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Abstract

gain-of-function variant of Nay1.7.

Background: Sodium channel Nay1.7 is preferentially expressed within dorsal root ganglia (DRG), trigeminal
ganglia and sympathetic ganglion neurons and their fine-diamter axons, where it acts as a threshold channel,
amplifying stimuli such as generator potentials in nociceptors. Gain-of-function mutations and variants (single
amino acid substitutions) of Nay1.7 have been linked to three pain syndromes: Inherited Erythromelalgia (IEM),
Paroxysmal Extreme Pain Disorder (PEPD), and Small Fiber Neuropathy (SFN). IEM is characterized clinically by
burning pain and redness that is usually focused on the distal extremities, precipitated by mild warmth and
relieved by cooling, and is caused by mutations that hyperpolarize activation, slow deactivation, and enhance the
channel ramp response. PEPD is characterized by perirectal, periocular or perimandibular pain, often triggered by
defecation or lower body stimulation, and is caused by mutations that severely impair fast-inactivation. SFN
presents a clinical picture dominated by neuropathic pain and autonomic symptoms; gain-of-function variants have
been reported to be present in approximately 30% of patients with biopsy-confirmed idiopathic SFN, and
functional testing has shown altered fast-inactivation, slow-inactivation or resurgent current. In this paper we
describe three patients who house the Nay1.7/1228M variant.

Methods: We have used clinical assessment of patients, quantitative sensory testing and skin biopsy to study these
patients, including two siblings in one family, in whom genomic screening demonstrated the 1228M Nay,/1.7 variant.
Electrophysiology (voltage-clamp and current-clamp) was used to test functional effects of the variant channel.
Results: We report three different clinical presentations of the 1228M Nay1.7 variant: presentation with severe facial
pain, presentation with distal (feet, hands) pain, and presentation with scalp discomfort in three patients housing
this Nay 1.7 variant, two of which are from a single family. We also demonstrate that the Nay1.7/1228M variant
impairs slow-inactivation, and produces hyperexcitability in both trigeminal ganglion and DRG neurons.

Conclusion: Our results demonstrate intra- and interfamily phenotypic diversity in pain syndromes produced by a

Introduction

Sodium channel Nay1.7 is preferentially and abundantly
expressed within dorsal root ganglia (DRG) [1,2], tri-
geminal ganglia [3] and sympathetic ganglion neurons
[1,2], and their fine-diameter axons [4]. The
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physiological attributes of Nay1.7 include slow closed-
state inactivation, which permits activation of the chan-
nel in response to small, slow depolarizations close to
resting potential [5]. Nay1.7 thus acts as a threshold
channel, amplifying stimuli such as generator potentials
in nociceptors, thereby setting their gain [6].
Gain-of-function mutations and variants (single amino
acid substitutions) of Nay/1.7 have been linked to three
pain syndromes. Inherited erythromelalgia (IEM) is
characterized clinically by burning pain and redness that
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is usually focused on the distal extremities, precipitated
by mild warmth and relieved by cooling, and is caused
by Nay1.7 mutations that hyperpolarize activation, slow
deactivation, and enhance the channel ramp response
[7]. Paroxysmal extreme pain disorder (PEPD) is charac-
terized by perirectal, periocular or perimandibular pain,
often triggered by defecation or lower body stimulation
[8], and has been linked to Nay1.7 mutations that
severely impair fast-inactivation [9]. Small Fiber Neuro-
pathy (SEN), which involves thinly myelinated and
unmyelinated peripheral nerve fibers [10,11], presents a
clinical picture that is characteristically dominated by
neuropathic pain and autonomic symptoms [12],
together with preservation of normal strength, tendon
reflexes, and vibration sense, and normal nerve conduc-
tion studies (NCS), which rule out large fiber involve-
ment. The diagnosis of SEN can be confirmed by
demonstration of reduced intraepidermal nerve fiber
density (IENFD) on skin biopsy and/or abnormal quan-
titative sensory testing (QST) [13,14]. No apparent
cause for SEN can be identified in 24% to 93% of cases
in published patient series, and these cases are termed
idiopathic I-SFN [10,15,16]. Faber et al., recently
reported that gain-of-function variants (single amino
acid substitutions) of voltage-gated sodium channel
Nay1.7 are present in approximately 30% of patients
with biopsy-confirmed I-SEN [17].

Distal (feet, and in some cases, hands) burning or
stabbing pain or paraesthesias are the initial symptoms
in most patients with I-SFN, and facial pain is rare.
Most of the eight patients with SFN described earlier by
Faber et al., [17] fit this clinical picture, and presented
with pain in the feet and in some cases the hands early
in their course, but did not manifest facial pain [17]. In
contrast, one patient in this series presented with severe
pain in the teeth, jaw, and behind the eyes. This patient
(patient 8 in Faber et al., 2011) harbored the Nay1.7
variant ¢.684C > G (I1228M) [17]; functional properties
of this variant have not been previously reported. We
subsequently studied the sister of this patient, who
houses the same variant (c.684C > G (I228M) in
Nay1.7) and suffers from a different syndrome of pain
and redness of the hands and feet triggered by warmth,
and have encountered an additional patient housing the
same Nay1.7 variant with pain over the scalp. In this
study we report these three different clinical presenta-
tions of the 1228 M Nay/1.7 variant, and demonstrate the
effects of the Nay1.7/1228M channels on excitability in
both trigeminal ganglion and DRG neurons.

Results
Patient 1
This patient, described as patient number 8 in Faber
et al., (2011) [17] is a 51-year-old male, referred with
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complaints that started at age 32, when he experienced
excruciating pain in his teeth and jaw triggered by cold
and heat, which could radiate to the temporomandibular
joint, and pain behind both eyes, especially when look-
ing at bright light. The oral mucosa, lips and tongue
were not affected. Multiple tooth extractions did not
provide pain relief. He subsequently developed myalgia,
with muscle pain persisting for 5-6 days after light phy-
sical activity. The pain was aggravated by cold tempera-
ture and relieved by warmth. Sometimes the feet were
also swollen. This patient suffered from stomach cramps
and diarrhea for more than 35 years, and from dry
mouth and eyes and reduced urinary sensation and
intermittent hesitation for several years. The patient was
severely disabled and unable to work due to these com-
plaints. Acetaminophen made the pain bearable, while
short trials of NSAIDs and antidepressants did not pro-
vide relief. Physical examination showed no abnormal-
ities. Laboratory investigations, nerve conduction studies
and chest X-ray were normal. IENFD (1.6/mm; age- and
gender-matched normal values > 3.5/mm [18]) was
abnormal. QST revealed abnormal warm and cold
thresholds of the right foot. SCN9A gene analyses
demonstrated the variant, c.684C > G; Nay1.7/1228 M.
The patient was diagnosed with Nay1.7-related SFN.
The patient’s two sons, aged 27 and 29, were found to
house the 1228M substitution, but did not have any
complaints at the time of study.

The 1228M variant substitutes a highly conserved resi-
due near the C-terminus of the S4 segment in domain I
(DI/S4, Figure 1). All human sodium channels except
Nay1.9 carry an isoleucine at this position [19], and this
residue is invariant in all Nay1.7 orthologues from
mammalian species (data not shown). The conservation
of the 1228 residue among sodium channels suggests
that the 1228M substitution might alter the properties of
the Nay1.7 channels (Figure 1). This substitution was
not found in a control panel of DNA from 100 healthy
Dutch (Caucasian) individuals (200 chromosomes).
However, 1228M is listed as a natural SNP in one data-
base (Craig Venter Human Genome), but with no break-
down of major/minor allele frequency, and has been
reported as being associated with Dravet syndrome [20]
and in < 0.3% of a control population (5/576 control
chromosomes).

Patient 2

This patient, who is the sister of Patient 1, gave a his-
tory of burning pain and redness of hands and feet, trig-
gered by rising temperature and exercise and relieved by
cooling, beginning at age 36 years. She also reported
increased perspiration, gastrointestinal complaints and
hot flashes. Her medical history revealed recurrent urti-
caria attacks, psoriatic arthritis and hypothyroidism for
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Figure 1 Schematic of 1228 M mutation. Sequence alignment of
DI/S4 from human sodium channels. The charge-conserved
substitution in DI/S4 replaces a highly conserved isoleucine residue
at the cytoplasmic end of the S4 helix. 1228 is conserved in all
human sodium channels except for Nay1.9 which has a conservative
substitution, valine, at the corresponding position.

which she is adequately treated. Physical examination
showed no abnormalities other than red discolored
hands. Laboratory investigations, nerve conduction stu-
dies and chest X-ray were normal. Quantitative sensory
testing showed no abnormalities. IENFD was 8 per mm
(normal values > 5.7 per mm) [18]. DNA analysis
showed the same substitution in the SCN9A gene as
found in her brother. On the basis of the clinical history
and findings, the patient was diagnosed as having prob-
able SFN.

Patient 3

This 46-year-old woman presented with a red discolora-
tion of the occiput. Three months later the red area
expanded and was noted to be associated with a tin-
gling, burning and warm sensation over the scalp. After
washing of the hair, the redness increased for ~one
hour. The patient also complained that the structure of
her hair changed, becoming dryer and more fragile. She
noted improvement in these complaints with warm tem-
peratures (such as during a visit to the Caribbean) and
with fever. Cold had no specific influence. A year fol-
lowing onset of scalp symptoms, a red discoloration of
the toes of both feet developed, together with paraesthe-
sias and a burning sensation and tingling in both hands.
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In addition, the patient reported severe perspiration
since puberty and intermittent difficulties with micturi-
tion. No other dysautonomic symptoms were noted.
Ibuprofen did not relieve the pain. The family history
was negative. Neurological examination was unremark-
able. Laboratory investigations, a chest X-ray and nerve
conduction studies were normal. Quantitative sensory
testing showed abnormal thresholds for warmth and
cold sensation of the dorsum of the right foot. A skin
biopsy demonstrated an INFD of 5.2 per mm, which
was lower than the reported normative values (< 5.7/
mm) [18]. The patient was diagnosed as having I-SFN.
SCN9A gene analysis demonstrated the same variant,
€.684C > G; p. 1228M, as in Patients 1 and 2.

Functional Analysis

Voltage-clamp analysis

Voltage-clamp analysis of 1228M variant channels fol-
lowing expression in HEK293 cells (Figure 2) demon-
strated impaired slow-inactivation (Figure 2D). Current
densities (WT: 432 + 90 pA/pF, n = 9; [228M: 357 + 70
pA/pF n = 13), activation Vy,, (WT: -26.1 + 2.5 mV, n
=9; 1228M: -25.3 + 1.0 mV, n = 13), and fast-inactiva-
tion Vy/p (WT: -81.2 + 2.2 mV, n = 8; [228M: -83.1 *
1.2 mV, n = 12), for HEK293 cells transfected with WT
or 1228M channels were not significantly different (Fig-
ure 2A, B, C). The time constants for fast-inactivation
(Figure 2E) and deactivation (Figure 2F) were not signif-
icantly different for 1228M versus WT channels. Persis-
tent current (non-inactivating component at 0 mV),
measured in CsF-based pipette solution (WT: 0.42% +
0.12%, n = 8; 1228M: 0.67% + 0.20%, n = 12) and in
aspartate-based pipette solution (WT: 0.41% + 0.08%, n
= 14; 1228M: 0.41% + 0.15%, n = 13) were not signifi-
cantly different for 1228M versus wild-type channels.
Slow-inactivation was impaired for 1228M channels (Fig-
ure 2D), with a depolarized Vy/; (WT: -63.0 + 1.8 mV, n
= 10; 1228M: -56.2 + 1.2 mV, n = 14; p < 0.05). The off-
set for slow-inactivation (non-inactivating component at
10 mV) was not significantly larger for 1228M compared
to wild-type channels (WT: 7.8% + 1.3%, n = 10; [228M:
7.8% t 1.3%, n = 14). Impaired slow-inactivation would
be expected to increase the number of channels avail-
able for activation at potentials positive to -100 mV,
including potentials close to resting potential of DRG
neurons.

Current-Clamp Analysis: DRG Neurons

1228M had strong functional effects on DRG neurons,
which were clearly rendered hyperexcitable by these
channels (Figure 3). 1228M produced a 4.8 mV depolar-
izing shift in resting membrane potential of transfected
neurons (WT: -58.5 + 1.4 mV, n = 22; [228M: -53.7 +
1.7 mV, n = 12; p < 0.05). While 1228M did not
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Figure 2 Voltage-clamp properties ofNay1.7/1228Mchannels in HEK293 cells. Electrophysiological analysis of 1228M variant: (A)
Representative current traces recorded from HEK293 cells expressing wild type Nav1.7 (WT) (top) or 1228M (bottom) channels, evoked by voltage
steps (100 mec) from -80 to +40 mV in 5 mV increments, from a holding potential of -120 mV. (B) Normalized |-V curves for WT and 1228M
expressing cells. (C) Activation and steady-state fast-inactivation for WT (black squares) and 1228M (red circles). Fast-inactivation was examined
using a series of 500 msec prepulses from -140 to 0 mV followed by test pulses to -10 mV. Left inset: midpoint values for fast inactivation (V;,,
fast-inacy) Of WT (black) and 1228M (red). Right inset: midpoint values for activation (V1,5 act) of WT (black) and 1228M (red). (D) Steady-state slow-
inactivation of WT (black squares) and 1228M (red circles). Slow-inactivation was assessed using a 20 msec pulse to -10 mV after a 30 second
prepulse to potentials from -130 to 10 mV followed by a 100 msec pulse to -120 mV to remove fast-inactivation. Inset: midpoint values of slow-
inactivation (V12 siow-inact) (WT: black; 1228M: red); *p < 0.05. V;,, represents voltage midpoint, I/larepresents normalized current, and G/Gyax
represents normalized conductance for fast-activation, slow-inactivation, and activation. (E) The kinetics of inactivation were analyzed by fitting
data with a single exponential function for WT and 1228M currents. (F) The kinetics of deactivation for WT and 1228M expressing cells were
obtained by holding the cells at -120 mV and tail currents were generated by a brief 0.5 ms depolarization to -20 mV followed by a series of
repolarizations ranging from -120 to -40 mV. The closing rate of the channels was obtained by fitting the tail currents with a single exponential
function.
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Figure 3 Current-clamp properties of DRG neurons transfected
with 1228M. Excitability of DRG neurons expressing 1228M: (A) RMP
of DRG neurons expressing WT (-585 + 14, n = 22) or 1228M (-53.7
+1.7,n=12); *p < 0.05. (B) Current threshold of DRG neurons
expressing WT (121 + 27, n = 22) or 1228M (124 + 28, n = 12) to
200 msec stimuli. (C) Comparison of mean firing frequency in DRG
neurons expressing WT and 1228M across a range of current
injections from 50 to 500pA; *p < 0.05. (D) Bar graph showing the
proportion of spontaneous firing cells for DRG neurons expressing
1228M (red) and WT channels (black); numbers to the right of the
bar graph show values for WT (lower value in parentheses) and
1228M (upper value); *p < 0.05. The recording on the right shows
spontaneous firing (10 seconds) of representative DRG neuron
expressing 1228M; the numbers above the trace show average +
standard deviation frequency of spontaneous action potentials. APs

= action potentials.

decrease the current threshold (WT: 121 + 27 pA, n =
22; 1228M: 124 + 28 pA, n = 12), it produced on aver-
age a higher firing frequency at all stimulus intensities,
even close to current threshold, and increased the num-
ber of action potentials evoked by 500-millisecond depo-
larizing stimuli at higher stimulus intensities nearly
four-fold, with the change being statistically significant
at many of the intensities tested, from 50 to 500 pA.
1228M also produced a significant increase in the
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proportion of spontaneously firing cells (5 of 17 [29%]
vs 0 of 22 [0%] for cells transfected with WT channels)
(p < 0.05); mean frequency of spontaneous activity in
cells transfected with 1228M was 0.9 + 0.5 Hz (n = 5).

Current Clamp Analysis: Trigeminal Ganglion Neurons
The 1228M variant produced hyperexcitability in trigem-
inal ganglion neurons (Figure 4). 1228M produced an
8.5 mV depolarizing shift in resting membrane potential
(WT: -60.9 + 2.2 mV, n = 17; 228M: -52.4 + 1.8 mV, n
= 14; p < 0.05). 1228M produced a 36% reduction in
current threshold to 200-millisecond stimuli (WT: 122
+ 37 pA, n = 13; 1228M: 78 + 31 pA, n = 12). Trigem-
inal ganglion neurons transfected with 1228M tended to
fire multiple action potentials (at a frequency nearly
four-fold higher than in cells transfected with wild-type
channels) in response to 500 msec stimuli close to
threshold (25 to 125 pA, with the difference being statis-
tically significant between 25 and 75 pA), although at
stimulus levels of > 2X threshold, the number of action
potentials falls, approaching that of cells transfected
with wild-type channels (Figure 4C). 1228M produced a
trend toward an increase in the proportion of sponta-
neously firing cells (4 of 18 [22%] vs 3 of 20 [15%] for
cells transfected with WT channels) that did not reach
statistical significance; mean frequency of spontaneous
activity in cells transfected with 1228M was 0.2 + 0.05
Hz (n = 4).

Discussion

In this study we describe three patients (two siblings,
and a third, unrelated patient) housing the [1228M var-
iant of sodium channel Nay1.7. One of these patients
displayed a clinical phenotype that included pain in the
face as well as in other parts of the body together with
autonomic symptoms, with the diagnosis of SEN con-
firmed by demonstration of reduced IENFD on skin
biopsy, and abnormal QST. The second patient gave a
history of distal extremity pain and redness, triggered by
warmth and relieved by cooling. While these symptoms
are commonly reported in IEM [7,21], she also reported
autonomic symptoms including increased perspiration,
gastrointestinal complaints and hot flashes, which are
not characteristic of IEM. The third patient initially
experienced discomfort and vasomotor instability over
the occiput, which progressed to involve the distal extre-
mities, together with abnormal perspiration, intermittent
difficulties with micturition; skin biopsy and QST in this
patient were both abnormal, confirming the diagnosis of
SEN.

Because facial pain was a prominent part of the clini-
cal picture in one of the patients described in this
paper, we assessed the effect of the I1228M mutation on
excitability of trigeminal ganglion neurons. Our current-
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Figure 4 Current-clamp properties of trigeminal ganglion
neurons transfected with 1228M. Excitability of trigeminal
ganglion neurons expressing 1228M: (A) RMP of trigeminal ganglion
neurons expressing WT (-60.9 + 2.2, n = 17) or 1228M (-524 + 1.8, n
= 14); *p < 0.05. (B) Current threshold of DRG neurons expressing
WT (122 = 37, n = 13) or 1228M (78 + 31, n = 12) to 200 msec
stimuli; p < 0.05. (C) Comparison of mean firing frequency in
trigeminal ganglion neurons expressing WT and 1228M across a
range of current injections from 25 to 500 pA; *p < 0.05. (D) Bar
graph showing the proportion of spontaneous firing cells for
trigeminal neurons expressing 1228M (red) and WT channels (black);
numbers to the right of the bar graph show mean values for WT
(lower value in parentheses) and 1228M (upper value). The recording
on the right shows spontaneous firing (10 seconds) of
representative trigeminal neuron expressing 1228M; the numbers
above the trace show average + standard deviation frequency of

spontaneous action potentials. APs = action potentials.

clamp analysis demonstrated that the 1228 M variant
depolarizes resting membrane potential, reduces current
threshold and enhances repetitive firing in these cells.
The effect of only one other Nay1.7 mutation has been
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assessed in trigeminal ganglion neurons. We previously
reported that the A1632E Nay1.7 mutation, from a
patient who displayed a mixed clinical phenotype with
features of both IEM and PEPD, produces hyperexcit-
ability in trigeminal ganglion neurons [22]. The A1632E
mutation, however, produced hyperexcitability in these
cells over the entire range of stimulus intensities, while
1228M produces hyperexcitability only at low stimulus
intensities. Whether other gain-of-function mutations of
Nay1.7 have similar effects on trigeminal ganglion neu-
rons remains to be determined.

The [228M substitution is located within the fourth
transmembrane segment (S4) within domain I of the
Nay1.7 channel. The S4 in each of the domains of
sodium channels is an amphiphatic helix which is char-
acterized by a repeat motif of positively charged amino
acids at every third position [19]. Non-charge-conserved
mutations, S211P and F216S, in DI/S4 have been linked
to IEM, and have been shown to shift voltage-depen-
dence of activation in a hyperpolarizing direction, mak-
ing it easier to open the mutant channels [23,24]. The
1228M substitution does not change the number of
charges in the S4 segment, and reasonably conserves the
hydrophobic nature of the side-chain of this residue,
and thus might not have been predicted to have a func-
tional effect. A link to function, however, is suggested
by the conservation of the 1228 residue at the equivalent
position in all voltage-gated sodium channels sequenced
to date (Figure 1); 1228 is substituted by the other
branched side-chain residue, valine, in Nay1.9. The
functional effect of 1228 M might be related to the proxi-
mity of the 1228 residue to the cytoplasmic end of the
S4 segment, which could alter the local structure of the
helix in a subtle manner affecting slow-inactivation but
not activation. Notably, while the 1228M variant pro-
duced hyperexcitability in both DRG and trigeminal
ganglion neurons, only two of the three patients
described here reported cranial pain, and it was experi-
enced in the jaw and eyes in one, while it was focused
on the scalp in the other.

Our results demonstrate phenotypic diversity in the
pain syndromes associated with the 1228M substitution
in the Nay1.7 channel in three different patients. Two
of these patients were from the same family, which also
includes patient 1’s two asymptomatic sons who carry
the 1228M Nay1.7 variant. Both of these asymptomatic
carriers are younger than the age of onset of the three
patients presented, and whether they will develop pain
in the future is unclear. We have previously noted dif-
ferent ages of onset and different degrees of pain, and
an asymptomatic carrier in members of a single family,
all housing the G616R Nay 1.7 mutation [25]. Whether
this phenotypic variability is due to modifier genes, epi-
genetic factors, and/or environmental factors is not yet
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clear. The minor allele of the Nay1.7 R1150W variant,
which is known to produce hyperexcitability in DRG
neurons [26], has been associated with increased pain
scores in a number of acquired pain syndromes
(osteoarthritis, compressive radiculopathies, traumatic
limb amputation), suggesting that environmental factors
may, at least in some individuals, act as triggers or
increase risk of developing pain [27].

Most peripheral neuropathies present in a “stocking
glove” distribution with sensory abnormalities and pain
first appearing in the most distal parts of the limbs (feet,
then hands). It has traditionally been held that longer
nerve fibers, or the cells giving rise to them, are affected
before shorter fibers or the cells giving rise to them. A
number of potential mechanisms have been invoked for
this length-dependent mode of progression of neuropa-
thy, including impairment of axoplasmic transport [28],
increased probability of demyelination along longer
nerve fibers [29], or a higher probability of impairment
of calcium homeostasis along longer nerve fibers
[30,31]. However, the present results show that the
Nay 1.7 1228M variant, which impairs slow-inactivation,
produces physiological changes in primary afferent neu-
rons (trigeminal ganglion neurons) that innervate the
relatively proximal sensory field of the face and scalp, as
well as DRG neurons. While we do not know whether
there was degeneration of small fibers innervating the
face or scalp in these patients, both exhibited degenera-
tion of the relatively long axons, as demonstrated by
reduced IENFD on skin biopsy from the leg.

In summary, our results demonstrate phenotypic
diversity in pain syndromes associated with the 1228M
gain-of-function variant of Nay1.7. Importantly, variabil-
ity in clinical presentation was present not only when
comparing patients from different families, but also for
patients within a single family. Our findings also
demonstrate that the 1228M variant can increase excit-
ability of trigeminal ganglion as well as DRG neurons.
While the mechanism(s) responsible for this phenotypic
diversity remain unexplained, our findings suggest that
clinical studies, in patients who are carriers of functional
variants of sodium channels, should be designed to take
phenotypic variability, even within single families, into
account.

Materials and methods

Patients

The three patients initially studied were part of a cohort
of patients aged > 18 years with idiopathic SFN, seen at
Maastricht University Medical Center Neurological
Clinic, with a clinical diagnosis of SEN between 2006
and 2009; this series excluded patients in whom, after a
careful work-up, a cause for SFN was identified. A sister
of patient 1 was also studied. This study was approved
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by medical ethics committees at Yale University and
Maastricht University Medical Center. All aspects of the
study were explained and a written informed consent
obtained prior to study.

All three patients met strict eligibility criteria for a
study on SEN as described by Faber et al. [17]. Subjects
were excluded from the study if there was a history or
detection after screening of illnesses known to cause
SEN, including impaired glucose tolerance, diabetes mel-
litus, hyperlipidemia, liver/kidney/thyroid dysfunction,
monoclonal-gammopathy, connective tissue disorders,
amyloidosis, sarcoidosis, Fabry’s disease (alpha-galactosi-
dase, in females combined with GLA-gene sequencing),
celiac disease, HIV, alcohol abuse, hemochromatosis, B6
intoxication, anti-phospholipid syndrome neurotoxic
drugs (e.g., chemotherapy) [17].

Clinical characterization

Skin biopsy

Punch biopsy (10 cm above lateral malleolus) specimens
were fixed (2% paraformaldehyde-lysine-sodium period-
ate at 4°C), cryprotected and stored at -80°C in 20% gly-
cerol before sectioning (50 um) [13]. The numbers of
individual nerve fibers crossing the dermal-epidermal
junctions were analyzed by bright-field microscopy
(Olympus BX50 stereology workstation, PlanApo oil-
objective 40x/NA = 1.0) in each of three sections,
immunostained with polyclonal rabbit antiprotein-gene-
product-9.5 antibody (PGP9.5; Ultraclone, Wellow, Isle-
of-Wight, UK). Linear quantification of intraepidermal
nerve fiber density (IENF/mm) was compared with age-
and gender-adjusted normative values [18,32].
Quantitative sensory testing (QST)

QST, performed in accordance with previous guidelines
[33], using a TSA-2001 (Medoc, Ramat-Yishai, Israel)
instrument, assessed thresholds at the dorsum of both
feet and thenar eminences, using ascending/descending
(warm/cool) thermal ramp stimuli delivered through a
thermode [34]. Heat pain modality was also examined.
Results were compared with reported normative values
[35]. Measurements were considered abnormal when Z-
values exceeded 2.5. A sensory modality was classified
as abnormal if results of both method-of-limits and
method-of-levels were abnormal [36].

SCN9A sequence analysis

Exon screening

Genomic DNA was extracted from 300 pL whole blood
using Puregene genomic DNA isolation kit (Gentra-Sys-
tems, Minneapolis). All SCN9A coding exons and flank-
ing intronic sequences, and exons encoding 5’ and 3-
untranslated sequences within the complementary DNA,
were amplified and sequenced as described previously
[37]. Genomic sequences were compared with reference
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Na,1.7 cDNA (NM_002977.3) to identify sequence var-
iations [38] using Alamut Mutation-Interpretation Soft-
ware (Interactive-Biosoftware; Rouen, France). A control
panel of DNA from 100 healthy Dutch (Caucasian) indi-
viduals (200 chromosomes) was also screened.

Plasmids

The human Na,1.7-AL insert (carrying the adult exon 5,
E5A, and Long loopl), converted to become TTX-R
(hNa,1.7x/AL; designated WT hereinafter) by Y362S
substitution [39], has been previously described [39].
The 1228M mutation was introduced into WT using
QuickChange XL II site-directed mutagenesis according
to manufacturer recommendations (Stratagene).

The full-length inserts of the different clones were
sequenced at the Howard Hughes Medical Institute/
Keck Biotechnology Center at Yale University. Sequence
analysis used BLAST (National Library of Medicine) and
Lasergene (DNAStar, Madison, WI), and confirmed the
inserts to be devoid of un-intended mutations.

Transient transfection of HEK293 cells

Transient transfections of the hNay1.7 together with
hB1 and hB2 constructs into HEK293 cells were per-
formed using Optifect (Invitrogen) following the recom-
mended protocol by manufacturer. Recordings were
performed 20-30 hours after transfection.

Primary sensory neuron isolation and transfection

Dorsal root ganglia (DRG) and trigeminal ganglia from
adult Sprague Dawley rat pups (P0O-P5) were isolated
and then cultured using the same protocol for both.
Dissected ganglia were placed in ice-cold oxygenated
complete saline solution (CSS), which contained (in
mM) 137 NaCl, 5.3 KCl, 1 MgCl,, 25 sorbitol, 3 CaCl,,
10 N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid
(HEPES); pH 7.2. They were then transferred to an oxy-
genated, 37°C CSS solution containing 1.5 mg/ml Col-
lagenase A (Roche Applied Science, Indianapolis, IN)
and 0.6 mM EDTA and incubated with gentle agitation
at 37°C for 20 min. This solution was then exchanged
with an oxygenated, 37°C CSS solution containing 1.5
mg/ml Collagenase D (Roche Applied Science, Indiana-
polis, IN), 0.6 mM EDTA and 30 U/ml papain
(Worthington Biochemical, Lakewood, NJ) and incu-
bated with gentle agitation at 37°C for 20 min. The
solution was then aspirated and the ganglia triturated in
DRG media (DMEM/FI2 (1:1) with 100 U/ml penicillin,
0.1 mg/ml streptomycin (Invitrogen, Carlsbad, CA) and
10% fetal calf serum (Hyclone, Logan, UT), which con-
tained 1.5 mg/ml bovine serum albumin (Sigma-Aldrich,
St. Louis, MO) and 1.5 mg/ml trypsin inhibitor (Roche
Applied Science, Indianapolis, IN).

Either WT or 1228M variant channels were transiently
transfected into the DRG or trigeminal ganglion neu-
rons, along with enhanced-GFP, by electroporation with
a Nucleofector II (Amaxa, Gaithersburg, MD) using Rat
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Neuron Nucleofector Solution and program G-013, as
described previously [39]. The ratio of sodium channel
to GFP constructs was 10:1. The transfected neurons
were allowed to recover for 5 minutes at 37°C in 0.5 ml
of Ca®*-free DMEM containing 10% fetal calf serum.
The cell suspension was then diluted with DRG media
containing 1.5 mg/ml bovine serum albumin and 1.5
mg/ml trypsin inhibitor, 80 pl was plated on 12 mm cir-
cular poly-D-lysine/laminin precoated coverslips (BD
Biosciences, Bedford, MA) and the cells incubated at 37°
C in 5% CO, for 30 min. DRG media (1 ml/well), sup-
plemented with 50 ng/ml each of mNGF (Alomone
Labs, Jerusalem, Israel) and GDNF (Peprotec, Rocky
Hill, NJ), was then added and the cells maintained at
37°C in a 5% CO2 incubator.

Electrophysiology

Whole-cell voltage-clamp recordings in HEK293 cells
were carried out at 20 + 1°C using a peltier temperature
controller of the recording chamber. The extracellular
solution contained (in mM): 140 NaCl, 3 KCI, 1 MgCl,,
1 CaCl,, and 10 HEPES, pH 7.3 with NaOH (adjusted to
320 mOsm with dextrose). The pipette solution con-
tained (in mM): 140 CsF, 10 NaCl, 2 MgCl,, 1 EGTA,
10 HEPES, pH 7.3 with CsOH (adjusted to 310 mOsm
with dextrose). Patch-pipettes had a resistance of 1-3
MQ when filled with pipette solution. The calculated
junction potential (JPcalc included in pCLAMP soft-
ware) of 9 mV was not compensated. Upon achieving
the whole-cell recording configuration, the pipette and
cell capacitance were manually minimized using the
Axopatch 200B (Molecular Devices, Union City, CA)
compensation circuitry. To reduce voltage errors, 80-
90% series resistance and prediction compensation was
applied. Cells were excluded from analysis if the pre-
dicted voltage error exceeded 3 mV. The recorded cur-
rents were digitized at a rate of 50 kHz after passing
through a low-pass Bessel filter setting of 10 kHz. The
Axopatch 200B data were digitized using pCLAMP soft-
ware (version 10) and a Digidata 1440A interface (Mole-
cular Devices). Linear leak and residual capacitance
artifacts were subtracted out using the P/N method.
The Na' current recordings were initiated after a 5 min-
ute equilibration period once whole-cell configuration
was achieved.

Data analysis was performed using Clampfit (Molecu-
lar Devices) and Origin (Microcal Software, Northhamp-
ton, MA). To generate activation curves, cells were held
at -120 mV and stepped to potentials of -80 to 40 mV
for 100 msec. Peak inward currents obtained from acti-
vation protocols were converted to conductance values
using the equation, G = I/(Vy, - Exn), for which G is the
conductance, I is the peak inward current, V,, is the
membrane potential step used to elicit the response and
Ena is the reversal potential for sodium (determined for
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each cell using the x-axis intercept of a linear fit of the
peak inward current responses). Conductance data were
normalized by the maximum conductance value and fit
with a Boltzmann equation of the form G = G, +
(Gmax-Gmin)/(1 + exp[(V1/2 -Vm)/k)], where V;, is the
midpoint of activation and k is a slope factor. The
kinetics of inactivation were assessed by fitting the fall-
ing phase of the currents with a single exponential func-
tion. To generate steady-state fast-inactivation curves,
cells were stepped to inactivating potentials of -140 to
10 mV for 500 msec followed by a 20 msec step to -10
mV. The protocol for slow-inactivation consisted of a 30
second step to potentials varying from -120 to 10 mV,
followed by a 100 msec step to -120 mV to remove fast-
inactivation and a 20 msec step to -10 mV to elicit a
test response. Peak inward currents obtained from
steady-state fast-inactivation and slow-inactivation pro-
tocols were normalized by the maximum current ampli-
tude and fit with a Boltzmann equation of the form I =
Imin + (Imax'Imin)/(1 + eXP[(Vm - V1/2)/k)]t where Vm
represents the inactivating pre-pulse membrane poten-
tial and Vi), represents the midpoint of inactivation. For
deactivation the cells were held at -120 mV and tail cur-
rents were generated by a brief 0.5 ms depolarization to
-20 mV followed by a series of repolarizations ranging
from -120 to -40 mV. The closing rate of the channels
was obtained by fitting the tail currents with a single
exponential function.

Whole-cell current-clamp recordings from isolated
DRG or trigeminal ganglion neurons were performed
using the Axopatch 200B amplifier, digitized using the
Digidata 1440A interface and controlled using pCLAMP
software. The bath solution for current-clamp record-
ings contained (in mM): 140 NaCl, 3 KCl, 2 MgCl,, 2
CaCl,, and 10 HEPES, pH 7.3 with NaOH (adjusted to
315mOsm with dextrose). The pipette solution con-
tained (in mM): 140 KCI, 0.5 EGTA, 5 HEPES, and 3
Mg-ATP, pH 7.3 with KOH (adjusted to 300 mOsm
with dextrose). The junction potential between these
two solutions given by JPcalc was 5 mV but no correc-
tion was applied for current-clamp experiments. Record-
ings were performed on transfected presumptive
nociceptive neurons based on the morphology of small
diameter (20-28 pm) round cell bodies that also exhib-
ited GFP fluorescence. All recordings were performed
between 40 hr and 50 hr post-transfection 20 + 1°C.
Coverslips were transferred to a perfusable chamber
(Warner Instruments, Hamden, CT) and all recordings
were initiated within an hour. Whole-cell configuration
was obtained in voltage-clamp mode before proceeding
to the current-clamp recording mode. Cells with stable
(< 10% variation) resting membrane potentials (RMPs)
more negative than -35 mV and overshooting action
potentials (> 85 mV RMP to peak) were used for further
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data collection. Input resistance was determined by the
slope of a line fit to hyperpolarizing responses to cur-
rent steps of 10-35 pA. Threshold was determined by
the first action potential elicited by a series of depolariz-
ing current injections that increased in 5 pA increments.
The number of action potentials elicited in response to
depolarizing current injections of 500 msec duration
was also measured. After-hypolarization currents, and
amplitude and width of action potentials were not for-
mally analyzed in this study. Data are expressed as
means * standard error (SEM). Statistical significance
was determined by Student’s t-test, Mann-Whitney test
(firing frequency) or z-test (frequency of spontaneous
firing).
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