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Reduction of voltage gated sodium channel
protein in DRG by vector mediated miRNA reduces
pain in rats with painful diabetic neuropathy
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Abstract

Background: Painful neuropathy is a common complication of diabetes. Previous studies have identified significant
increases in the amount of voltage gated sodium channel isoforms NaV1.7 and NaV1.3 protein in the dorsal root ganglia
(DRG) of rats with streptozotocin (STZ)-induced diabetes. We found that gene transfer-mediated release of the
inhibitory neurotransmitters enkephalin or gamma amino butyric acid (GABA) from DRG neurons in diabetic animals
reduced pain-related behaviors coincident with a reduction in NaV1.7 protein levels in DRG in vivo. To further evaluate
the role of NaVa subunit levels in DRG in the pathogenesis of pain in diabetic neuropathy, we constructed a non-
replicating herpes simplex virus (HSV)-based vector expressing a microRNA (miRNA) against NaVa subunits.

Results: Subcutaneous inoculation of the miRNA-expressing HSV vector into the feet of diabetic rats to transduce
DRG resulted in a reduction in NaVa subunit levels in DRG neurons, coincident with a reduction in cold allodynia,
thermal hyperalgesia and mechanical hyperalgesia.

Conclusions: These data support the role of increased NaVa protein in DRG in the pathogenesis of pain in
diabetic neuropathy, and provide a proof-of-principle demonstration for the development of a novel therapy that
could be used to treat intractable pain in patients with diabetic neuropathy.

Keywords: Diabetes, Pain, Neuropathy, Gene therapy, Sodium channel

Background
Pain is a common complication of diabetic neuropathy
that, despite substantial advances in understanding of
pathophysiology, remains relatively refractory to treatment
with available agents [1]. In rats with streptozotocin (STZ)
induced diabetes and painful neuropathy, an increase in
the alpha (pore-forming) subunit of voltage gated sodium
channel isoform 1.7 (NaV1.7) in primary sensory afferent
neurons of the dorsal root ganglia (DRG) has been
reported [2], a change that correlates with increased
amplitude and negative shift of the activation of tetrodo-
toxin (TTX)-sensitive current in those neurons. A poten-
tial pathogenic role for NaV1.7 in the development of pain
in this syndrome is supported by the observation that gain
of function mutations in NaV1.7 cause inherited

spontaneous neuropathic pain syndromes primary eryther-
malgia [3,4] and paroxysmal extreme pain disorder [5].
In previous studies we have constructed a series of

herpes simplex virus (HSV)-based gene transfer vectors
that effectively transduce DRG in vivo from skin inocu-
lation, and have used these vectors to express inhibitory
neurotransmitters [6-8] or neurotrophic factors [9-11].
In order to explicitly test the role of increased levels of
NaV in DRG in the pathogenesis of pain in PDN, we
constructed a non-replicating herpes simplex virus
(HSV)-based vector to reduce NaVa protein in DRG,
and compared the effect of NaVa subunit knockdown
on pain-related behaviors in PDN with the effect in a
standard model of inflammatory pain.

Results and discussion
The data reported here demonstrate that, 1) an HSV vec-
tor expressing an miRNA against voltage gated NaV alpha
subunits reduces expression of NaVs in DRG in vivo;
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2) normalization of NaV1.7 levels in STZ-diabetic rats
achieved by the miNaV-expressing vector substantially
reduced pain related behaviors in the STZ rat model of
painful diabetic neuropathy; but in comparison, 3) the
reduction in expression achieved by the miNaV-expressing
vector produced only a modest reduction in inflammatory
pain (flinching) in the acute and delayed phases of the for-
malin test.

Knockdown of NaVa channels
A series of miRNA sequences targeting common rat NaV
a subunits were constructed and inserted into the nonre-
plicating HSV recombinant UL41E1G6-M [12]. The
resulting series of vectors were used to transfect primary
DRG neurons in culture at a multiplicity of infection
(MOI) of 1 for 2 hours, and 48 hours later the amount of
NaV1.7 mRNA determined by RT-PCR. The most effec-
tive vector construct, designated QHmiNaV (Figure 1)
was used in the experiments reported. Control vector
QHmiSc was identical to QHmiNaV but contained a
scrambled sequence in place of NaV miRNA sequence.
The sequence inserted into QHmiNaV was a perfect

match for NaV1.7 and for NaV1.3, but an imperfect
match for other NaVs (Figure 2a). We examined the
effect of QHmiNaV infection on expression of DRG NaV
isoforms NaV 1.3, 1.6, 1.7 and 1.8 by examining isoform-
specific mRNA levels 3 days after infection of primary
DRG neurons in culture at an MOI of 1. Infection with
QHmiNaV produced a substantial reduction in the levels
of NaV1.6 and 1.7 mRNAs, and about a 50% reduction
in the amount of NaV1.8 mRNA in infected DRG neu-
rons (Figure 2b). Infection with QHmiSc at an MOI of
1 resulted in no change in NaV a subunit mRNA levels.
The change in NaV protein levels assessed using a well
characterized anti-NaV1.7 antibody, lagged several days
behind the reduction in RNA reaching 80% of basal
levels at 10 days after infection reflecting the half-life of
already synthesized protein (data not shown).
NaVs are crucial determinants of neuronal excitability

[13,14], and the NaV isoforms NaV1.3, NaV1.6, NaV1.7,

NaV1.8, and NaV1.9 are all expressed in DRG neurons.
Transgenic mouse and knockdown studies have princi-
pally implicated the isoforms NaV1.3, NaV1.8 and
NaV1.9 in inflammatory and nerve injury related pain
[15-19]. NaV1.8-null mutant mice lack slowly inactivat-
ing sodium currents and unable to sense cold pain or
mechanical pressure [20]. These animals also exhibit
deficits in inflammatory pain behavior, yet they respond
normally to heat. In carrageenan and complete Freund’s
adjuvant-induced hyperalgesia there is an increase in
NaV1.8 and NaV1.9 currents [21,22] and an increase in
the expression of NaV1.8 in DRG has been reported
[23]. Knockdown of NaV1.8 by intrathecal delivery of
antisense oligonucleotide against NaV1.8 reduces CFA-
induced hyperalgesia [24,25].

QHmiNaV reverses the increase in NaV1.7 caused by
diabetes
There is a significant increase in NaV1.7 protein in DRG
of rats rendered diabetic by injection of streptozotocin
(STZ) [2,6] that correlates with thermal hyperalgesia,
mechanical hyperalgesia and cold allodynia, characteristic
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Figure 1 Vector schematic of QHmiNaV. QHmiSc is identical except that the specific NaV1.7 miRNA sequence is replaced by a scrambled
sequence.

NaV1.4  4550- 4507 ACAGTATCATCTGCCTCTTCG

NaV1.6  5386- 5406 ACAGCATGATCTGTCTGTTCC

NaV1.7  5051- 5071 ACAGCATGATCTGCTTGTTCC

NaV1.8  5155- 5175 ACAGCATGCTGTGCCTGTTCC

NaV1.9  4604- 4624 GCAGCATGCTGTGCCTCTTCC

NaV1.1  5386- 5406 ACAGCATGATCTGCCTGTTCC

NaV1.2  5315 5335 ACAGCATGATCTGCCTGTTCC

NaV1.3  5356- 5376 ACAGCATGATCTGCTTGTTCC

NaV1.5  5299- 5319 ACAGCATGCTGTGCCTGTTCC

-

control QHmi-con QHmi-Nav

isoform bp sequence c sc mi

1.8

1.7

1.6

βa

βa

a b

Figure 2 a. Comparison of the sequence used for the miRNA
construct (NaV1.7) with other NaV alpha isoforms. Mismatched
base pairs are indicated in red. b. RT-PCR of NaV alpha subunit
isoforms from primary DRG neurons in vitro infected with QHmiSc
(sc) or QHmiNaV (mi). c = uninfected cells; ba = b-actin.
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of painful diabetic neuropathy in these animals. Subcuta-
neous inoculation of HSV vectors results in transduction
of ipsilateral DRG [26]. Two weeks after the onset of dia-
betes 30 μl containing either 3 × 109 pfu of QHmiNaV or
QHmiSc was injected into the plantar surface of both
hind feet. Two weeks after the vector inoculation (4
weeks after onset of diabetes), the amount of NaV1.7 pro-
tein was significantly increased in the diabetic animals
(Figure 3a) and in diabetic animals inoculated with the
QHmiSc, but there was a substantial reduction in the
amount of NaV1.7 in diabetic animals inoculated with
QHmiNaV (Figure 3a). QHmiNaV brought the amount of
NaV1.7 protein in diabetic animals back to near normal
but not completely normal levels. By in situ hybridization
the reduction in NaV1.7 RNA expression was found to be
widely distributed in neurons in the DRG, and the in situ
study suggested a reduction of about 50% in the amount
of NaV1.7 mRNA in the DRG compared to diabetic ani-
mals (Figure 3b). To separately estimate the number of

DRG neurons transfected after footpad inoculation of the
vector, we performed in situ hybridization for the repor-
ter gene GFP which revealed 40-50% of the neurons in
individual sections with GFP reporter RNA (Additional
File 1).

HSV-mediated knockdown of NaV ameliorates pain-
related behaviors in diabetic animals
Diabetic rats demonstrate thermal hyperalgesia, cold
allodynia and mechanical hyperalgesia [6,8]; all of these
signs of neuropathic pain were improved by inoculation
with QHmiNaV. Thermal hyperalgesia was manifested
by a decrease in withdrawal latency in response to nox-
ious thermal stimuli (control 8.62 ± 1.3 sec; diabetic
4.89 ± 0.5 sec; p < 0.005). Two weeks after inoculation
(4 weeks after diabetes) animals inoculated with QHmi-
NaV showed a statistically significant increase in thermal
latency (QHmiNaV 7.92 ± 0.7 sec compared to diabetic;
p < 0.005) and control vector QHmiSc inoculated
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Figure 3 a. NaV1.7 levels in DRG of diabetic animals inoculated with QHmiNaV demonstrates reduction in protein compared to
QHmiSc 4 weeks after inoculation (*** p < 0.005). Data presented as ratio to b-actin (ba). b. In situ hybridization using a probe specific for
NaV1.7 in DRG from diabetic animals, without treatment or inoculated with QHmiSc or QHmiNaV as indicated. A sense probe showed no
staining. The average optical density of DRG neurons in each condition was determined using a PC based image analysis program (MCID). * p <
0.05; ** p < 0.01.
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diabetic animals (QHmiSc 5.5 ± 0.8 sec; p < 0.01 com-
pared to QHmiNaV) (Figure 4). Cold allodynia was man-
ifested by a decreased latency to withdraw from a cold
acetone spray in diabetic compared to control animals
(diabetic 3.1 ± 0.6 sec; control 18.1 ± 3.9 sec p < 0.001).
Diabetic animals inoculated with QHmiNaV showed an
increased latency to withdraw from this stimulus com-
pared to diabetic control vector inoculated animals
(QHmiNaV 16.9 ± 2.1 sec; QHmiSc 6.2 ± 2.1 sec; p <
0.001). Mechanical hyperalgesia was tested using the
method described by Randall and Sellito. Inoculation of
QHmiNaV significantly increased the pressure threshold
(QHmiNaV 105.9 ± 4.9 gm) compared to diabetic ani-
mals (55.5 ± 3.4 gm; p < 0.001) and QHmiSc-inoculated
animals (62.7 ± 2.9 gm; p < 0.001) measured 4 week
after inoculation (Figure 4).
In STZ-induced PDN there is a marked increase in NaV

1.7 protein in DRG [2,27,28], an increase that is mediated
by phosphorylation of PKC [6,8]. While the pathogenesis
of pain in PDN is complex and many molecular entities
may be involved [29], in studies using HSV-based vectors
to transfer genes to the DRG in vivo, we observed that
vector-mediated release of gamma aminobutyric acid
(GABA) from the DRG of diabetic animals results in a
reduction in pain-related behaviors, coincident with a
reduction in NaV1.7 protein in the DRG achieved
through activation of presynaptic GABAB receptors [8].
We also found that gene transfer-mediated release of the
inhibitory neurotransmitter enkephalin resulted in a
greater reduction of neuropathic pain-related behaviors
in animals with neuropathic pain resulting from diabetic
neuropathy [6] compared to animals with neuropathic
pain resulting from spinal nerve ligation [7], and that
continuous activation of presynaptic delta opioid

receptors by vector-produced enkephalin in the diabetic
animals also resulted in a reduction in the amount of
NaV1.7 protein in diabetic DRG in vivo.
These results support the interpretation that increased

NaV1.7 protein in DRG plays in the pathogenesis of pain
in this model of PDN. The potential role of NaV1.7 in the
pathogenesis of pain in PDN is also supported by the
observation that gain-of-function mutations in SCN9A,
the gene encoding NaV1.7 result in the spontaneous pain
syndromes primary erythermalgia and paroxysmal
extreme pain disorder [30,31], and that loss of function
mutations in NaV1.7 result in an inherited channelopathy
characterized by total insensitivity to pain [32].
NaV1.7 is the principal TTX-sensitive channel in small

DRG neurons, and is responsible for almost half of the
current in those neurons, and the increase in NaV1.7
protein is accompanied by an increase in TTX-sensitive
current in those cells [2]. There is also an increase in
TTX-resistant currents in diabetic rats [27,33] that is
likely related to modulation of individual channel prop-
erties related to phosphorylation [2]. Waxman and col-
leagues have suggested that NaV1.7, which opens in
response to slow ramp depolarization may serve to “set
the gain” for repetitive firing [14]. If that is the case, an
increase in the number of NaV1.7 channels can serve to
lower the gain allowing for altered thresholds and spon-
taneous pain. There is one early published report in
which an increase in NaV1.7 in the DRG of STZ-diabetic
rats was not observed using immunocytochemistry [27],
but several subsequent studies using Western blot found
an increase in NaV1.7 [2,6,8]. The results of the current
study provide support for the interpretation that an
increase in the amount of NaV1.7 plays a role in the
pathogenesis of pain in this model of PDN.
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Figure 4 Pain-related behaviors in diabetic animals inoculated with QHmiNaV were marked improved compared to animals inoculated
with QHmiSc: thermal latency (left panel); cold latency (middle panel); mechanical threshold (right panel). Individual data points are
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QHmiNaV reduces NaV1.7 and 1.8 in normal animals, but
produces only a modest reduction in formalin-induced
flinching
Twenty one days after subcutaneous inoculation of
QHmiNaV into the hind paw of normal rats, the amount
of NaV1.7 was reduced by 50% and the amount of
NaV1.8 by 40% compared to QHmiSc-inoculated ani-
mals (Figure 5a and 5b). Animals inoculated with
QHmiNaV showed a small but statistically significant
reduction in formalin - induced flinching behavior in
the delayed phase of the formalin test (Figure 5c).
There is always a possibility in experiments of this type

that the directed siRNA may knock down the expression
of proteins unrelated to the target gene. While this is an
important consideration, the prior evidence indicating a
role for NaV in the pathogenesis of pain, coupled with
the reduction in pain when NaV expression is reduced to
just that we are looking at on-target effects of NaV
knockdown. We do not interpret our observation that
vector-mediated knock down of NaV resulted in only a

modest reduction in spontaneous pain in the formalin
test to indicate that NaV1.7 may not important in inflam-
matory pain. Yeomans and coworkers reported pre-
viously that a related HSV vector engineered to express
an NaV1.7 antisense construct reduced inflammatory
hyperalgesia resulting from injection of complete
Freund’s adjuvant [34], and Woods and colleagues
reported that mice with double knockouts for both
NaV1.7 and NaV1.8 show a substantial reduction in pain
related behavior in the delayed phase of the formalin test,
in contrast to NaV1.8 knockouts that demonstrate a nor-
mal behavior in the delayed phase [35]. The results of the
current study however do suggest that a 40 to 50% reduc-
tion from normal amounts in the amount of NaV1.7 and
NaV1.8 in the DRG does not impair the ability of noci-
ceptors to respond in a functionally meaningful manner
to the acute inflammatory stimulus.
Woods and colleagues also reported that the NaV1.7 and

NaV1.8 double knockouts demonstrate no impairment in
the development of pain in response to nerve injury (L5
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Figure 5 a. NaV1.7 (a) and NaV1.8 (b) protein in DRG of animals inoculated with QHmiNaV or QHmiSc (sc) 21 days earlier. Data
quantitated as ratio to b-actin and presented as % of control. c. Number of flinches over time after subcutaneous injection of formalin 21 days
after inoculation with QHmiNaV or QHmiSc.
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spinal nerve ligation) [35]. Those results, as well as other
experiments that demonstrate different changes in NaV
isoform levels in different models of neuropathic pain [36]
are not incompatible with the current study. Rather, they
point to what may be important differences in the patho-
genesis of different forms of neuropathic pain, in particu-
lar the role played by the substantial increase in NaV1.7
protein in PDN.

Conclusions
HSV is a vector that is uniquely suited to deliver genes
into DRG neurons in vivo. While much of the previously
published work using HSV based vectors has characterized
the delivery, expression and biological properties of pep-
tides or proteins expressed from these vectors that are
released from transduced neurons [37-39], the results of
the current study extend the utility of these vectors to the
production of interfering RNAs acting intracellularly. A
nonreplicating HSV vector expressing preproenkephalin
has been brought to human trial [40]. It is possible that a
miRNA-expressing HSV vector could be used in a similar
fashion to treat patients with intractable persistent pain
from diabetic neuropathy.

Methods
Vectors
To construct miRNAs targeting rat NaV a subunits pre-
sent in DRG, we constructed a vector to express a
miRNA targeted to a common sequence of NaV1 a subu-
nits. A3 top strand oligo 5’-TGC TGG GAA CAA GCA
GAT CAT GCT GTG TTT TGG CCA CTG ACA CAG
CAT GCT GCT TGT TCC-3’ A3 bottom strand oligo 5’-
CCT GGG AAC AAG CAG CAT GCT GTG TCA GTC
AGT GGC CAA AAC ACA GCA TGA TCT GCT TGT
TCC C -3’. Equal amounts of the single-stranded oligos
were annealed to generate a double-stranded oligo that
ligated with the linearized plasmid pcDNATM6.2-GW/
EmGFP-miRNA (Invitrogen), amplified using the follow-
ing PCR primers with mulI site at 5’ end an ECORI site
at 3’ end, forward primer: 5’-ACG CGT GCT AGT TAA
GCT ATC AAC AAG-3’ and reverse primer: 5’-GAA
TTC GTA CAA GAA AGC TGG GTC TAG-3’. The
PCR fragment was extracted by Qia-quick Gel Extraction
Kit (Qiagen, Valencia, CA), and 3 ul of the gel-extracted
PCR fragment ligated into PGEM-T vector system I kit
(Promega; Madison, WI) for expansion. The resulting
PCR fragment was cut out from PGEM-T plasmid by
MluI and EcoRI, purified by gel electrophoresis and
cloned into MluI and EcoRI -cut shuttle plasmid SASB3-
M4. The shuttle plasmid containing the insert was then
cotransfected with the non-replicating HSV vector
UL41E1G6-M in complementing 7B cells, and and a sin-
gle green virus isolated through serial dilution. Every
round of purification was confirmed by sequencing, and

the construct designated QHmiNaV. A control vector
identical to QHmiNaV, but containing a scrambled-
miRNA sequence in place of NaV a subunit miRNA was
constructed and designated QHmiSc.

Diabetic animal model
Following an overnight fast, male Sprague Dawley rats
weighing 225-250 gms were injected with streptozotocin
(STZ, Sigma, USA) 50 mg/kg, i.p. in citrate buffer (pH
5.5). The development of diabetes was confirmed by
measuring blood glucose and animals with blood glu-
cose level ≥ 300 mg/dl included as diabetic. There were
8-10 animals per group in all these studies.

Vector inoculation
Diabetic animals were inoculated subcutaneously in the
footpad of the both hind paws with 30 μl containing 1 ×
107 plaque forming units with either QHmiNaV or the
control vector QHmiSc 2 weeks after the onset diabetes.
Control animals or diabetic only animals were injected
PBS in the footpad. A separate cohort of diabetic ani-
mals were inoculated with the vector and euthanized 2
weeks later to evaluate the efficacy of knockdown of
RNA.

Cell Culture
DRG neurons from 17-day-old rat embryos were cul-
tured in Neurobasal Medium containing B27, Gluta-
max I, Albumax I, and penicillin/streptomycin (Gibco-
BRL). After 7 days in culture, the cells were transfected
with either QHmiNaV or QHmiSc at a multiplicity of
infection (MOI) of 1 for 2 h. Fresh medium was
replaced and collected 7 days later for determination
of NaVs.

RT-PCR
cDNA prepared from RNA isolated from DRG cells or
rat L4-6 DRG were amplified using following primer
sets: b-actin-F (5’-CAG TTC GCC ATG GAT GAC
GAT ATC-3’) and b-actin-R (5’-CAC GCT CGG TCA
GGA TCT TCA TG-3’) for b-actin, NaV1.6-F (5’-GAC
AAT GAT GGT GGA GAC AGA CAC-3’) and NaV1.6-
R (5’-TTG GAG GCC ATC TTT CTG CAG-3’) for
NaV1.6. NaV1.7-F (5’-CCA TCA TGA ACG TGC TTC
TCG TG-3’) and NaV1.7-R (5’-CAA AGC AAA GAG
CAG AGT GCG GAT C-3’) for NaV1.7 and NaV1.8-F
(5’-AAC AGC ACC GGC CAC TTC TTC-3’) and
NaV1.8-R (5’-CCG TTG CTG TTG GGC AGG TTG-3’)
for NaV1.8. All reactions involved initial denaturation at
94°C for 5 min followed by 28 cycles (for b-actin and
NaV1.7) and 30 cycles (for NaV1.6 and NaV1.7) at 94°C
for 30 sec, 68°C for 3 min, followed by 1 cycle at 68°C
for 8 min using a GeneAmp PCR 2700 (Applied Biosys-
tems, Foster City, CA).
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Western Blot
Cells or pooled samples of L4-L6 DRG, were homoge-
nized with lysis buffer (20 mM Tris, pH 7.5, 150 mM
NaCl, 1 mM EDTA, 2% SDS, 10% glycerol, and 1:100
dilution of protease inhibitor mixture and phosphatase
inhibitor mixture (Sigma), the homogenized cells and
tissues were centrifuged at 10,000 × g for 10 min at 4°C,
and the supernatant was stored at -80°C. An aliquot of
supernatant was taken for protein estimation using a
protein assay kit (Bio-Rad Laboratories, Hercules, CA).
Total cell extract or total protein from DRG (20 μg of
protein per lane) was separated by PAGE, transferred to
an Immobilon-P membrane (0.45 μm; Millipore),
blocked with 5% nonfat milk, and then incubated with
the primary antibody. Primary antibodies included an
antibody against NaV1.7, NaV1.8 (Chemicon) and anti-
SP-19 (Sigma Aldrich) followed by horseradish peroxi-
dase-conjugated anti-rabbit IgG or anti-mouse IgG
(1:5000; GE Healthcare) and visualized with ECL
(Pierce) using a PC-based image analysis system (Che-
miDoc XRS System; Bio-Rad Laboratories). The mem-
branes were stripped and re-probed with mouse anti-b-
actin (1: 2000; Sigma Aldrich) as a loading control. The
intensity of each band was determined by quantitative
chemiluminescence using a PC-based image analysis sys-
tem (ChemiDoc XRS System, Bio-Rad Laboratories).

Immunocytochemistry
Rats were perfused with 4% paraformaldehyde, the L4-6
segment of DRG postfixed and cryoprotected, and 20
μm cryostat sections incubated with anti-GFP (Abcam).
The secondary antibodies utilized were fluorescent anti-
rabbit IgG Alexa Fluor 488 (1:2000; Molecular Probes,
Eugene, OR). Images were captured using a Zeiss LSM
510 Meta confocal microscope.

In situ hybridization
Rats were anesthetized with ketamine/xylazine (100/10
mg/kg, IP) and perfused with 4% paraformaldehyde in
0.1 M phosphate buffer. L4-6 DRG were post-fixed and
cryoprotected overnight at 4°C in 30% sucrose, and
serial sections (10 μm) of DRG was cut onto slides and
desiccated overnight. Sections from the different groups
were processed for in situ hybridization for detection of
NaV1.7 mRNA or GFP mRNA with incubation in 4%
paraformaldehyde for 12 min and permeabilization with
proteinase K for 6 min followed by hybridization with
digoxigenin-labeled probes for NaV1.7 (5DigN/TTA
CGT CGC CGT CCA GCT CG/3DigN) and GFP
(5DigN/TTC TCA TCG TCA CCC TTT TCC T/
3DigN) at 530 C overnight, followed by 1 hr blocking, 2
hrs of Anti-dig-AP antibody incubation and 1 hr color
reaction with NBT/BCIP phosphate. The slides were
then dehydrated and mounted in Permount. Digitized

images of immunostained sections were captured with a
Nikon E1000 microscope, and analyzed using a PC-
based image analysis program (MCID, Imaging
Research, Brock, ON, USA) by a technician blinded to
the treatment group. All the cells in the cross-section of
the DRG from three animals in each group were
analyzed.

Behavioral studies
Thermal hyperalgesia
The latency to hind paw withdrawal from a thermal sti-
mulus was determined by exposing the plantar surface
of the hind paw to radiant heat using a modified Har-
greaves thermal testing device [41]. Rats were placed in
individual enclosures on a glass plate maintained at 30°
C, and after a 30 min habituation period the plantar
surface of the paw exposed to a beam of radiant heat
applied through the glass floor. Activation of the bulb
simultaneously activated a timer, and both were imme-
diately turned off by paw withdrawal or at the 20 sec
cut-off time. Testing was performed by a blinded obser-
ver in triplicate at 5 min intervals.

Mechanical hyperalgesia
Mechanical nociceptive threshold was assessed using an
analgesimeter (Ugo Basile, Comerio, VA, Italy) as
described by Randall and Selitto [42]. A linearly increas-
ing force was applied through a cone-shaped plastic tip
with a diameter of 1 mm onto the dorsal surface of the
hindpaw between the third and fourth metatarsals until
the rat attempted to withdraw its paw or a pressure of
200 gms reached. The pain threshold determined as the
mean of three consecutive stable values expressed in
grams was determined by a blinded observer.

Cold allodynia
Animals were placed on a mesh floor 18 inches above
the table and after 20 min of acclimatization, 0.1 ml of
acetone was sprayed onto the plantar surface of the
hind paw using a 1 cc syringe. The latency of the
response, measured as the delay to a withdrawal
response of either flinching or licking was used as a
measure of cold allodynia, with a cut off limit at 40 sec.
A total of 3 responses from each animal were assessed
at 5 min intervals by a blinded observer.

Formalin test
To test inflammatory pain-related behavior, 21 days
after inoculation of the vector into one hind paw, nor-
mal male Sprague Dawley rats 225-250 grams were
acclimated to the test setup and injected with 50 μl of
5% formalin into the plantar surface of the ipsilateral
hind paw. The number of flinches over the subsequent
60 minutes counted using an automated device [43].
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Statistical analysis
The statistical significance of the difference between
groups was determined by ANOVA (Systat 9) using
Bonferroni’s correction for the multiple post hoc ana-
lyses. All results are expressed as mean ± SEM. All the
tissue culture experiments were repeated 3 times. The
animal experiments, with 8-10 animals per group, were
repeated twice.

Additional material

Additional file 1: Supplementary Figure 1. In situ hybridization using
probe against GFP indicates that a large proportion of the neurons in
the DRG were infected by both the miRNA and scramble sequence
vectors.

Abbreviations
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