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Homer1a signaling in the amygdala counteracts
pain-related synaptic plasticity, mGluR1 function
and pain behaviors
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Abstract

Background: Group I metabotropic glutamate receptor (mGluR1/5) signaling is an important mechanism of pain-
related plasticity in the amygdala that plays a key role in the emotional-affective dimension of pain. Homer1a, the
short form of the Homer1 family of scaffolding proteins, disrupts the mGluR-signaling complex and negatively
regulates nociceptive plasticity at spinal synapses. Using transgenic mice overexpressing Homer1a in the forebrain
(H1a-mice), we analyzed synaptic plasticity, pain behavior and mGluR1 function in the basolateral amygdala (BLA)
in a model of arthritis pain.

Findings: In contrast to wild-type mice, H1a-mice mice did not develop increased pain behaviors (spinal reflexes
and audible and ultrasonic vocalizations) after induction of arthritis in the knee joint. Whole-cell patch-clamp
recordings in brain slices showed that excitatory synaptic transmission from the BLA to the central nucleus (CeA)
did not change in arthritic H1a-mice but increased in arthritic wild-type mice. A selective mGluR1 antagonist
(CPCCOEt) had no effect on enhanced synaptic transmission in slices from H1a-BLA mice with arthritis but
inhibited transmission in wild-type mice with arthritis as in our previous studies in rats.

Conclusions: The results show that Homer1a expressed in forebrain neurons, prevents the development of pain
hypersensitivity in arthritis and disrupts pain-related plasticity at synapses in amygdaloid nuclei. Furthermore,
Homer1a eliminates the effect of an mGluR1 antagonist, which is consistent with the well-documented disruption
of mGluR1 signaling by Homer1a. These findings emphasize the important role of mGluR1 in pain-related
amygdala plasticity and provide evidence for the involvement of Homer1 proteins in the forebrain in the
modulation of pain hypersensitivity.

Background
Neuroplasticity in the amygdala plays an important role
in emotional-affective aspects of pain [1,2]. A growing
body of literature is addressing pain-related functions of
different amygdala nuclei and signaling mechanisms in
these areas [3-13,13-16]. Neurotransmission from the
lateral amygdala (LA) to the basolateral amygdala (BLA)
and further to the central nucleus of the amygdala
(CeA) regulates input and output functions of the amyg-
dala. The designation of the latero-capsular division of
the central nucleus of the amygdala (CeLC) as the “noci-
ceptive amygdala” emphasizes its role in pain processing

and modulation [1,2]. CeLC neurons receive excitatory
glutamatergic input directly from neurons in the BLA
and inhibitory input via glutamatergic activation of
GABAergic neurons in the intercalated cell mass of the
amygdala [6].
Group I metabotropic glutamate receptors (mGluR1/5)

play an important role in pain-related signaling in the
amygdala [3,13-16]. Pain-related neuroplastic changes of
excitatory transmission from the BLA to the CeLC are
mainly mediated by mGluR1 [6]. Blockade of mGluR1
inhibits arthritis pain-induced audible and ultrasonic
vocalizations in rats [15] and decreases excitatory postsy-
naptic currents (EPSCs) in CeLC neurons in brain slices
of arthritis rats [3,6].
Activation of mGluR1/5 leads to the release of intracel-

lular calcium via phospholipase C, which has major
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cellular consequences such as neuronal excitability
changes, enhancement of neurotransmitter release, and
potentiation of the activity of NMDA or AMPA receptors
[17-20]. Signaling of mGluR1/5 is potently modulated by
the family of Homer proteins [21,22]. Homer1 proteins
bind to mGluR1/5, and the long splice variants Homer1b
and Homer1c, which are constitutively expressed, func-
tion as molecular bridges by linking mGluR1/5 to the IP3
receptor on the endoplasmatic reticulum [21-23], thereby
regulating mGluR-IP3R signaling towards the release of
calcium from intracellular stores [24]. The short splice
variant Homer1a has been identified as an immediate
early gene (IEG) following intense neuronal activity
[22,25,26]. Expression of Homer1a leads to the disruption
of the mGluR-IP3R complex [21,23] and to reduced and
delayed mGluR-mediated intracellular calcium release
[23]. Homer1a has been associated with pain-related
plasticity at spinal synapses [27-30] and serves as a endo-
genous modulator for negative feedback regulation of
mGluR-signaling in inflammatory pain conditions [27].
However, pain modulation by Homer1 signaling in the
brain is entirely unknown. We explored the contribution
of the Homer1a-mGluR signaling complex to pain hyper-
sensitivity and pain-related synaptic plasticity in the
amygdala, using Homer1a transgenic mice.

Findings
This study addressed the interaction of Homer1a and
mGluR1 in the amygdala in our kaolin/carrageenan-
induced arthritis pain model. We generated mice over-
expressing Homer1a in the forebrain and characterized
different founder lines [31].

Generation and maintenance of transgenic mice
The Homer1a-transgenic mouse line was generated,
backcrossed to C57BL/6 wild-type strain for more than
10 generations and characterized as described previously
[31]. Mice were housed individually in a temperature and
12 h day/night cycle controlled room. All experiments
were approved by the Institutional Animal Care and Use
Committee (IACUC) at the University of Texas Medical
Branch (UTMB) and conform to the guidelines of the
International Association for the Study of Pain (IASP)
and of the National Institutes of Health (NIH).

Arthritis pain model
A mono-arthritis was induced in one knee joint as
described in detail previously [32]. Briefly, a kaolin suspen-
sion (4%, 40 μl) was slowly injected into the joint cavity
through the patellar ligament. After repetitive flexions and
extensions of the knee for 15 min, a carrageenan solution
(2%, 40 μl) was injected into the knee joint cavity, and the
leg was flexed and extended for another 5 min. The con-
trol group of mice was untreated. We showed previously

that intraarticular saline injection does not mimic arthri-
tis-induced changes [3].

Spinal reflexes
Hindlimb withdrawal reflexes were evoked by mechani-
cal stimulation of the knee joint with increasing intensi-
ties, using a forceps equipped with a force transducer
system as in our previous studies [5,13,32]. Withdrawal
threshold was defined as the minimum stimulus inten-
sity that evoked a withdrawal reflex.

Vocalizations
Audible (16-20 kHz) and ultrasonic (25 ± 4 kHz) vocali-
zations were recorded and analyzed as described pre-
viously [32,33] using the UltraVox 4-channel system;
Noldus Information Technology, Leesburg, VA. Vocali-
zations were recorded for 1 min before and during
application of brief (15 s) innocuous (500 g/30 mm2)
and noxious (2000 g/30 mm2) mechanical stimuli to the
knee, using a calibrated forceps [32,33].

Electrophysiology: patch-clamp recording
Coronal brain slices (300 μm) containing the CeCL were
prepared from normal and arthritic mice (6 h postinduc-
tion) as described before in rats [3,6,8-11]. Briefly, mice
were decapitated and the brains were quickly dissected
out and blocked in cold, oxygenated artificial cerebrosp-
inal fluid (ACSF). Whole-cell patch-clamp recordings
were obtained from CeLC neurons using the “blind”
patch technique as previously described [3,6,8-11]. One
neuron was recorded in each slice and 1 or 2 slices were
used per animal. 7-(hydroxyimino)cyclopropa[b]chro-
men-1a-carboxylate ethyl ester (CPCCOEt) was pur-
chased from Tocris Bioscience (Ellisville, MO) and
applied by gravity-driven superfusion in the ACSF. The
appropriate concentration was determined in our
previous study [3].

Statistical analysis
All data are presented as mean ± SE. For multiple com-
parisons, Analysis of Variance (ANOVA) was used.
Paired Student’s t-test was used to compare two sets of
data that have Gaussian distribution and similar
variances.

Homer1a expression in H1a-mice
Immunohistochemistry was used to detect the expression
of the myc-tagged Homer1a protein. Here we used a
transgenic line overexpressing Homer1a uniformly strong
in the striatum, in layers V and VI of the somatosensory
cortex, and in the amygdala (Figure1). In the amygdala,
Homer1a was mainly expressed in the BLA and to a les-
ser extend in the lateral amygdala (LA; Figure1). We used
this myc-tagged Homer1a-overexpressing mouse-line
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(“H1a-mice”) to address the significance of the mGluR1
signaling in amygdala neurons in arthritis pain. Non-
Homer1a expressing littermates were used as control
mice ("wild type”).

Pain behavior in H1a-mice
The knee joint arthritis led to the development of
increased pain responses in wild-type mice, which is
reflected in the decrease of hindlimb withdrawal thresh-
olds (n = 3; Figure2A) and an increase in the duration
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Figure 1 Characterization of transgenic mice expressing
Homer1a in the forebrain. Immunohistochemical characterization
of myc-tagged Homer1a in forebrain sections of transgenic mice
overexpressing Homer1a (H1a-mice) using an anti-myc antibody.
Anti-myc antibody detected Homer1a expression in the striatum, in
the somatosensory cortex and in the amygdala (BLA and LA).
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Figure 2 Pain behaviors in wild type and transgenic mice. (A)
Hindlimb withdrawal thresholds decreased in wild-type mice 6 h
postinduction of arthritis (n = 3), but not in mice overexpressing
Homer1a (H1a-mice; n = 3). (B, C) Audible and ultrasonic
vocalizations increased in wild-type mice 6 h postinduction of
arthritis (n = 6), but not in H1a-mice (n = 6). *,**,*** P < 0.05, 0.01,
0.001 (compared to normal pre-arthritis values in the same animal;
paired t-test).
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of audible and ultrasonic vocalizations (n = 6; Figures2-
Band2C) measured 6 h postinduction. In contrast, H1a-
mice did not develop mechanical hypersensitivity (n = 3;
Figure2A) and showed no change in vocalizations (n =
6; Figures2Band2C), suggesting that the expression of
Homer1a protects against arthritis pain.

Synaptic transmission in the amygdala in H1a-mice
We went on to investigate the effect of Homer1a overex-
pression on pain-related changes of excitatory synaptic
transmission and mGluR1 function in the CeLC. Whole-
cell patch-clamp technique was used to record monosy-
naptic EPSCs evoked in CeLC neurons by electrical sti-
mulation in the BLA in brain slices from wild type and
from H1a-mice, with or without arthritis (6 h postinduc-
tion, Figure3). In agreement with previous studies in rats
[3,6,8-11], input-output functions of excitatory transmis-
sion increased in CeLC neurons in wild-type mice with
arthritis (n = 5 neurons) compared to mice without
arthritis (n = 4) significantly (P < 0.0001, F1,70 = 39.53;
Figure3A). Blockade of mGluR1 with a selective antago-
nist (CPCCOEt, 10 μM, n = 5 neurons) inhibited excita-
tory synaptic transmission significantly in wild-type mice
with arthritis (P < 0.01, paired t-test, compared to pre-
drug; Figures3Cand3D). Our previous studies showed
that this effect was presynaptic [3,6]. In H1a-mice, base-
line excitatory synaptic transmission (no arthritis, n = 4
neurons; Figure3B) was not significantly different from
that in wild-type mice (P > 0.05, F1,60 = 3.63; Figure3A).
Different than in wild-type mice, however, excitatory
synaptic transmission in H1a-mice did not change in
arthritis (n = 5 neurons, P > 0.05, F1,70 = 3.86; Figure3B).
Importantly, CPCCOEt (10 μM) had no effect on excita-
tory transmission in slices from H1a-mice with arthritis
(n = 5 neurons; Figures3Cand3D).
Our findings confirm previous studies performed in

rats where mGluR1 has been shown to play an impor-
tant role in pain-related synaptic plasticity in the CeLC
[3,6]. The novel result of the present study is that inter-
actions of mGluR1 with the scaffolding proteins of the
Homer1 family in the forebrain play an important role
in inflammatory pain hypersensitivity as well as in
synaptic plasticity in the amygdala. Homer1a serves here
as an endogenous “antagonist” of group I mGluR signal-
ing as proposed previously in the spinal cord [22,27,34]
and prevents pain-related behavioral and synaptic
changes. As in our previous study in rat brain slices [3]
the mGluR1 antagonist CPCCOEt had no effect on
synaptic transmission under normal conditions but
strongly inhibited synaptic transmission in arthritis rats.
However, this effect was lost in mice overexpressing
Homer1a, which can be explained by Homer1a disrupt-
ing mGluR1 signaling hence occluding the inhibitory
effect of the mGluR1 antagonist seen in wild-type mice.

The disruptive effect of Homer1a overexpression in the
BLA rather than CeA is consistent with a presynaptic
site of action previously shown for mGluR1 at the BLA-
CeA synapse [3,6].

Conclusions
Our findings emphasize the importance of mGluR1-
Homer1 interactions in amygdala neurons in pain and pro-
vide evidence for a protective role of the activity-induced
regulator, Homer1a, in the forebrain in inflammatory pain.
It is conceivable that expression of Homer1a in forebrain
areas other than the amygdala may also disrupt pain-
related synaptic plasticity and prevent the development of
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Figure 3 Synaptic transmission in the amygdala in brain slices
from wild type and transgenic mice. Whole-cell patch recordings
of excitatory transmission at the BLA-CeLC synapse in brain slices
from wild-type and Homer1a overexpressing mice (H1a-mice) with
and without arthritis (6 h postinduction). (A) Input-output functions
of monosynaptic EPSCs in CeLC neurons increased in wild-type
mice with arthritis (n = 5 neurons) compared to mice without
arthritis (normal; n = 4) (B) Input-output functions of monosynaptic
EPSCs in CeLC neurons were not different in brain slices from H1a-
mice with arthritis (n = 5 neurons) and without arthritis (n = 4). (C)
Monosynaptic EPSCs recorded in an individual CeLC neuron in a
brain slice from an arthritic wild-type mouse and in another CeLC
neuron from an arthritic H1a-mouse before and during CPCCOEt
(10 μM; average of 8-10 traces). (D) CPCCOEt (10 μM) inhibited
EPSCs in slices from arthritic wild-type mice (n = 5 neurons) but not
in slices from arthritic H1a-mice (n = 5 neurons). Bar histograms
show normalized drug effects (expressed as percent of predrug
control, set to 100%). ** P < 0.01 (compared to predrug control in
the same neurons; paired t-test).
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pain hypersensitivity. Candidate brain areas include the
anterior cingulate cortex and insular cortex. Disrupting
pain-related plasticity in the anterior cingulate cortex has
recently been shown to alleviate neuropathic pain [35].

List of abbreviations
ACSF: artificial cerebrospinal fluid; BLA: basolateral nucleus of the amygdala;
CeA: central nucleus of the amygdala; CeLC: latero-capsular division of the
CeA; CPCCOEt: 7-(hydroxyimino)cyclopropa[b]chromen-1a-carboxylate ethyl
ester; EPSC: excitatory postsynaptic current; H1a: Homer1a; LA: lateral nucleus
of the amygdala; mGluR: metabotropic glutamate receptor.
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