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Expression of the dopaminergic D1 and D2
receptors in the anterior cingulate cortex
in a model of neuropathic pain
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Abstract

Background: The anterior cingulate cortex (ACC) has been related to the affective component of pain.
Dopaminergic mesocortical circuits, including the ACC, are able to inhibit neuropathic nociception measured as
autotomy behaviour. We determined the changes in dopamine D1 and D2 (D1R and D2R) receptor expression in
the ACC (cg1 and cg2) in an animal model of neuropathic pain. The neuropathic group had noxious heat applied
in the right hind paw followed 30 min. later by right sciatic denervation. Autotomy score (AS) was recorded for
eight days and subsequently classified in low, medium and high AS groups. The control consisted of naïve animals.
A semiquantitative RT-PCR procedure was done to determine mRNA levels for D1R and D2R in cg1 and cg2, and
protein levels were measured by Western Blot.

Results: The results of D1R mRNA in cg1 showed a decrease in all groups. D2R mRNA levels in cg1 decreased in
low AS and increased in medium and high AS. Regarding D1R in cg2, there was an increase in all groups. D2R
expression levels in cg2 decreased in all groups. In cg1, the D2R mRNA correlated positively with autotomy
behaviour. Protein levels of D2R in cg1 increased in all groups but to a higher degree in low AS. In cg2 D2R
protein only decreased discretely. D1R protein was not found in either ACC region.

Conclusions: This is the first evidence of an increase of inhibitory dopaminergic receptor (D2R) mRNA and protein
in cg1 in correlation with nociceptive behaviour in a neuropathic model of pain in the rat.

Background
The anterior cingulate cortex (ACC) is a structure that
has been related to the affective component of pain
[1,2]. Evidence obtained with functional imaging techni-
ques has shown that the ACC is activated by pain in
correlation with the unpleasantness of the stimulus
[3,4]. Translating those findings into animal research,
painful stimuli also elicit functional activation of this
structure in rats [5,6]. Furthermore, the specific site
within the ACC that is particularly related to central
pain processing has been defined in humans as the preg-
enual part of the ACC [7] and as the rostral ACC in
rats. Moreover, the rostral ACC, also known as cg1, has
specifically been related to the affective component of

pain in rodents [8] while more caudal regions are
involved on motor planning as a secondary response to
nociceptor stimulation [9].
This cortex receives dopaminergic input from the ven-

tral tegmental area (VTA) via the medial forebrain bun-
dle [2,10]. Dopaminergic mesocortical circuits, including
the ACC, are able to inhibit neuropathic nociception
measured as autotomy behaviour. In this context, elec-
trical stimulation of the VTA diminishes self-injury
behaviour in an inflammatory model of pain in rats [11].
Although the VTA projects monosynaptically to the
ACC, its role is not limited to the ACC given that it
also provides dopaminergic input to other areas of the
cerebral cortex where it is an important inhibitor of
nociception [12]. More specifically, there is electrophy-
siological evidence about the subdivisions of the ACC
that are responsive to nociceptor stimulation in which
cg1 (rostral) responds and cg2 does not [13].
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There is evidence that when dopamine is microin-
jected into the ACC in an animal model of neuropathic
pain, neurectomy-induced nociception measured as
autotomy behaviour, is reduced [14]. Recent evidence
shows that the systemic administration of amantadine, a
known dopamine releaser [15], increases dopamine con-
tent in the ACC when measured using HPLC [16] and
diminishes neuropathic nociception induced by denerva-
tion when administered both systemically (i.p.) [17] or
microinjected into the ACC [14]. Moreover, there is evi-
dence that activation of dopamine D1 receptors (D1R)
enhances nociception while that of D2 receptors (D2R)
decreases it when the insular cortex is manipulated [18].
Further evidence involving this model and neurotrans-
mission system shows an increased incidence and accel-
eration of autotomy following chemical ablation of
dopaminergic terminals in the striatum or selective abla-
tion (6-OHDA) of dopaminergic neurons in the substan-
tia nigra and VTA [19,20].
Even though it is known that dopamine can modulate

the functions of the ACC and that this is a major site of
nociceptive modulation, there is little evidence about
the expression of dopaminergic receptors during neuro-
pathic nociception.
In this study, we performed a semiquantitative RT-

PCR procedure to evaluate changes in the mRNA levels
of D1R and D2R in the ACC of rats that were subjected
to neuropathic nociception induced by denervation and
in naïve controls. Also, using the same model, we quan-
tified protein levels of these receptors using a Western
blot technique. The animal model used in this work has
been widely used as an experimental model of phantom
limb and neuropathic pain by several groups [21-24].

Results
D1R and D2R mRNA changes
The results showed a differential expression of dopa-
mine receptors D1 and D2 in cg1 and cg2 depending on
the degree of nociception measured as autotomy beha-
viour. In cg1, there was a decrease in D1R mRNA in all
AS groups (92 ± 2.4% for low, 52 ± 1.3% for medium
and 62 ± 0.6% for high AS groups, one-way ANOVA F
= 161.853, p = 0.001. Figure 1A) with the greatest one
in the medium AS group. D2R mRNA decreased in the
low AS group (79 ± 1.2%) and progressively increased in
medium (120 ± 1.5%) and high AS (129 ± 1.6%) groups
(one-way ANOVA F = 192.597, p = 0.001. Figure 1B).
Regarding cg2, D1R mRNA showed an increase in all
AS groups (121 ± 1.1% for low, 269 ± 3.3% for medium
and 207 ± 1% for high AS groups, one-way ANOVA, F
= 1181.367, p = 0.001. Figure 2A) with the greatest one
in the medium AS group. As for cg2, D2R mRNA con-
tent depicted a decrease in all groups (71 ± 2.6% for
low, 44 ± 1.8% for medium and 71 ± 0.8% for high AS

groups, one-way ANOVA, F = 159.104, p = 0.001)
which was greater in the medium AS group (Figure 2B).
All the previous results were statistically significant
when compared to controls (one-way ANOVA, Bonfer-
roni post hoc p < 0.05).

D1R and D2R protein changes
The results showed that D2R have a higher expression
as protein in cg1 in rats with low AS when compared to
controls and rats with medium and high AS. The group
with low AS showed a 90% increase (2930 pixel squared,
px2) in expression when compared to control (100% or
1545 px2) whereas the medium and high AS groups
showed an increase of 35% (2085 px2) and 42% (2198
px2) respectively. In cg2, protein levels of this receptor
showed a 16% (1377 px2) decrease in the low AS group,
an increase of 1% (1649 px2) in the medium AS one and
a 24% (1247 px2) decrease in the high AS group com-
pared to control (1634 px2. Figure 3).
D1R were not expressed in either cg1 or cg2 under

the circumstances studied. In order to evaluate the effi-
cacy of the experimental conditions, these were tested
in a control group in the caudoputamen (Western Blot,
data not shown) and cerebral cortex (Immuno Dot).
The results in these controls showed an expression of
D1R and a validation of the experimental conditions
used (Figure 4).

Discussion
Several authors have described dopaminergic neurones
whose soma reside in the VTA and project to the ACC,
which is part of the pain matrix [16,25,26]. The results
in this work showed that peripheral nerve lesions trigger
changes in the dynamics of central dopaminergic recep-
tors within the pain matrix. These changes would
explain the development and consequences of pain
states, ie. hyperalgesia, allodynia, phantom limb pain,
among others.
The results showed that animals under neuropathic

nociception induced by noxious heat and a sciatic neur-
ectomy have an increased expression of mRNA levels of
dopamine D2 receptors in cg1 compared to naïve ani-
mals. Interestingly, protein levels, which represent the
functional state of the receptors, did not increase as
much with higher autotomy scores. This suggests that
the expression of D2R is partially responsible for the
development of autotomy behaviour. Also, the increase
in D2R mRNA allows us to infer that there is a counter-
regulatory mechanism within cg1 that would increase
inhibitory receptors. Electrophysiological evidence
showed that cg2 is not a nociceptive target whereas cg1
indeed is [13].
In respect to dopamine D2 receptor mRNA and pro-

tein mismatch, the regulation of these has been shown
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Figure 1 A. Semiquantitative mRNA levels for D1R in cg1. The graph depicts a decrease in all groups when compared to control. Low,
medium and high AS groups show 92 ± 2.4, 52 ± 1.3 and 62 ± 0.6%, respectively considering the control group as 100%. The lowest mRNA
level is in the medium AS group. Image B shows mRNA levels for D2R in the same region with 79 ± 1.2, 120 ± 1.5 and 129 ± 1.6% for groups
with low, medium and high AS, respectively. Notice that there is a progressive increase in mRNA levels, as the autotomy behaviour increases (n
= 4 in all groups). All percentages are significantly different when compared to control (one-way ANOVA, Bonferroni post hoc *p < 0.05). At the
top of each frame, there is an example of the electrophoresis agarose gel showing the control oligonucleotide (upper band) and the cDNA of
D1R’s in (A) and D2R’s in (B) (lower band).
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not to occur in parallel when modified by pharmacologi-
cal stimuli [27]. A mismatch in mRNA and protein
synthesis in the CNS has been previously described [28].
A possible explanation of this would be given by the
prior utilization of mRNA in order to produce the pro-
tein as seen in the results of the present work.

The behavioural expression of pain in animals has
been studied at a genetic level [29,30] to the point that
we now have high and low autotomy strains. Interest-
ingly enough, the sample of animals used in this study
was random which still showed that a difference in the
expression of a receptor has an impact in the degree of

Figure 2 A. This figure shows semiquantitative mRNA levels for D1R in cg2. Notice an increase in all groups when compared to control.
Low, medium and high AS groups show 121 ± 1.1, 269 ± 3.3 and 207 ± 1%, respectively considering the control group as 100%. The greatest
increase is in the medium AS group. Image B shows mRNA levels for D2R in the same region with 71 ± 2.6, 44 ± 1.8 and 71 ± 0.8% for groups
with low, medium and high AS, respectively. Also, notice that the lowest value is for the medium AS group (n = 4 in all groups). All percentages
are significantly different when compared to control (one-way ANOVA, Bonferroni post hoc *p < 0.05). At the top of each frame, there is an
example of the electrophoresis agarose gel showing the control oligonucleotide (upper band) and the cDNA of D1R’s in (A) and D2R’s in (B)
(lower band).
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Figure 3 Western Blot results of D2Rin ACC cg1 and cg2 regions. The bars represent the area between the optical density (in px2) of D2
and actin shown in the gel above. The different experimental groups for each region were L (Low AS), M (Medium AS) and H (High AS). In cg1
there is an important increase (90%) in the expression of the receptor in the low AS group when compared to medium AS (35%) and high AS
(42%). Cg2 showed 16, 1 and 24% decrease in the groups low AS, medium AS and high AS respectively.

Figure 4 Immuno Dot performed for D1R in control animals in the cerebral cortex. This control was done in order to validate the
experimental procedure for dopamine D1 receptors in the ACC and the specificity of the antibody. The (A) column shows the blocking D1R
peptide without primary antibody, (B) shows the blocking D1R peptide with D1R antibody and (C) the result in the cerebral cortex of control
animals. The concentrations shown are the ones with positivity; the results were negative from 10-3.
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autotomy. Furthermore, while this behaviour is devel-
oped over time, the present study shows a snapshot of
the average day (eight) in which a control animal
reaches its AS mean [14,18,31].
Dopamine receptors mRNA expression in cg2 is oppo-

site to that of cg1, which shows an increase of D1R and
a decrease in D2R mRNA levels. Furthermore, protein
levels of D2R in cg2 vary only discretely when compared
to cg1. These data suggest that dopaminergic receptors
have differential physiology in terms of its anatomical
localisation.
In regard of dopamine D1 receptors, there was a

decreased mRNA expression in cg1 and an increased
one in cg2. The results did not show a correlation with
AS in either region. Interestingly, under the experimen-
tal conditions used, we did not find an expression of
D1R protein in either region. We validated the experi-
ment by measuring this receptor in the caudoputamen
and the specificity was also validated by an Immuno
Dot in the cerebral cortex. With this we were able to
see that D1R plays a more discrete role in the modula-
tion of neuropathic pain in the ACC in rodents as com-
pared to D2R. Even though D1R was not evident as
protein, the pharmacological blockade of D1R modifies
pain related behaviour in the insular cortex which is
also part of the pain matrix [18]. In spite of these
results, we cannot fully discard the role of D1R’s in the
modulation of chronic neuropathic pain.
The role of D2R’s has also been studied at a pharmaco-

logical and neurochemical level. The selective activation
of D2R in the rostral agranular insular cortex diminishes
nociception in the model used in the present work [18].
This result has recently been replicated in other struc-
tures that belong to the so called ‘pain matrix’, such as
the ventrolateral orbital cortex [32], the nucleus accum-
bens [33,34] and the dorsolateral striatum [35].
Receptor expression regulation of pain related beha-

viours and mechanisms seems to behave somehow in an
analogous way as intracellular control pathways. A clear
example of this is the regulation of NMDA receptor,
which is well known to play an important role in the
modulation of pain, particularly in the ACC [36]. This
receptor activates transduction pathways like those of
PKA and ERK that when inhibited decrease synaptic
plasticity in an arthritis pain model [37]. Dopaminergic
receptors have intracellular mediators that can poten-
tially play a role in the findings hereby presented,
like the fragile × mental retardation protein which is
a key messenger for dopamine modulation in the
forebrain [38].
The receptor dynamic in which the mRNA of an inhibi-

tory receptor increases when the protein levels are lower
seems to be similar with different neurotransmission sys-
tems (muscarinic) in the same model of neuropathic pain

[39]. In regard of the dopaminergic system, animals under
inflammatory pain show a similar pattern of dopamine D1
and D2 receptor mRNA expression in the insular cortex
[40]. In another experimental approach with the same
neurotransmission system, the increase of D2R in the
nucleus accumbens decreases addiction-related behaviours
[41,42]. This supports that there is a general mechanism
of central control of different basic behaviours, structures
and neurotransmission systems.

Conclusions
To our knowledge, this is the first evidence of changes
in the expression of an inhibitory dopaminergic D2R in
a locus that is well known to play a key role in the pro-
cessing of nociceptive input (cg1) in correlation with
pain related behaviour in a neuropathic model of pain
in the rat.

Materials and methods
The experiments were conducted in agreement with the
ethics committee regulations of the International Asso-
ciation for the Study of Pain [43] and with the project’s
commission approval of the Instituto Nacional de Psi-
quiatría Ramón de la Fuente (INPRF). Male Wistar rats
(250-350 g) were raised, housed and maintained in the
INPRF’s animal house. During the observation period
the animals were maintained in transparent acrylic indi-
vidual cages with light-dark cycles of 12 × 12 h, with ad
libitum feeding and hydration.

Neuropathic pain model
We used the neuropathic pain model induced by dener-
vation [23]. This experimental approach triggers a quan-
tifiable behaviour known as autotomy that is related to
the degree of neuropathic pain [22]. In order to enhance
autotomy and shorten its onset, noxious heat was
applied prior to denervation [44]. Briefly, a nociceptive
process was induced by immersing the rat’s right hind
paw in hot water at 55°C for 20 s, 30 min prior to
denervation. The right sciatic nerve was exposed by
microdissection. The nerve was cut and ligated with silk
3-0 suture. Five millimetres of the distal end were
removed in order to avoid reinnervation. Skin was
closed with silk 3-0 suture. Animals were anaesthetised
with 2% isofluorane throughout these procedures. The
wounds were checked every day for possible signs of
infection and behaviour of rats was compared with that
of the controls for the remainder of the experiments
with no noticeable differences.

Autotomy behaviour measurement
Daily autotomy scores (AS) were computed using a
modified scale devised by Wall et al. (1979). This scale
gives the following scores: 1 point for the removal of
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one or more nails; 1 additional point for each distal half
digit attacked and a further point for each proximal half
digit attacked. If the distal or proximal half of the paw
was attacked an additional point of 1 is added for each
one. AS was recorded for eight days which has proven
to be the average day in which AS reaches its media in
control rats from previous studies, [14,18,31]. Then,
these groups were divided into low, medium and high
AS groups. This categorisation was done considering
the lowest (AS from 0 to 1) and the highest (AS from
11 to 13) autotomy scores. Those animals whose AS fell
in the middle were categorised as medium AS. We sepa-
rated the animals according to AS in order to evaluate
the changes related to those animals according to the
lowest and greatest pain as well as those with medium
AS values. This model has proven to be a useful tool to
study central mechanisms of neuropathic pain [22].
Moreover, the behaviour associated with autotomy has
been studied to a genetic level in which high and low
pain phenotype strains have been produced [29,30]. In
this work, we used a random selection of animals and
categorised them according to their autotomy score.
Since autotomy is related to the intensity of neuropathic
pain-like behaviour, we wanted to know if D1R and
D2R mRNA and protein expression in the ACC is cor-
related with AS.

Tissue extraction
On day eight, all animals were sacrificed by decapitation
and their brain was extracted and frozen in dry ice (-70°
C). In order to extract the left ACC (contralateral to
denervated hind paw), a parasagital brain slice was
obtained by cutting the frozen brain longitudinally at 1
mm to the left from the midline. Then, two punches
with a 1.0 mm diameter sample corer were done in cg1
and in cg2 (Figure 5) [45]. The corpus callosum was
used as anatomical reference.

Reverse transcriptase polymerase chain reaction (RT-PCR)
procedure
mRNA semi-quantification, by RT-PCR: Frozen cg1 and
cg2 were homogenized in 4 M guanidine thyocianate
(ICN, Aurora, Ohio, USA) and total RNA extracted as
has previously been described [46]. RNA quality of sam-
ples was verified by the ratio of O.D. absorbencies 260/
280 nm and 260/230 nm considered appropriate when
value was >1.8, and by electrophoresis quantifying 28S/
18S ratio and discarded if lower than 1.8 or, when evi-
dence of degradation was observed by increased staining
at the end of the gel. mRNA levels of D1R and D2R
from cg1 and cg2 were semi-quantified by reverse-tran-
scriptase polymerase chain reaction (RT-PCR), using
glyceraldehyde 3-phosphate dehydrogenase (G3PDH) as
control transcripts. The protocol used was essentially as

described in [47]: 1.5 μg of RNA was used to obtain
cDNA (M-MLV reverse transcriptase (Carlsbad, CA,
USA) and oligo-dT (Universidad Nacional Autónoma de
México UNAM Biotechnology Institute’s facilities), fol-
lowed by the PCR reaction: the number of cycles for
each probe was optimized for each region to assure lin-
ear conditions, using 1 μl and 10 pmol of D1R probe
(sense sequence: CAT TCT GAA CCT CTG CGT GA;
antisense: GTT GTC ATC CTC GGT GTC CT), for
D2R using 1 μl and 25 pmol (sense sequence: CAT
TGT CTG GGT CCT GTC CT; antisense: GAC CAG
CAG AGT GAC GAT GA); and 1 μl and 50 pmol
G3PDH (sense sequence: TGA AGG TCG GTG TCA
ACG GAT TTG GC; antisense: CAT GTA GGC CAT
GAG GTC CAC CAC) and 0.5 ml Taq DNA polymer-
ase (5U/ml) (Biotecnologías Universitarias, UNAM, DF,
México). Oligonucleotides were synthesized at the Insti-
tuto de Biotecnología, UNAM. Final conditions for cg1
and cg2 were: 30 cycles for D1R and D2R and 21 for
G3PDH. Each cycle consisted of 95°C for 1 min followed
by: 1 min at 64°C for D1R, D2R and G3PDH; all fol-
lowed by 1 min 15 s at 72 °C. All cDNAs had a final
extension of 10 min at 72 °C. Several cDNAs were semi-
quantified from the same RT reaction.
RT-PCR products (10 μl of each DNA, and 5 μl of

G3PDH) were separated by 2% of agarose (Ultra-pure
Bio-Rad, Hercules CA, USA) gel electrophoresis, stained
with ethidium bromide (1 mg/L) and density measured
with the Advanced American Biotech Imaging software
(American-Applied Biotechnology, Fullerton, CA, USA).
The relative amounts of the studied cDNAs were calcu-
lated as the ratio of each cDNA over G3PDH densities.
Care was taken to include samples of controls and
experimental groups in the same gel.

Western Blot Procedure
Tissue was homogenized at 4°C with a Teflon glass pes-
tle in a buffer solution containing 250 mM sucrose, 1
mM EDTA, 10 mM Tris (pH 7.2) and one tablet/40 ml
of complete protease inhibitor cocktail (Boehringer
Mannheim). The homogenate was centrifuged at 3000 ×
g for 15 min at 4°C. The supernatant was centrifuged at
20,000 × g for 30 min at 4°C. Subsequently, the super-
natant was centrifuged at 100,000 × g for 45 min at 4°C.
The pellet was re-suspended in the homogenization buf-
fer containing protease inhibitors and stored at -80 °C
until used for electrophoresis. Protein concentration was
determined using a Micro-BCA protein assay kit (Pierce,
cat. 23235, Rockford, IL, USA).
For electrophoresis, pre-stained molecular weight mar-

kers (SDS±Polyacrylamide Gel Electrophoresis Broad
Range, Cat. 161-0318 Bio-Rad, Hercules, CA, USA) and
membrane protein samples were diluted with the 2 ×
electrophoresis sample buffer, boiled for 10 min and
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cooled at room temperature. Denatured protein samples
were then separated on a discontinuous (4 ± 7.5%) SDS
±polyacrylamide Laemmli gel system by means of a Bio-
Rad Miniprotean II cell device for 1 h at 90, 120V
respectively. For western blotting, proteins were electro-
phoretically transferred from resolving gels to nitrocellu-
lose membranes (0.2 μm, Bio-Rad) in transfer buffer
[192 mM glycine, 25 mM Tris±HCl (pH 8.3) and 20%
methanol] for 1 h at 100 V using a Bio-Rad Trans-blot
tank apparatus at 48C. Blotted membranes were rinsed
twice with PB 10 mM plus 0.09% NaCl (pH 7.4), and
blocked for 1 h at room temperature with a solution
containing PB 10 mM plus 0.09% NaCl (pH 7.4))/0.3%
Tween-20 (Bio Rad, cat 170-6531), 3% teleostean gelatin
(Sigma, cat. G7765) and 0.3% milk (svelty non fat) all
purchased from Bio Rad. Membrane blots were incu-
bated overnight at 4°C plus 1 hr at room temperature
with Rabbit anti D2R, (Chemicon, cat AB5084P, dil
1:100) and Goat anti actin, (Santa cruz, cat, SC-1616, dil
1:8333) in the blocking solution. After four 5-min
washes with 0.2% Tween-20, 3% Gelatin in PB 10 mM
plus 0.09% NaCl (pH 7.4) solution, the membrane was
incubated with secondary antibodies HRP donkey anti
Rabbit (Jackson immunoresearch, cat. 711-035-152, dil
1:5000) and HRP donkey anti goat (Sta. Cruz, cat. SC-
2020, 1:10000), in 0.3% Tween 20, 3% Gelatin, teleostan,
0.3% milk svelty for the HRP donkey anti rabbit and
3.5% for HRP donkey anti goat, for 2 h at room tem-
perature. After four washes in PB 10 mM plus 0.09%
NaCl/0.1% Tween-20 at room temperature, bound anti-
body was visualized on films (Kodak, cat 604-0331)
using an enhanced chemiluminescence kit (western

lighting chemiluminescence Reagent Plus NEN, cat.
NEL 105001EA; Waltham, MA USA).

Immuno Dot procedure
In order to validate the specificity of D1R antibodies, an
immuno dot was performed in the cerebral cortex of con-
trol animals. Briefly, a 0.22 μm pore nitrocellulose mem-
brane was marked into squares of 1x1 cm. Then, it was
activated with 20% MetOH/PB 10 mM pH 7.2 low salt
(0.09% NaCl) for 15 min. and allowed to dry at room tem-
perature. Once activated, 5 mL of each membrane sample
were placed in a table (previously dissolved in 20%
MetOH/PB low salt) in the different working concentra-
tions (101, 10-0.5 and 10-3). Excess MetOH in descending
order of concentration was removed, 10% MetOH/PB and
a washed in low salt with PB only, 5 min. Each wash was
done while being shacked with CTE at room temperature.
The membrane was preblocked with a solution of 0.3% T-
20 (Tween 20 BIORAD, Cat. 170-6531), 3% gelatin (Gela-
tin teleost, SIGMA, cat. G-7765), 0.8, 3% milk Svelty in PB
low salt (0.09% NaCl) 10 mM, pH 7.2, for 1-1 1/2 hr, with
stirring CTE at T ° A. Then, the membranes were incu-
bated in the primary Ab Goat anti D1R (Santa Cruz, cat.
sc-1434) dil. 1:5000 in the same solution at 4 ° C overnight
with stirring CTE. After the incubation time, the mem-
branes remained for an additional hour at room tempera-
ture. After this, four washes with 0.2% T-20, 3% gelatin in
PB low salt for 10 min. with shaking CTE, were per-
formed. The secondary antibody was incubated, HRP
Donkey anti goat (Santa Cruz, sc-2020) dil 1:10,000 in
0.3% T-20, 3% gelatin, 1% milk Svelty, in 10 mM, PB low
salt, pH 7.2, for 2 hr, with stirring CTE at room

Figure 5 The circles in red represent the loci in which the tissue was extracted for RT-PCR and Western Blot. Notice that cg1
corresponds to the rostral part of the ACC and cg2 to the ventral one. Modified from Paxinos and Watson, 1998 [45].
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temperature followed by two washes with 0.1% T-20/PB
low salt for10 min. each. Two final washes with low salt
PB were done afterwards. Finally, complex chemiluminis-
cense (Perkin Elmer, cat. NEN 101) was added and
revealed in an ultrasensitive x-ray film (Kodak X-Omat).

Experimental groups
- Control (n = 12): animals that were maintained in
individual cages for 8 days with no surgical interven-
tions. Four animals were used for the RT-PCR experi-
ments and eight for the analysis of protein levels with
Western blot.
- Neuropathic group (n = 40): all the animals had

noxious heat applied to the right hind paw followed by
a right sciatic denervation 30 minutes later. AS was
recorded for eight days and after that period, the ani-
mals were divided in three different AS groups: low,
medium, and high. To perform RT-PCR experiments,
four animals per group were used [48]. For the Western
Blot experiments 10 rats were used for the low AS
group, 13 for medium AS and 5 for high AS.
Differences in D1 and D2 receptors mRNA levels

between groups were analysed by a one-way ANOVA
followed by a post hoc Bonferroni test was used. Signifi-
cance was considered when p < 0.05.
The RT-PCR and Western Blot procedures were car-

ried out in a blinded fashion.
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