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Abstract

Background: Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and
chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that
repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the
late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate
(NMDA) receptors in oxaliplatin-induced mechanical allodynia in rats.

Results: Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week) caused mechanical allodynia in the
fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol) and memantine (1 umol), NMDA
receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t) and ifenprodil (50 mg/kg, p.o.)
significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and
mMRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase) but not on Day 5 (early phase).
Moreover, we examined the involvement of nitric oxide synthase (NOS) as a downstream target of NMDA receptor.

induced mechanical allodynia.

L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS) inhibitor, significantly
suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical
marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this
increased intensity was reversed by intrathecal injection of Ro25-6981.

Conclusion: These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-

Background

Glutamate is a major excitatory transmitter in the spinal
cord and N-methyl-D-aspartate (NMDA) receptors are
known to be involved in the painful neuropathy [1,2].
The NMDA receptor antagonist inhibits the pain hyper-
sensitivity in chronic constriction injury (CCI) model.
Moreover, the expression of spinal NR2B-containing
NMDA receptors is increased with the pain hypersensi-
tivity induced by CCI or chronic compression of the dor-
sal root ganglia (CCD) [3-6]. Selective NR2B antagonists
inhibit mechanical allodynia without causing motor dys-
function in CCI, CCD and spinal nerve-ligated (SNL)
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neuropathic models [5-8]. In addition, the NR2B subunits
are localized to the superficial dorsal horn of the spinal
cord [7,9], suggesting a possible involvement in pain
transmission. Thus, the NR2B-containing NMDA recep-
tors may play an important role in the neuropathic pain.

Nitric oxide synthase (NOS) as a downstream target of
NMDA receptor also contributes greatly to the inci-
dence of neuropathic pain. In the rat CCI model of neu-
ropathic pain, intrathecal injection of non-selective NOS
inhibitor L-N€-nitro-arginine methyl ester (L-NAME)
reverses the persistent thermal hyperalgesia [10].
Furthermore, a close correlation between neuronal NOS
(nNOS) and neuropathic pain has been documented in
CCI model [11].

Oxaliplatin, a third-generation platinum-based che-
motherapy drug, has widely been used as a key drug in
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the treatment of colorectal cancer. However, oxaliplatin
causes severe acute and chronic peripheral neuropathies.
The acute neuropathy includes acral paresthesias and
dysesthesia triggered or enhanced by exposure to cold,
and it appears soon after administration [12]. After mul-
tiple cycles the patients develop the chronic neuropathy
that is characterized by a sensory and motor dysfunc-
tion. This chronic neuropathy is a dose-limiting toxicity
and a major clinical problem in oxaliplatin chemother-
apy [13].

Recently, we reported that repeated administration of
oxaliplatin induced cold hyperalgesia in the early phase
and mechanical allodynia in the late phase in rats [14].
Oxaliplatin is metabolized to oxalate and dichloro(1,2-
diaminocyclohexane)platinum [Pt(dach)Cl,] [15]. We
demonstrated that oxalate and platinum metabolite are
involved in the cold hyperalgesia and mechanical allody-
nia, respectively [14]. Oxalate alters voltage-gated Na*
channels [16] and its effect may be involved in the cold
hyperalgesia. On the other hand, the mechanical
allodynia may be due to the peripheral nerve injury by
platinum metabolite. However, whether the NR2B-
containing NMDA receptors are involved still remains
largely unclear. In the present study, we investigated the
involvement of NR2B-containing NMDA receptors in
the oxaliplatin-induced mechanical allodynia in rats.

Results

Effects of NMDA receptor antagonists on oxaliplatin-
induced mechanical allodynia

Oxaliplatin (4 mg/kg, i.p., twice a week for 4 weeks) sig-
nificantly reduced the paw withdrawal thresholds com-
pared with the vehicle in the von Frey test on Day 24 (P
< 0.01, Figure 1). Acute administration of a NMDA
receptor antagonist MK-801 (10 nmol, i.t.) completely
reversed the reduction of paw withdrawal threshold by
oxaliplatin at 30 min after administration (P < 0.05, Fig-
ure 1A). Similarly, acute administration of another
NMDA receptor antagonist memantine (1 pmol, i.t.)
completely reversed the reduction of paw withdrawal
threshold by oxaliplatin at 30 min after administration
(P < 0.05, Figure 1B). These effects of MK-801 and
memantine disappeared by 120 min after administration.
In addition, MK-801 (10 nmol, i.t.) and memantine (1
pmol, i.t.) had no effect on the paw withdrawal thresh-
olds in intact rats (data not shown).

Effects of NR2B antagonists on oxaliplatin-induced
mechanical allodynia

Acute administration of a selective NR2B antagonist Ro
25-6981 (300 nmol, i.t.) significantly inhibited the reduc-
tion of paw withdrawal threshold by oxaliplatin at 30
and 60 min after administration (P < 0.01: 30 min, P <
0.05: 60 min, Figure 2A). Similarly, acute administration
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Figure 1 Effects of MK-801 (A) and memantine (B) on
oxaliplatin-induced mechanical allodynia in the von Frey test.
Oxaliplatin (4 mg/kg) was administered i.p. twice a week for

4 weeks (Days 1, 2, 8,9, 15, 16, 22 and 23). We confirmed the
incidence of mechanical allodynia on Day 24. We carried out the
drug evaluation on the next day. MK-801 (1-10 nmol/body) and
memantine (0.1-1 pmol/body) were administered intrathecally. The
von Frey test was performed immediately before (0 min) and at 30,
60, 90 and 120 min after administration. Values are expressed as
mean + SEM of 6-10 animals. TP < 0.01 compared with vehicle,

*P < 0.05 compared with oxaliplatin alone.

of another NR2B antagonist ifenprodil (50 mg/kg, p.o.)
significantly inhibited the reduction of paw withdrawal
threshold by oxaliplatin at 30 and 60 min after adminis-
tration (P < 0.01: 30 min, P < 0.05: 60 min, Figure 2B).
These effects of Ro 25-6981 and ifenprodil disappeared
by 120 min after administration. In addition, Ro 25-
6981 (300 nmol, i.t.) and ifenprodil (50 mg/kg, p.o.) had
no effect on the paw withdrawal thresholds in intact
rats (data not shown).
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Figure 2 Effects of Ro 25-6981 (A) and ifenprodil (B) on
oxaliplatin-induced mechanical allodynia in the von Frey test.
Oxaliplatin (4 mg/kg) was administered i.p. twice a week for

4 weeks (Days 1, 2, 8,9, 15, 16, 22 and 23). We confirmed the
incidence of mechanical allodynia on Day 24. We carried out the
drug evaluation on the next day. Ro 25-6981 (30-300 nmol/body)
was administered intrathecally. Ifenprodil (10-50 mg/kg) was
administered orally. The von Frey test was performed immediately
before (0 min) and at 30, 60, 90 and 120 min after administration.
Values are expressed as mean + SEM of 6-7 animals. "' < 0.01
compared with vehicle, *P < 0.05, **P < 0.01 compared with
oxaliplatin alone.

Changes of NR2B protein and mRNA in the spinal cord in
oxaliplatin-treated rats

NR2B expression was examined by Western blot and
polymerase chain reaction (PCR) analysis on homoge-
nates of the spinal cord from rats. The results of Wes-
tern blot and PCR showed that NR2B protein and
mRNA levels in the spinal cord of oxaliplatin-treated
rats significantly increased compared with that of vehi-
cle-treated rats on Day 25 (P < 0.01, Figures 3C, D). On
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Figure 3 Changes in the NR2B protein (A, C) and mRNA (B, D)
levels in the spinal cord in oxaliplatin-treated rats. Oxaliplatin

(4 mg/kg) was administered ip. twice a week for 1 (Days 1 and 2)
or 4 weeks (Days 1, 2, 8,9, 15, 16, 22 and 23). Western blot and PCR
were performed to measure NR2B expression at the time points of
Days 5 (A, B) and 25 (C, D) in the L4-6 spinal cord. Values are
expressed as mean + SEM of 6-9 animals. **P < 0.01 compared with
vehicle.

the other hand, oxaliplatin caused no change in NR2B
protein and mRNA levels in the spinal cord on Day 5
(Figures 3A, B).

Effects of NOS inhibitors on oxaliplatin-induced
mechanical allodynia

Acute administration of a non-selective NOS inhibitor
L-NAME (300 pg, i.t.) completely reversed the reduc-
tion of paw withdrawal threshold by oxaliplatin at
30 min after administration (P < 0.05, Figure 4A).
Similarly, acute administration of an nNOS inhibitor
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Figure 4 Effects of L-NAME (A) and 7-nitroindazole (B) on
oxaliplatin-induced mechanical allodynia in the von Frey test.
Oxaliplatin (4 mg/kg) was administered i.p. twice a week for

4 weeks (Days 1, 2, 8,9, 15, 16, 22 and 23). We confirmed the
incidence of mechanical allodynia on Day 24. We carried out the
drug evaluation on the next day. L-NAME (30-300 pg/body) and
7-nitroindazole (10-100 pg/body) were administered intrathecally.
The von Frey test was performed immediately before (0 min) and at
30, 60, 90 and 120 min after administration. Values are expressed as
mean + SEM of 6-10 animals. ''P < 0.01 compared with vehicle,

*P < 0.05 compared with oxaliplatin alone.

7-nitroindazole (100 pg, i.t.) significantly inhibited the
reduction of paw withdrawal threshold by oxaliplatin
at 30 min after administration (P < 0.05, Figure 4B).
These effects of L-NAME and 7-nitroindazole disap-
peared by 120 min after administration. In addition,
L-NAME (300 pg, i.t.) and 7-nitroindazol (100 pg, i.t.)
had no effect on the paw withdrawal thresholds in
intact rats (data not shown).
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Change of NOS activity in the spinal cord of oxaliplatin-
treated rats

To evaluate change of NOS activity in oxaliplatin-
induced mechanical allodynia, we carried out the
NADPH diaphorase staining, a histochemical marker for
NOS, in rat spinal cord sections. The results of NADPH
diaphorase histochemistry revealed that the intensity of
NADPH diaphorase staining (blue staining) obviously
increased in the superficial layer of spinal dorsal horn in
oxaliplatin-treated rats on Day 25 (Figure 5). Moreover,
this increased intensity was reversed by intrathecal injec-
tion of Ro 25-6981 (300 nmol).

Discussion

In this study, NMDA receptor antagonists completely
reverse the oxaliplatin-induced mechanical allodynia
when administered after the development of neuropathy.
Similarly, selective NR2B antagonists significantly inhib-
ited the oxaliplatin-induced mechanical allodynia. More-
over, the expression of NR2B protein and mRNA in the
spinal cord increased in the oxaliplatin-treated rats on
Day 25 (late phase) but not on Day 5 (early phase). Oxa-
liplatin (4 mg/kg, i.p., twice a week) induces cold hyper-
algesia in the early phase and mechanical allodynia in
the late phase [14]. These findings suggest that the up-
regulation of spinal NR2B-containing NMDA receptors
is involved in the incidence of mechanical allodynia by
repeated administration of oxaliplatin.

To investigate whether spinal cord NOS as the down-
stream target of NMDA receptor contributes to the inci-
dence of mechanical allodynia, we examined the effects
of NOS inhibitors on the oxaliplatin-induced mechanical
allodynia. Intrathecal injection of L-NAME, a non-
selective NOS inhibitor, and 7-nitroindazole, a selective
nNOS inhibitor, inhibited the pain behavior, suggesting
that NOS especially nNOS is involved in the oxaliplatin-
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Figure 5 Typical photomicrographs representing NOS
histochemistry staining of neurons in the spinal cord.
Oxaliplatin (4 mg/kg) was administered i.p. twice a week for

4 weeks (Days 1, 2, 8,9, 15, 16, 22 and 23). On Day 25, Ro 25-6981
(300 nmol/body) was administered intrathecally, and the L4-6 spinal
cord was removed 30 min after administration. NADPH diaphorase
staining was performed to confirm NOS activity. The blue staining
shows NADPH diaphorase staining. Spinal slices (30 pm) were
prepared from rats treated with vehicle (A), oxaliplatin alone (B), and
oxaliplatin and Ro 25-6981 (C). Scale bar, 200 um.
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induced mechanical allodynia. This is further supported
by the finding that the intensity of NADPH diaphorase
staining in the rat spinal dorsal horn was increased by
repeated administration of oxaliplatin, and that this
increased intensity was reversed by intrathecal injection
of R025-6981, which attenuated the oxaliplatin-induced
pain behavior. Marked increase of nNOS expression in
the dorsal root ganglia (DRG) and spinal cord contri-
butes to spinal sensory processing in CCI model [11].
More recent experiments with selective NOS inhibitors
and in NOS-deficient mice revealed the nNOS to be the
most important NO-producing enzyme in the spinal
cord during the development and maintenance of neu-
ropathic pain in SNL model [17]. In mice with neuro-
pathic pain by transection of spinal nerve, an increase in
nNOS activity is visualized in the superficial dorsal horn
by NADPH diaphorase histochemistry [18]. Taken
together, these findings suggest that NOS especially
nNOS contributes to the incidence of oxaliplatin-
induced mechanical allodynia.

Interestingly, our results show that both oxaliplatin-
induced pain behavior and increase of NOS activity are
reversed by intrathecal injection of R025-6981, a selec-
tive NR2B antagonist. Phosphorylation of NMDA recep-
tor NR2B subunits increases nNOS activity in the
superficial dorsal horn of mice with neuropathic pain
[18]. The activation of NMDA receptor also induces
glutamate release through NOS activity [19]. Thus, the
NMDA receptor and NOS comprise a local circuit that
amplifies the signal of pain transmission. If sustained
production of these factors by repeated administration
of oxaliplatin is required for maintenance of mechanical
allodynia, and if their treatment-induced increase is
likely to cause persistence of pain, blockade of this cir-
cuit by the NR2B antagonist would likely reduce pain
excitatory neurotransmission in the spinal cord. All of
these findings indicate that NR2B antagonists have
analgesic effects on the oxaliplatin-induced mechanical
allodynia at the spinal level.

Non-competitive NMDA receptor antagonists are used
as analgesics in clinical practice, although undesirable
side effects limit their utility [20]. In contrast, the
restricted distribution of NR2B receptor makes them
promising candidates as targets of side effect-free
analgesic drugs [21]. Indeed, ifenprodil, traxoprodil
(CP-101606) and R025-6981 are effective in inflamma-
tory and/or neuropathic pain models in animals at doses
that are not accompanied by motor effects [8,22]. In
addition, ifenprodil has been used as analgesic adjuvant
in clinical settings. In this study, our results showed that
NMDA receptor antagonists, selective NR2B antagonists
and NOS inhibitors at the effective dose had no effect
on pain behavior in intact rats. Therefore, the ameliora-
tive effects of these drugs were not attributable to non-
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specific sedative effects or a deficit of motor function,
suggesting that the reduced pain behavior reflects a
therapeutic effect on oxaliplatin-induced mechanical
allodynia. Novel strategies involving NR2B antagonists
may be a useful alternative or adjunct therapy for oxali-
platin-induced peripheral neuropathy.

Conclusion

Our results indicate that repeated administration of oxa-
liplatin induces NR2B and NOS up-regulation in the
spinal cord. This up-regulation may contribute to the
incidence of mechanical allodynia. Furthermore, NMDA
receptor antagonists, selective NR2B antagonists and
NOS inhibitors remarkably attenuated the oxaliplatin-
induced pain behavior. In addition, the selective NR2B
antagonist inhibited the increase of NOS activity in the
spinal cord. These results suggest that activation of the
NMDA-NOS pathway contributes to the incidence of
mechanical allodynia induced by repeated administration
of oxaliplatin.

Methods

Animals

Male Sprague-Dawley rats weighing 200-250 g (Kyudo
Co., Saga, Japan) were used in the present study. Rats
were housed in groups of four to five per cage, with
lights on from 7:00 to 19:00 h. Animals had free access
to food and water in their home cages. All experiments
were approved by the Experimental Animal Care and
Use Committee of Kyushu University according to the
National Institutes of Health guidelines, and we followed
International Association for the Study of Pain (IASP)
Committee for Research and Ethical Issues guidelines
for animal research [23].

Production of neuropathy

Mechanical allodynia was induced according to the
method described previously [24]. Oxaliplatin (Elplat®)
was obtained from Yakult Co., Ltd. (Tokyo, Japan). Oxali-
platin was dissolved in 5% glucose solution. The vehicle-
treated rats were injected with 5% glucose solution. Oxa-
liplatin (4 mg/kg) or vehicle (5% glucose) was injected i.p.
in volumes of 1 mL/kg twice a week for 4 weeks.

von Frey test

The mechanical allodynia was assessed by von Frey test.
Each rat was placed in a clear plastic box (20 x 17 x 13
cm) with a wire mesh floor and allowed to habituate for
30 min prior to testing. von Frey filaments (The Touch
Test Sensory Evaluator Set; Linton Instrumentation,
Norfolk, UK) ranging 1-15 g bending force were applied
to the midplantar skin of each hind paw with each
application held for 6 s. The paw withdrawal threshold
was determined by a modified up-down method [25].
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Pharmacological studies

We confirmed the incidence of mechanical allodynia on
Day 24. We carried out the drug evaluation on the next
day. The von Frey test was performed immediately
before (0 min) and at 30, 60, 90, and 120 min after
administration. (+)-MK-801 maleate (Wako Pure
Chemical Industries, Ltd., Osaka, Japan), memantine
hydrochloride (Alexis Biochemicals, San Diego, CA,
USA) and L-NAME (Sigma-Aldrich, Missouri, USA)
were dissolved in saline and administered i.t. Ro 25-
6981 (Sigma-Aldrich) and 7-nitroindazole were dissolved
in 100% dimethyl sulfoxide (DMSO) and administered
i.t. Ifenprodil tartrate (Wako Pure Chemical Industries,
Ltd.) was suspended in 5% gum arabic solution and
administered orally (p.o.). The doses of these drugs were
chosen based on previous reports [8,26-28]. Behavioral
test was performed blindly with respect to drug
administration.

Western blotting

To investigate the functional changes in protein levels of
NR2B, the L4-6 spinal cord was quickly removed on
Days 5 and 25. The tissues were homogenized in a solu-
bilization buffer containing 20 mM Tris-HCI (pH7.4,
2 mM EDTA, 0.5 mM EGTA, 10 mM NaF, 1 mM
NazVO,, 1 mM PMSF, 0.32 M Sucrose, 2 mg/ml aproti-
nine, 2 mg/ml leupeptin), and the homogenates were
subjected to 6% SDS-PAGE, and proteins were trans-
ferred electrophoretically to PVDF membranes. The
membranes were blocked in Tris-buffered saline Tween-
20 (TBST) containing 5% BSA (Sigma-Aldrich) for an
additional 1 h at room temperature with agitation. The
membrane was incubated overnight at 4°C with rabbit
polyclonal NR2B antibody (1:5000; Upstate Biotech, NY,
USA) and then incubated for 1 h with anti-rabbit IgG
horseradish peroxidase (1:5000; Jackson Immuno
Research Laboratories, Inc., PA, USA). The immunor-
eactivity was detected using Enhanced Chemilumines-
cence (Perkin Elmer, Massachusetts, USA).

Reverse transcriptase-polymerase chain reaction (RT-PCR)

To investigate the functional changes in mRNA levels of
NR2B, the L4-6 spinal cord was quickly removed on
Days 5 and 25. mRNA was isolated using PolyATtract®
System 1000 (Promega, Corp., Wisconsin, USA). cDNA
was synthesized using PrimScript® 1st strand cDNA
Synthesis Kit (TaKaRa Bio, Inc., Shiga, Japan). PCR was
carried out with Gene Taq (Nippon Gene, Co., Ltd.,
Tokyo, Japan). The oligonucleotide primers for NR2B
were designed based on the sequences described by Lau
et al. [29]. The sequences of PCR primers were as follows:
NR2B, 5-TCC GTC TTT CTT ATG TGG ATA TGC-3’
(sense), 5’-CCT CTA GGC GGA CAG ATT AAG G-3
(antisense); glyceraldehyde-3-phosphate dehydrogenase
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(G3PDH), 5-YGC CTG CTT CAC CAC CTT-3 (sense),
5-TGC MTC CTG CAC CAC CAA CT-3’ (antisense)
(Sigma-Aldrich). Reactions were run for 40 cycles with
95°C denaturing cycle (30 s), 63°C annealing cycle
(1 min) and 72°C extension cycle (30 s) for NR2B or for
30 cycles with 94°C denaturing cycle (45 s), 53°C anneal-
ing cycle (45 s) and 72°C extension cycle (1.5 min) for
G3PDH, respectively. The PCR products were subjected
to electrophoresis on 2% agarose gel, and the DNA was
visualized by staining with ethidium bromide under
ultraviolet irradiation. Then, the intensities of PCR pro-
ducts were semi-quantified densitometrically by Alpha
Imager 2200 (Cell Biosciences, Inc., California, USA).

NADPH diaphorase histochemistry

Animals were anaesthetized with pentobarbital (50 mg/
kg) and perfused through the left cardiac ventricle with
50 mL physiological saline followed by a fixative con-
taining 4% paraformaldehyde in 0.1 M sodium phos-
phate (pH 7.4). The L4-6 spinal cord was removed and
immersed in the fixative for 4 h and then cryoprotected
overnight in 30% (w/v) sucrose in 0.1 M phosphate-
buffered saline (pH 7.4). Transverse frozen sections
(30 um) were cut on a cryostat. These sections were
thaw-mounted on slides and NOS activity was deter-
mined using NADPH diaphorase histochemistry as
described by Mabuchi et al. [30]. The incubation was
performed for 1 h at 37°C in a reaction mixture
containing 0.5 mg/mL -NADPH, 0.2 mg/mL nitroblue
tetrazolium and 0.25% Triton X-100 in 0.1 M phos-
phate-buffered saline (pH 7.4).

Statistical analyses

Values were expressed as mean + SEM. Results were
analyzed by Student’s ¢-test or one-way analysis of var-
iance (ANOVA) followed by the Tukey-Kramer post-
hoc test to determine differences among the groups. A
P value of less than 0.05 is considered as statistically
significant.
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