized current,
EC50 is the concentration of proton yielding a current
that is half of the maximum, and n is the Hill
coefficient.
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