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Abstract

development.

The age-dependency of opioid analgesia and tolerance has been noticed in both clinical observation and laboratory
studies. Evidence shows that many molecular and cellular events that play essential roles in opioid analgesia and
tolerance are actually age-dependent. For example, the expression and functions of endogenous opioid peptides,
multiple types of opioid receptors, G protein subunits that couple to opioid receptors, and regulators of G protein
signaling (RGS proteins) change with development and age. Other signaling systems that are critical to opioid
tolerance development, such as N-methyl-D-aspartic acid (NMDA) receptors, also undergo age-related changes. It is
plausible that the age-dependent expression and functions of molecules within and related to the opioid signaling
pathways, as well as age-dependent cellular activity such as agonist-induced opioid receptor internalization and
desensitization, eventually lead to significant age-dependent changes in opioid analgesia and tolerance

Keywords: Molecular and cellular mechanisms, Age-dependency, Opioid tolerance

Background
Opioid drugs, such as morphine, are commonly used
analgesics that are effective for treating most acute and
chronic pain conditions. However, prolonged and repeti-
tive opioid treatment can have side effects and result in a
significant reduction or even complete loss of the anal-
gesic effect (i.e. tolerance). Thus, although opioid anal-
gesia remains a powerful means of pain therapy, opioid
tolerance has become a major clinical problem for many
patients who receive daily opioids for pain conditions.
Tolerance is also a long-standing problem in the basic
pharmacology of opioids. Opioid drug research and de-
velopment has yet to produce potent and type-selective
opioid agents that do not cause tolerance because we still
have a poor understanding of the mechanisms by which
opioid analgesia occurs and opioid tolerance develops.
The mechanisms of opioid analgesia and tolerance are
complicated, involving numerous molecules and cells, as
well as many reactions and processes. These mechanisms
act in concert across multiple levels: molecular, cellular,

neuronal interaction and network, hormonal, and
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systemic. In addition, several physiological factors, such
as age, sex, and genetic variations, can directly or indir-
ectly affect the analgesic effectiveness and tolerance de-
velopment of opioid drugs.

Recently, age-specific opioid therapy for pain, as well
as the relationship between opioid tolerance and aging,
has drawn considerable attention and renewed interest.
It is well known that age-related processes (including
early development and aging) play essential roles in the
expression and function of many genes and in the devel-
opment and function of many cells, tissues, and whole
organisms. Studies also suggest that age is a determinant
of opioid analgesia and tolerance in human beings, ani-
mals, and individual cells. The bases of such age-depend-
ency are as complicated and poorly understood as the
mechanisms of opioid analgesia and tolerance them-
selves, and they involve multiple levels.

This review discusses recent evidence supporting the
concept that opioid analgesia and tolerance are age-
dependent. It also explores the molecular and cellular
mechanisms that underlie this phenomenon.

Age-dependent opioid analgesia and tolerance
Results from many clinical observations and laboratory
studies strongly support the notion that age is an
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important factor affecting opioid analgesia. Recent clin-
ical and laboratory data indicate that age also affects the
development rate of opioid tolerance.

Age-dependent opioid analgesia and tolerance in patients
with pain

For many years, studies have shown that age significantly
influences the dosing and analgesic effects of commonly
used opioid drugs [1,2]. In recent years, there has been a
significant increase in the use of daily opioids to treat
chronic nonmalignant pain [3]. There continues to be
some debate as to whether daily opioid use results in
sustainable pain relief for chronic nonmalignant pain
conditions [4]. Clinical studies of long-term opioid ad-
ministration show that although it can produce pro-
longed pain relief in many patients, some patients with
nonmalignant pain require escalating doses of opioids
over time to maintain opioid efficacy [5,6], suggesting
that opioid tolerance development is indeed a clinical
problem.

Opioid escalation can occur for a variety of reasons, in-
cluding underlying disease progression, addiction, and
pharmacologic tolerance. There are diagnostic tools to
identify disease progression, and there are guidelines to
identify and manage pain patients who might be drug-
seeking or have a history of substance abuse [7]. How-
ever, there are not yet any guidelines to identify patients
who may be poor candidates for long-term opioid treat-
ment because they are prone to rapid opioid tolerance
development that would make long-term pain relief un-
sustainable. Furthermore, there are currently no drugs
available to delay opioid tolerance. Therefore, the prob-
lem is two-fold. We need to identify important clinical
parameters that affect opioid tolerance development and,
in turn, find ways to use this information to pinpoint ef-
fective therapeutic targets for future drug development.
Age could be an important member of this set of
parameters.

It is widely observed in pain management that younger
patients seem to develop opioid tolerance more rapidly
than older patients. Although there have been numerous
studies of the effects of age on the pharmacokinetics of
opioids, potential age-related changes in clinical pharma-
codynamic tolerance to long-term opioids has never
been studied. Rather, the majority of clinical studies have
examined patients aged 18—80 years as a single group,
with the mean age usually in the 50- to 60-year range.

To determine whether opioid dose escalation and
long-term pain relief with extended opioid treatment dif-
fers significantly among patients in different age groups,
a recent retrospective study examined patients treated
for an extended period with long-acting opioids for non-
malignant pain [8]. Opioid dose escalation and visual
analog scale (VAS) scores were compared between

Page 2 of 12

patients less than 50 years old and patients older than
60 years. Significant differences were found; older
patients, regardless of gender or type of pain, escalated
their opioid use significantly less than younger patients
over the 2-year treatment period.

A study by Moulin et al [9] showed that a group of 46
patients with chronic nonneuropathic pain and an aver-
age age of 40 years had to take up to 60 mg oral mor-
phine twice a day to get sustainable pain relief. These
doses were much higher than those used in patients aged
60 years and older.

Age-dependent opioid analgesia and tolerance in
laboratory animals

Rats of varying ages have been evaluated in single-dose
studies to determine the effects of age on opioid pharma-
cokinetics and analgesic efficacy [10]. There also have
been studies of opioid tolerance in prenatal and early
postnatal animals [11-13]. Both types of studies have
suggested that opioid tolerance is age-dependent, yet no
study has systematically evaluated the rate of opioid tol-
erance development across an animal’s lifespan, from
early adolescence to advanced maturity. An early study
suggested that morphine tolerance after repeated daily
administration occurred more rapidly in young rats;
however, the oldest rats used in that study were 12 weeks
old [14]. In a study of daily morphine administration in
rats ranging in age from 3 weeks to 1 year, the time to
onset of tolerance increased dramatically as the rats
aged. This effect could not be explained by age-related
changes in the pharmacokinetics of morphine, suggesting
that cellular and molecular mechanisms of opioid recep-
tor signal transduction may be involved [15].

Conflicting evidence exists concerning whether toler-
ance develops to opiate-induced antinociception during
the first 2 postnatal weeks. Tolerance to the antinocicep-
tive effects of morphine does develop in rats within
15 days after birth, but it is masked by the rapid prolif-
eration of opiate receptors, which simultaneously en-
hance the antinociceptive potency of morphine [16]. The
dose-response curve for morphine-induced antinocicep-
tion in 9-day-old rat pups pretreated with morphine
(20 mg/kg) over 4 days is shifted to the right, showing
that repeated morphine administration can produce tol-
erance within the first 2 weeks after birth.

Likewise, it has been shown that 2-week-old rats de-
velop tolerance to continuous subcutaneous morphine
infusion within 72 hours [17]. Other studies have shown
that opioid tolerance develops within 8-10 days in young
adult rats [18,19]. However, there is some debate as to
how early a neonatal rat can develop opioid tolerance
(e.g. 9 versus 15 days after birth) [16,20].

Results from a study by Laferriére et al [21] indicated
that postnatal development did not affect the potency of
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fentanyl in 6- to 9-day-old rats. The fentanyl pump-
implanted animals were observed to develop tolerance to
fentanyl, and this tolerance was not affected by gender,
developmental changes, fentanyl distribution, or changes
in fentanyl metabolism. These results indicate that con-
tinuous administration of fentanyl via an osmotic mini-
pump can render normal neonatal rats tolerant to and
physically dependent on fentanyl within 72 hours [22].

Recently, Zissen et al [23] examined the development
of opioid tolerance by intermittent injection or continu-
ous infusion of morphine in postnatal 5- to 8- and 19- to
21-day-old rats and found that different dosages and de-
livery schedules affected morphine tolerance in an age-
dependent manner. These findings suggest that the dose
and frequency of opioid administration interact with age
in determining the development of tolerance.

Age-dependent opioid effects in cells

Age-dependent opioid effects have also been observed in
cultured neuronal cells. A recent study showed that dorsal
root ganglion (DRG) neurons cultured from 10-month-old
rats were more sensitive to long-term morphine treatment
than neurons from 3-month-old rats; in the neurons from
the older rats, lower doses of morphine (10 times lower)
and a shorter treatment period (33% shorter) were suffi-
cient to induce significant increases in the immunoreactiv-
ity of calcitonin gene-related peptide and substance P [24].
Although the relationship between this age-dependent
sensitivity to chronic morphine in cultured DRG neurons
and the rate of morphine tolerance development in whole
animals is unknown, the impact of aging on the effects of
opioids is apparent and significant.

Molecular and cellular mechanisms of the age-
dependency of opioid analgesia and tolerance
Mechanisms of opioid tolerance at the molecular and
cellular levels are complex. Many of them require a
modification of the expression and functions of signaling
molecules [25-27]. To explore the molecular and cellular
bases of the age-dependency of opioid analgesia and tol-
erance, we must first have a comprehensive understand-
ing of opioid receptor signaling systems (Figure 1), as
well as up-to-date knowledge of the mechanisms of opi-
oid tolerance at the molecular and cellular levels.

Having this knowledge enables us to address two im-
portant questions. First, what role does age play in the
mechanisms of opioid analgesia and tolerance? Second,
how do the development, growth, and aging processes
affect the molecular and cellular events described in the
previous section?

In response to the first question, evidence shows that de-
velopment and aging have a significant impact on almost
every aspect of the molecular and cellular mechanisms
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underlying opioid analgesia and tolerance (Figure 2). Some
of these effects are described below.

Opioid receptor signal transduction pathways

Decades of opioid research have led to the magnificent
discovery of endogenous opioid peptides and multiple
opioid receptors, which play the primary and essential
roles in opioid action. In humans and other mammals,
there exist at least four families of endogenous opioid
peptides. The members of each family are formed from
one of four large precursor proteins: prepro-opiomelano-
cortin, prepro-enkephalin, preprodynorphin, and prepro-
nociceptin. Through processes of cleavage by specific
peptidases and post-translational modification, a dozen
active opioid peptides are derived from the precursors
(Table 1). These endogenous opioid peptides play import-
ant roles in mediating and modulating the analgesic effect
of and tolerance to opioids administered exogenously.

Pharmacological, biochemical, and molecular cloning
studies have revealed that there are four different types
of opioid receptors: the §, 1, k, and opioid receptor-like
1 (ORL1) receptors. They all belong to the G protein—
coupled, seven-transmembrane receptor superfamily
(GPCR) and share significant sequence homology (more
than 60% identical at the amino-acid level) [28]. The §,
i, and K types are considered the classical opioid recep-
tors because they are the selective binding sites for com-
monly-used opioid drugs and mediate typical opioid
effects that can be reversed by the specific “pure” opioid
antagonist naloxone. In contrast, the ORL1 receptor
mediates atypical dual (opioid and anti-opioid) effects
that cannot be reversed by naloxone. Thus, the ORLI re-
ceptor can be seen as a divergent and atypical member
of the opioid receptor family. The selectivity of the four
types of opioid receptors for different endogenous opioid
peptides and exogenous opioid drugs is summarized in
Table 2.

Opioid receptors of all four types are coupled to the
inhibitory G protein G; or Go, which is in turn regulated
by RGS proteins. The analgesic effect of opioid agonists
is attributed to signal transduction through the G pro-
tein-mediated second messenger system initiated by the
binding of agonist to opioid receptor. Once an opioid
agonist binds to its specific receptor, the conformation of
the opioid receptor changes, and the coupled G;j,, pro-
tein is subsequently activated. The G, subunit switches
from a GDP-bound inactive state to a GTP-bound active
state and dissociates from the Gg, subunits. Activated G
subunits then interact with downstream effectors, which
further amplify the signal initiated by the opioid agonist
and opioid receptor. Those downstream actions include
the inhibition of adenylyl cyclase (AC) to reduce the pro-
duction of cyclic AMP (cAMP), the opening of potassium
channels, the inhibition of calcium channels, and the
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Figure 1 Opioid receptor signaling pathway. All four types of opioid receptor are coupled to the inhibitory G protein G; or G,, which in turn is
regulated by RGS proteins. The analgesic effect of opioid agonists is attributed to the signal transduction through the G protein-mediated second
messenger system initiated by the binding of an agonist to an opioid receptor. Once an opioid agonist binds to its specific receptor, the
conformation of the opioid receptor changes, and the coupled Gy, protein is subsequently activated. The G, subunit switches from a GDP-bound
inactive state to a GTP-bound active state and dissociates from the Gg, subunits. Activated G subunits then interact with downstream effectors,
which further amplify the signal initiated by the opioid agonist and opioid receptor. Those downstream actions include the inhibition of adenylyl

activation of mitogen-activated protein kinase (MAPK) and other kinases.

cyclase (AC) to reduce the production of cyclic AMP (cAMP), the opening of potassium channels, the inhibition of calcium channels, and the

activation of mitogen-activated protein kinase (MAPK)
and other kinases.

The agonist-bound opioid receptor goes through intern-
alization for signaling and recycling itself. Opioid receptor
internalization is assisted by RGS proteins [29]. The ter-
mination of opioid signaling results from the hydrolysis of
GTP by a GTPase; this process is accelerated by specific
RGS proteins, which return the G, subunit to its GDP-
bound inactive form. The processes of internalization, re-
cycling, and inactivation resets opioid receptors and G
proteins, readying them to transduce the next signal when
another opioid agonist binds to the receptor.

Evidence shows that all four types of opioid receptor are
involved in opioid analgesia and tolerance. Each of the four
types of opioid agonist produces analgesia (or hyperalgesia
in the case of nociceptin) and tolerance by binding to its re-
spective receptor. In addition, the multiple types of opioid
receptors interact with each other to enhance or attenuate
opioid analgesia and tolerance. For example, studies have
shown that morphine analgesia is greatly enhanced by acti-
vation of § or k opioid receptors [30] and that the ORL1
agonist nociceptin/orphanin FQ attenuates morphine anal-
gesia and accelerates morphine tolerance [31].

Age-dependent expression and function of endogenous
opioid peptides and multiple opioid receptors

It has been well documented that the expression and dis-
tribution of the endogenous opioid peptides—prepro-
enkephalin, prepro-endorphin, preprodynorphin, and pre-
pronociceptin—are age-related [32,33]. It has also been
shown that opioid receptors and ORL1 are differentially
expressed in different developmental stages and ages
[34,35]. During the postnatal preweaning period, there is a
progressive increase in the number of p receptors in the
whole brain, and this increase is correlated with an in-
crease in the antinociceptive efficacy of morphine (14/4).
Studies by Rahman et al [36]. showed that the numbers of
i, &, and k opioid receptor binding sites in the spinal cord
increase from 0 postnatal days, reach a peak at 7 postnatal
days, and then progressively decrease, reaching adult levels
at 56 postnatal days. Zhang and Pasternak [37] reported
that high-affinity x opioid receptor binding sites in the
spinal cord increase three-fold from 2 postnatal days to 14
postnatal days; the majority of this increase occurs on or
around 5 postnatal days. These findings indicate that there
are parallel changes in the numbers and/or affinity of opi-
oid receptors and the strength of opioid-induced analgesia



Zhao et al. Molecular Pain 2012, 10:38
http://www.molecularpain.com/content/10/1/38

Page 5 of 12

Adenylyl cyclase(AC)
®

and tolerance at the molecular and cellular levels are complex, and many o
signaling molecules. Aging has a significant impact on almost every aspect

internalization of epidermal growth factor (EGF) receptors and interleukin 2

affected by age during embryonic development and neuronal differentiatio

OOQOOOIOOQ ﬁn » !ooonouonnuuuuqoonu
LG ¥ % 3
.0.00.00.0: L: 5 g !: g 5 Llit:l{.tOOCOOOOC’QQUC‘QO‘lLOQQQOo..
Intracellular *ﬁ \‘P “—t CRK © PRC O
WV, Y

Figure 2 Molecular and cellular mechanisms of the age-dependency of opioid analgesia and tolerance. Mechanisms of opioid analgesia

and tolerance. ©® Endogenous opioid peptides and opioid receptors are differentially expressed in different developmental stages, and aging is
associated with changes in the number and/or affinity of opioid receptors and opioid receptor-like 1 (ORL1). @ The expression of B-arrestin,
which plays a prominent part in opioid receptor desensitization, is determined by neural differentiation and aging. The increased expression of 3-
arrestin is accompanied by a parallel increase in G protein-coupled receptor kinase (GRK) expression during prenatal development. ® The
phosphorylation of opioid receptors by GRK and the binding of B-arrestin initiate the internalization of the ligand-bound receptors. The

which implies that the same might be also true for opioid receptor systems. @ Aging affects the expression and function of the N-methyl-D-
aspartic acid (NMDA) receptor and its subunits—calmodulin (CaM) and protein kinase C (PKC) and its various isoforms—as well as other
neuropeptides known to have anti-opioid effects. ® The expression, regulation, and function of specific G protein signaling (RGS) members are
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over the first few postnatal weeks of life. Another group
found that aging is associated with an increased affinity
(decreased dissociation constant Kd) of the p opioid recep-
tors without a significant effect on the number of y recep-
tors [38].

However, controversy exists, as the study from Bardo
et al [39] shows that an alteration in the opiate system
during development does not necessarily produce a con-
comitant alteration in the behavioral efficacy of mor-
phine. This conclusion was drawn from the finding that
the long-term administration of morphine did not alter
the ligand binding of opioid receptors in certain areas of
the brain in rats 1 to 21 days of age.

A large body of evidence has shown that development
and age have a significant impact on the expression and
functional activities of opioid receptors and ORLI.
Table 3 summarizes the major findings.

Effect of age on opioid receptor phosphorylation and
desensitization in the development of opioid tolerance
The binding of an agonist to an opioid receptor induces
two events: the activation of the opioid signal transduc-
tion pathway and the modulation (including but not lim-
ited to phosphorylation and desensitization) of the
opioid receptor itself. Opioid receptor phosphorylation
and desensitization have been linked to the development



Zhao et al. Molecular Pain 2012, 10:38

http://www.molecularpain.com/content/10/1/38

Table 1 Endogenous opioid peptides and their precursors

Opioid Peptide

Precursor

B-Endorphin
Met-enkephalin
Leu-enkephalin
Octapeptide
Heptapeptide
Dynorphin 1-8
Dynorphin 1-17
a-Neoendorphin

B-Neoendorphin

Pro-opiomelanocortin
Pro-enkephalin
Pro-enkephalin
Pro-enkephalin
Pro-enkephalin
Pro-dynorphin
Pro-dynorphin
Pro-dynorphin
Pro-dynorphin

Nociceptin Prepro-nociceptin

Bocistatin Prepro-nociceptin

of opioid tolerance [40]. Continued exposure to an agon-
ist leads to the phosphorylation of opioid receptors by G
protein—coupled receptor kinases (GRKs). The phos-
phorylated receptor is then bound by B-arrestin, a mem-
ber of the arrestin family that can recognize both GRK
phosphorylation sites on the receptor and the activated
conformation of the receptor. The phosphorylation of
the opioid receptor and the binding of B-arrestin result
in the uncoupling of the opioid receptor from G
proteins, which leads to a desensitization of the opioid
receptor and a reduction of opioid agonist’s efficacy [41].

Among the members of the arrestin family, -arrestin 1
(i.e. arrestin 2) and B-arrestin 2 (i.e. arrestin 3) contribute
to the regulation of the majority of GPCRs. Long-term
morphine treatment of cells that express p-opioid receptor
(MOR) leads to the attenuation of p-arrestin 1 and f-
arrestin 2, which subsequently desensitize the activated

Table 2 Selectivity of Opioid receptors to the Endogenous
Opioid Peptides and Exogenous Opioid Drugs

Opioid Endogenous opioid Opioid drugs
receptor peptides
M-receptor B-endorphin morphine
enkephalin fentanyl
sufentanil
D-Ala2,MePhe4,Gly-ol5
(DAMGO)
&-receptor Met-enkephalin deltorphin
Leu-enkephalin [D-Pen2,D-Pen5]
enkephalin
(DPDPE)
K-receptor dynorphin A ethylketocyclazocine (EKC)
dynorphin B buprenorphine
pentazocine
U 50,488
ORL1-receptor nociceptin None

Page 6 of 12

receptors and facilitate the internalization of inactivated
receptors and the recycling of resensitized receptors back
to the cell surface [42]. Our understanding of these effects,
along with some other research findings, strongly suggest
that GRK and arrestin play essential roles in the processes
underlying MOR desensitization, which may contribute to
the development of opioid tolerance.

The immunodensities of GRK2, GRK6, and B-arrestin
2 in the prefrontal cortex were found to be significantly
lower in opiate addicts than in controls [43]. This finding
indicates that opioid tolerance is associated with a down-
regulation of brain MOR and a regulation of GRK 2/6
and B-arrestin 2.

It is generally believed that the efficiency of GPCR sig-
naling correlates with the concentration of receptors, G-
proteins, and effectors, whereas the rate of receptor
desensitization correlates with the concentration of rele-
vant GRKs and arrestins. GRK2 and GRK6 play import-
ant roles in the phosphorylation of G proteins and in the
regulation of opioid receptors. In human prefrontal cor-
tex, the immunodensities of GRK2/6 and p-arrestin 2 ap-
pear to decline significantly with aging (i.e. between the
ages of 16-87 y) [44].

The expression of arrestin 2, which plays a prominent
part in opioid receptor desensitization, is determined by
neural differentiation and aging. A study performed in rat
embryos detected a steady increase in arrestin 2 expression
during prenatal development. At early stages of prenatal
development, the concentrations of the two arrestin iso-
forms are similar. The increase in arrestin 2 is accompan-
ied by a parallel increase in GRK5 expression, whereas the
expression of other GRK subtypes changes very little [45].

Effects of age on opioid receptor internalization in opioid
tolerance
It is believed that the number of functional opioid receptors
on the cell membrane surface determines the magnitude of
an opioid’s effects, including analgesia. An orthodox hypoth-
esis is that binding with an agonist induces opioid receptor
internalization and downregulation, which reduce the num-
ber of available opioid receptors on the cell surface and,
therefore, reduce the effect of the opioid agonist and facili-
tate the development of tolerance. This notion has been
supported by plentiful data on opioid tolerance [46-48].
However, some recent studies have offered a revised
conception of the relationship between opioid receptor
internalization and opioid tolerance. This new model
suggests that the opioid receptor internalization actually
prevents or delays the development of opioid tolerance,
and that the effectiveness with which opioid agonists in-
duce p opioid—receptor internalization is inversely pro-
portional to their potency to induce tolerance. In vitro
data show that morphine is inefficient in inducing p opi-
oid—receptor internalization but is potent in producing
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Subfamily Members

Common features outside of RGS domain

RZ (or A) string GAIP/RGS19, RGSZ1/RGS20, RGSZ2/RGS17, Ret-RGS1

R4 (or B) RGST, RGS2, RGS3, RGS4, RGS5, RGS8, RGS13, RGS16,
RGS18

R7 (or Q) RGS6, RGS7, RGS9, RGS11

R12 (or D) RGS10, RGS12, RGS14

RA (or E) axin, conductin

GEF (or F) p115-RhoGEF, PDZ-RhoGEF, LARG

GRK (or G) GRK1, GRK2, GRK3, GRK4, GRK5, GRK6, GRK7

N-terminal cysteine

without specified domains or just an N-terminal amphipathic helix

a GGL (G-like) domain and a DEP domain
may contain PDZ, PTB, or RBD domains

GSK binding, B-catenin binding, PP2A homology, and dimerization
domains

DH and PH domains

G-protein receptor kinase domain and PH domain

tolerance. In contrast, the selective p agonist DAMGO
induces p receptor internalization efficiently and does
not produce tolerance readily [49].

The phosphorylation of opioid receptors by GRK and
the binding of P-arrestin initiate the internalization of
the ligand-bound receptors and a subsequent recycling
of the receptors back to the cell surface (80% of interna-
lized receptors are recycled from endosomes to the
plasma membrane by dephosphorylation). These findings
strongly support the idea that receptor internalization
reduces tolerance in vivo by facilitating the recycling and
resensitization of receptors.

However, this model is still in a very early stage of devel-
opment, and there are several facts that appear to contra-
dict it. For one, the timings of in vitro opioid receptor
internalization and in vivo opioid tolerance development
are not correlated at all. Furthermore, it has become clear
that the potency of a given opioid agonist to induce y opi-
oid-receptor internalization is not a fixed property; in-
stead, it is tissue-specific and cell-type—dependent. Recent
studies show that morphine, the most inefficient inducer
of p opioid receptor internalization in in vitro cell expres-
sion systems, can actually induce the rapid internalization
of a significant portion of u opioid receptors in striatum
neuronal cells [50] and in mouse periaqueductal grey mat-
ter (PAG) neurons [51].

Opioid receptor internalization is one of the most im-
portant events in opioid tolerance. Although there is no
direct evidence that the internalization of opioid recep-
tors is affected by age, some studies have shown that
the ligand-induced internalization of epidermal growth
factor (EGF) and interleukin 2 (IL2) receptors and cla-
thrin-associated endocytosis are age-dependent [52-54].
From this evidence, one could infer that internalization
might also occur in opioid receptor systems.

Effect of age on the expression and function of NMDA
receptor and other proteins that play important roles in
opioid tolerance

It has been demonstrated that MOR and NMDA are
colocalized in individual neurons in many areas of the

central nervous system [55-57]. The interaction involves
intracellular second messengers that mediate opioid ac-
tion, leading to analgesia and the development of toler-
ance. MOR activation initiates multiple cellular signaling
cascades that result in protein kinase C (PKC) y-subtype
translocation [58] and the inhibition of Ca** channels
[59]. In contrast, NMDA receptor activation is associated
with PKC activation and an increase in intracellular Ca®
" [60]. NMDA receptors attenuate opioid receptor func-
tion by facilitating Ca®* entry and PKC phosphorylation
of the Gj,o protein, resulting in opioid receptor—G pro-
tein uncoupling [61].

Uncoupling of the MOR-G protein, rather than recep-
tor internalization, has been implicated as a mechanism
for tolerance to morphine [62]. Inhibition of NMDA
receptors, which prevents or reduces MOR-G protein
uncoupling, may enhance opioid analgesia and delay the
development of tolerance [63,64].

In addition to NMDA receptors, other anti-opioid
systems have been discovered [65]. Several neuropep-
tides, including cholecystokinin (CCK), neuropeptide
FF (NPFF), and nociceptin (orphanin FQ), have a
pharmacological effect that negatively modulates the
opioid system. Prolactin-releasing peptide (PrRP) has
recently been identified as the natural agonist of
GPR10, which was previously considered an orphan
receptor. This study identified the PrRP-GPR10 sys-
tem as a potent negative modulator of the opioid sys-
tem, so the PrRP-GPR10 system may be involved in
the development of opioid tolerance and dependence.

Neurokinins and calcitonin gene-related peptide
(CGRP) are expressed in primary sensory afferents and
have thus been proposed to play important roles in noci-
ceptive sensation. Menard et al [66] investigated the ex-
pression of CGRP and its receptors in the dorsal horn of
the spinal cord during the development of tolerance to
continuous intrathecal administration of morphine. In
animals that developed opioid tolerance, there was a sig-
nificant increase in CGRP-like immunostaining and a de-
crease (30-45%) in [125I]human CGRP « binding in the
laminae I, II, and III of the dorsal horn of the spinal
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cord. These changes suggest that CGRP may play a role
in the development of opioid tolerance.

In addition, Powell et al [67] discovered that in rats
that were given repeated doses of morphine, coadminis-
tration of SR140333—a selective substance P receptor
(neurokinin-1) antagonist—augmented the acute effects
of morphine, prevented morphine tolerance, and
reversed established tolerance. These findings suggest
that the activity of neurokinin also contributes to the in-
duction of opioid analgesic tolerance.

Development and aging differentially regulate the ex-
pression and function of the NMDA receptor and its subu-
nits [44]. A study showed that NMDA antagonist was not
effective in blocking the development of morphine toler-
ance in 7-day-old rats, was partially effective in 14-day-old
rats, and was fully effective in 21-day-old or older rats
[68]. These data suggest that there is a transition age,
around the second postnatal week in the rat, at which
NMDA receptors begin to play a role in the development
of morphine tolerance. One possible explanation for opi-
oid tolerance in newborn rats is that other mechanisms,
such as NO production, activate the intracellular Ca** re-
lease and evoke the Ca®"-dependent second messenger
system. A second possibility is that channels besides the
NMDA receptors allow significant Ca®* production in the
infant CNS, thereby facilitating opiate action.

The morphine tolerance observed in newborn rats may
be mediated by metabotropic glutamate receptors
(mGluRs), because mGluRs are coupled to various second
messengers, including Ca>* cascades. The AMPA receptor
may also activate the Ca®*-dependent second messenger
systems in neural circuits involved in opiate tolerance in
newborn rats. A study showed that treatment with the se-
lective AMPA receptor antagonist NBQX or the group 1II
mGluR agonist DCG-1IV effectively suppressed the expres-
sion of morphine-induced tolerance and dependence in
infant rats. These effects were not age-dependent [68].

Spinal glutamate, nitric oxide, cyclooxygenase (COX),
and prostaglandin-related systems are all known to be acti-
vated by opioid-related analgesia. The enzymatic activity of
COX, and to a lesser extent nitric oxide, also contributes
to the development of spinal morphine tolerance. Other
neuropeptides known to have anti-opioid effects (CGRP,
substance P [SP], neuropeptide Y [NPY], galanin) have also
been shown to have age-dependent expression and activ-
ities. One study showed that CGRP-like immunoreactivity
was significantly increased in the primary afferents of the
spinal dorsal horn during the development of morphine
tolerance [24]. In addition, DRG neurons cultured from
10-month-old rats were more sensitive to morphine treat-
ment, in that lower concentrations and shorter treatment
periods could induce apparent increases in the number of
CGRP-and SP-IR neurons, suggesting that aging plays a
role in the responsiveness of DRG neurons to repeated
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morphine exposure. The greater sensitivity of morphine-
mediated CGRP and SP induction in cultured DRG neu-
rons from older rats suggests that morphine tolerance may
be more likely to develop in the elderly.

Calmodulin (CaM) plays an important role in opioid
receptor signaling. Age-induced changes in the CaM sys-
tem were observed by Hoskins et al [69]. These observa-
tions included the following differences: First, CaM
levels were lowest in young rats, higher in old rats, and
highest in mature rats. Second, Ca**-Mg>* ATPase activ-
ity was progressively higher in young, mature, and old
rats. Third, particulate protein kinase activity was pro-
gressively lower in young, mature, and old rats.

Development and aging differentially regulate the ex-
pression and function of PKC and its various isoforms,
as well as other protein kinases [70]. Taken together,
these findings make it plausible to hypothesize that age-
dependent changes in the expression and function of the
major factors are the molecular and cellular bases of
age-dependent opioid analgesia and tolerance.

Age-related differential expression and function of G
proteins and RGS proteins in opioid tolerance

RGS proteins are a family of cellular proteins that con-
tain a homologous RGS domain of approximately 120
amino acids in length. RGS proteins include GTPase-ac-
celerating protein (GAP) activity within their characteris-
tic RGS domain and various other receptor signaling-
related properties of their other functional domains.
Multiple RGS proteins have been shown to negatively
regulate G protein—mediated opioid signaling, facilitate
opioid receptor desensitization and internalization, and
affect the rate at which opioid tolerance develops [71].
RGS proteins specifically interact with G, subunits and
enhance the intrinsic GTPase activity of G, to accelerate
GTP hydrolysis, thereby facilitating the switch of G
from a GTP-bound active state to a GDP-bound inactive
state. It was not until recently that RGS proteins were
recognized as key players in opioid signaling and toler-
ance. An increasing number of studies show that specific
RGS proteins, especially GAIP/RGS19, RGS2, RGS4,
RGS8, and RGS9-2, play crucial roles in opioid receptor
signaling and opioid tolerance (Table 4) [72]. They not
only inactivate G protein, which terminates opioid ac-
tion, but also function as active components in opioid
receptor desensitization, internalization, recycling, and
degradation [73].

The expression and activities of inhibitory G proteins
that are coupled to opioid receptors are also age-
dependent [74]. Development and aging differentially
regulate G protein-mediated AC signaling; the activities of
adenylate cyclase, guanylate cyclase, cyclic AMP phospho-
diesterase, and cyclic GMP phosphodiesterase in the
frontal cortex and cerebellum show age-related changes
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Table 4 Effect of age on the expression and functional properties of multiple opioid receptors

Opioid receptor type Animal models and experimental means

Observed age-dependent expression and activities of opioid
receptors

ORL1

DAMGO and dihydromorphine binding assays in brains
of mice of various ages

DAMGO binding with light and heavy membranes of
rat brain

DAMGO binding in the spinal cord of rats of different
ages

Effect of opioid agonists on warm water—stimulated
tail-withdrawal in young (3 months) and old
(24 months) male rats

EM ICC with rat caudate-putamen nucleus

Quantitative autoradiography with opioid receptor
binding
in guinea pig brain

EM ICC with rat caudate-putamen nucleus

Agonists DSLET and DPDPE used to stimulate
high-affinity GTPase activity in young (4 weeks) and
old (16 weeks) guinea pig striatal membranes

Quantitative autoradiography with k opioid receptor
binding in guinea pig brain

IP injection of selective k opioid agonist U50,488 H in
young (6-8 weeks) and old (21-22 months) mice

Tested effect of opioid agonists on the warm water-
stimulated tail-withdrawal in young (3 months) and old
(21 months) male rats

In situ hybridization and autoradiography with human,

Bmax values and selectivity for -selective opioid ligands change as
a function of age

The subcellular distribution of opioid receptors changes with age

The Kd value for DAMGO s significantly higher in the aged rats
than in the young and mature rats, indicating a decreased affinity
of spinal opioid receptors for DAMGO

Old male rats are more sensitive to the antinociceptive effects of
opioids than young ones; the age-related differences in opioid
sensitivity are most apparent when lower-efficacy opioids and
higher nociceptive intensities are tested

The developmental expression of opioid receptors parallels
asymmetric synapse formation

With age, opioid receptor density decreases in the globus pallidus
and increases in the neocortex

Opioid receptor expression gradually increases from birth to
adulthood and correlates with synapse formation

Agonists can stimulate high-affinity GTPase activity in striatal
membranes from old guinea pigs but not from young ones,
indicating age-dependent opioid receptor-G protein functional
coupling

Expression of opioid receptors decreases with age

Qualitative sex differences in opioid analgesia in the mice are
dependent on age

Aged male rats are more sensitive than young ones to the
antinociceptive effects of opioid agonists

Differential expression of ORL1 found in developing and adult

rat, and mouse brains

brains

IP, intraperitoneal

during morphine treatment. Such changes are not due to
any age-related changes in the pharmacokinetics of mor-
phine [75].

The importance of development and age in determining
the expression and function of RGS genes and proteins
has just begun to draw attention. Recent studies show that
the expression, regulation, and function of specific RGS
members are indeed affected by development and age.
During embryonic development and neuronal differenti-
ation, the expression of RGS4 occurs in a highly dynamic
and transient manner in a small set of peripheral and cen-
tral neuronal precursor cells, and it is regulated by the
neural type-specific transcription factor Phox2b [76].
However, in the developing postnatal brain, RGS4 expres-
sion increases in the deep neuronal layers of the neocortex,
the CA1/2 area of the hippocampus, and the cerebellum
[77]. In the adult brain, RGS4 continues its dense expres-
sion in the neocortex, thalamus, and cerebellum, but not
in the hippocampus. The expressions of RGS2 and RGS7
are differentially regulated in the embryonic, early postna-
tal, and adult brain in a region-specific manner [77-79].

Interestingly, the alternative splicing pattern of RGS9 is
regulated by development and age. During embryonic and
early postnatal development, two RGS9 transcripts of ap-
proximately 1.4 kb and 1.8 kb are detected in whole brain.
After postnatal day 10, the expression of 1.8-kb transcript
increases progressively until adulthood and becomes con-
centrated in the striatum, while 1.4-kb transcript expres-
sion gradually decreases to undetectable levels [80].
Recently, immunochemical staining with specific RGS9
antibody RGS9 proteins (predominantly RGS9-2, as the
observed distributions showed) were found to be differen-
tially expressed in the nervous system, notably in the noci-
ceptive system, of young and old rats, which may shed
light on the mechanisms of age-dependent opioid anal-
gesia and tolerance [81]. The functions and activities of
RGS proteins may also be age-dependent. It is reported
that RGS1 can significantly increase GABAergic agonist-
stimulated GTPase activity in the cerebral cortex of 90-
day-old rats but cannot do so in 12-day-old rats [82].
These findings strongly support the hypothesis that age
plays an important part in RGS expression and function.
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RGS proteins also play roles in regulating neuronal de-
velopment, cell proliferation, differentiation, and plasti-
city [83-86]. In addition, the expression of certain RGS
proteins is found to be modulated by some age-related
diseases, such as Parkinson's and Alzheimer's diseases
[87,88]. Such age-associated changes in RGS protein ex-
pression may in turn alter the effects of opioids.

Age-related differences in opioid pharmacokinetics

One important issue regarding the age-dependence of opi-
oid tolerance and recovery is the difference in opioid drug
metabolism (pharmacokinetics) between younger and older
individuals. It has been well established that the rates of me-
tabolism, blood—brain transport, and clearance of opioids in
different age groups of animals and humans differ signifi-
cantly [89-91]. These differences substantially affect the
in vivo pharmacological effects of opioids. However, several
studies have demonstrated that the development of toler-
ance to the analgesic and hyperthermic effects of morphine
is not related to its pharmacokinetics in serum but may be
related to the modification of opioid receptor signal trans-
duction pathways in the CNS [92,93].

Conclusions

Age is an important physiological factor that influences
opioid drug action. The subject of opioid tolerance and
aging has drawn great attention and interest. To under-
stand the molecular mechanisms of the age-dependency
of opioid tolerance is important for both basic scientific
research and clinical practice. A thorough investigation
of the patterns of tolerance induced by various type-se-
lective opioids, as well as the differential expression and
functions (including internalization) of multiple opioid
receptors during opioid tolerance development, in ani-
mals of different ages may lead to new insights into the
pharmaceutical application of type-selective opioid drugs
for improving opioid analgesia and delaying tolerance
occurrence in chronic pain therapy. In addition to pro-
viding novel insights into the best opioid agonists to use
in various age groups of patients to avoid rapid tolerance
development, further defining the concept of age-
dependent tolerance will help to educate physicians who
treat with chronic pain patients of different ages. Cur-
rently, little attention is paid to the age of the patient
when clinicians decide whether to prescribe daily opioids
to patients with nonmalignant pain conditions. Upfront
discussions of the appropriate dosing of opioids in young
patients for chronic pain conditions can greatly benefit
from published data regarding the age-dependent
mechanisms of opioid tolerance. In addition, the appar-
ent age-dependency of opioid analgesia and tolerance
suggests that age should be included as a parameter in
studies of opioid analgesia and tolerance.
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