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Abstract

Background: The polypeptide hormone calcitonin is clinically well known for its ability to relieve neuropathic pain
such as spinal canal stenosis, diabetic neuropathy and complex regional pain syndrome. Mechanisms for its
analgesic effect, however, remain unclear. Here we investigated the mechanism of anti-hyperalgesic action of
calcitonin in a neuropathic pain model in rats.

Results: Subcutaneous injection of elcatonin, a synthetic derivative of eel calcitonin, relieved hyperalgesia induced
by chronic constriction injury (CCI). Real-time reverse transcriptase-polymerase chain reaction analysis revealed that
the CCI provoked the upregulation of tetrodotoxin (TTX)-sensitive Nav.1.3 mRNA and downregulation of
TTX-resistant Nav1.8 and Nav1.9 mRNA on the ipsilateral dorsal root ganglion (DRG), which would consequently
increase the excitability of peripheral nerves. These changes were reversed by elcatonin. In addition, the gene
expression of the calcitonin receptor and binding site of 125I-calcitonin was increased at the constricted peripheral
nerve tissue but not at the DRG. The anti-hyperalgesic effect and normalization of sodium channel mRNA by
elcatonin was parallel to the change of the calcitonin receptor expression. Elcatonin, however, did not affect the
sensitivity of nociception or gene expression of sodium channel, while it suppressed calcitonin receptor mRNA
under normal conditions.

Conclusions: These results suggest that the anti-hyperalgesic action of calcitonin on CCI rats could be attributable
to the normalization of the sodium channel expression, which might be exerted by an unknown signal produced
at the peripheral nerve tissue but not by DRG neurons through the activation of the calcitonin receptor. Calcitonin
signals were silent in the normal condition and nerve injury may be one of triggers for conversion of a silent to an
active signal.
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Background
Calcitonin is a polypeptide hormone released from the
thyroid gland that regulates the calcium homeostasis in
vertebrates [1-3] and is used clinically to treat hypercalce-
mia [4] and osteoporosis [5-7]. In addition, calcitonin has
been reported to relieve pain associated with post-
menopausal osteoporosis [8], and to ameliorate neuro-
pathic pain associated with lumbar spinal canal stenosis
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[9], diabetic neuropathy [10], reflex sympathetic dystrophy
[11] and post-herpetic neuralgia [12]. Recently, it was also
shown that calcitonin inhibits development of complex re-
gional pain syndrome after stroke [13].
Several lines of evidence suggest that the descending

serotonergic system is involved in the anti-hyperalgesic ef-
fect of calcitonin by modifying the expression of serotonin
receptors at the central terminals of primary C afferents in
ovariectomy-induced hyperalgesia in rats [14-16]. In con-
trast to the hyperalgesia associated with post-menopausal
states, mechanisms for the anti-hyperalgesic effect of calci-
tonin on neuropathic pain remain unclear. Moreover, the
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site of action of the calcitonin effect is still unidentified
and there is no report of calcitonin receptor (CTR) ex-
pression on DRG neurons or peripheral nerve tissues
under normal conditions.
An important role of voltage-gated sodium channels in

neuropathic pain states has been established in animal
models [17] and several studies exhibit causally linked
changes in sodium channel expression and modulation
that alters channel gating properties or current density in
nociceptor neurons [17]. Biophysical and pharmacological
studies identify the sodium channel isoforms Nav1.3,
Nav1.7, Nav1.8 and Nav1.9 as particularly important in
the pathophysiology of peripheral neuropathic pain [17].
In the present study, we first analyzed the anti-

hyperalgesic effects of repeated subcutaneous injections
of calcitonin on pain behaviors in chronic constriction
injury (CCI)-induced hyperalgesia in rats. Next, we
examined a peripheral mechanism for the action of cal-
citonin. To address this action, the expression of CTR
was analyzed on DRG and sciatic nerve tissues. Finally,
to confirm that the effect of calcitonin is specific to the
neuropathic pain state, the efficacy of calcitonin for the
treatment of pain behaviors and sodium channel ex-
pression under normal conditions was performed.

Results
Anti-hyperalgesic effect of calcitonin on pain behaviors in
CCI model rats
As shown in Figure 1, mechanical hypersensitivity and
thermal hyperalgesia developed over time on the ipsila-
teral hind paw in CCI model rats (Figure 1a,b). Five
times a week, elcatonin (eCT; a synthetic derivative of
eel calcitonin) (20 U/kg) was given subcutaneously start-
ing 11 or 12 days after surgery. This treatment regimen
gradually relieved the mechanical hypersensitivity and
thermal hyperalgesia, and these effects persisted for sev-
eral days after cessation of the drug (Figure 1a,b). The
effects of eCT were dose-dependent on both mechanical
hypersensitivity and thermal hyperalgesia in CCI model
rats (Figure 1c,d).

Change in Na+ channel transcription on ipsilateral L4-L5
DRG at 26 and 27 days after CCI operation
CCI significantly increased the transcription of Nav1.3 but
not Nav1.7 on the ipsilateral DRG, which are TTX-
sensitive Na+ channels, compared to the contralateral
intact DRG (Figure 2a,b). In contrast, CCI caused a
significant reduction in TTX-resistant Na+ channels,
Nav1.8 and Nav1.9 mRNA expression on the ipsilateral
DRG compared to the contralateral DRG (Figure 2c,d).
Subcutaneous administration of eCT (15 U/kg) five times
a week from 11 to 27 days post-surgery significantly
restored the CCI-induced changes in Nav1.3, Nav1.8 and
Nav1.9 transcription (Figure 2a,c,d), but did not affect the
expression of Nav1.7 mRNA (Figure 2b). Our results con-
firmed that sham operation did not affect the gene expres-
sion of these Na+ channel subtypes in the rat DRG (data
not shown). In addition, the same ineffectiveness was
observed in contralateral intact DRG (Figure 2e).

Calcitonin receptor expression on the sciatic nerve tissue
and L4-L5 DRG
To elucidate the site of action of calcitonin, we first exam-
ined CTR gene expression in sciatic nerve tissue and DRG
in sham-operated rats. Real-time reverse transcriptase-
polymerase chain reaction (RT-PCR) analysis revealed that
there was CTR gene expression in sciatic nerve tissue
(Figure 3) but not in the DRG (data not shown). Quantita-
tive study indicated that the amount of CTR mRNA on
sciatic nerve tissue was about 1/564 and 1/5 that on the
hypothalamus and spinal cord, respectively. Because cells
expressing CTR may be damaged and/or proliferating with
nerve injury, we examined a change in the expression of
CTR in the sciatic nerve after surgery.
The CCI operation induced a change in the time course

of CTR mRNA expression (Figure 3a). Immediately after
the nerve injury, CTR gene transcription decreased remark-
ably, recovered gradually by 11 days post-surgery, and then
increased after 14 days post-injury (Figure 3a), while the
CCI did not induce a change in gene expression of CTR in
the side contralateral to the injury (Figure 3b). The sham
operation slightly influenced the CTR gene expression
(Figure 3b). Immediately following the nerve injury, five
times injection of eCT (20 U/kg/day) induced an additional
downregulation of CTR mRNA on CCI site (Figure 3c).
The CCI-induced increase in CTR gene expression was
downregulated to the normal, i.e. intact level by eCT (20
U/kg) injected subcutaneously five times a week from 11 to
26 days post-surgery (Figure 3d).

Analysis of 125I-calcitonin binding site in the sciatic nerve
membrane obtained from sham-, CCI- or eCT-treated
CCI rats
Analysis of 125I-CT binding showed that there was spe-
cific binding to membranes taken from the sciatic nerve
tissue in sham and the CCI regions at 26 days after the
operation, which were saturated with increasing concen-
trations of ligand (Figure 4a,b). Scatchard analysis of
specific binding data presented in Figure 4a and b
showed that the binding site was single both in sham
and CCI regions. Unexpectedly, 125I-CT binding could
not be detected in the DRG (data not shown).
CCI significantly decreased the density of 125I-CT (0.2

nM) binding site in the membrane obtained from sciatic
nerve tissues at 3 days after operation (Figure 4c). This
change corresponded to the decrease in gene expression of
CTR at the CCI site (Figure 3a). In contrast, CCI increased
the density of 125I-CT (0.2 nM) binding sites in the sciatic
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Figure 1 Anti-hyperalgesic effect of eCT on pain behaviors in CCI rats. Mechanical hypersensitivity (a, c) and thermal hyperalgesia (b, d)
developed over time on the ipsilateral hind paw in CCI rats. Elcatonin (20 U/kg), given subcutaneously five times a week starting 12 or 11 days
after surgery, gradually improved mechanical hypersensitivity (a) or thermal hyperalgesia (b), respectively. Effects persisted for several days after
cessation of the drug. The effects of eCT were dose-dependent on mechanical hypersensitivity (c) and thermal hyperalgesia (d) in CCI rats. 14 (a)
or 12 (b, c, d) rats were used in each group. All RM-ANOVA revealed the significant differences (P < 0.01). Significant differences by Dunnett’s test
or t-test: **P < 0.01, as compared to the sham-vehicle or the pre-operation; #P < 0.05, ##P < 0.01, as compared to the CCI-vehicle.
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nerve membrane at 26 days post-surgery (Figure 4d). Injec-
tions of eCT (20 U/kg) between 11 and 26 days post-
surgery drastically decreased the density of 125I-CT binding
sites in the CCI rats to the sham level (Figure 4d). This al-
teration also corresponded to changes in CTR transcrip-
tion 26 days after surgery (Figure 3d).

Verification of sciatic CCI region as the site of calcitonin-
induced anti-hyperalgesic effect
To clarify our assumption that a sciatic CCI region is
the site of action of calcitonin, we conducted two behav-
ioral tests together with quantitative RT-PCR for Na+

channels and CTR (Figure 5a). In the period of lower ex-
pression of CTR at the CCI site (Experiment 1), the eCT
(20 U/kg, 5 times injection)-induced anti-hyperalgesic
effect was not detected (Figure 5b,d). In fact, CTR
mRNAs were decreased on the sciatic CCI segment in
Experiment 1 and much further reduced in eCT-treated
CCI rats (Figure 6a), but were not changed in the spinal
cord and hypothalamus (Figure 6b,c). In contrast, eCT
administration from 11 to 15 days after CCI resulted in
an anti-hyperalgesic effect (Figure 5c,e, Experiment 2).
Furthermore, the eCT-induced normalization of the Na+
channel gene expression on the ipsilateral L4-L5 DRG
disappeared in Experiment 1 (Figure 6d,e,f ).

Signal and effects of calcitonin under normal conditions
As shown in Figure 7a, injections of eCT (20 U/kg/day)
induced a downregulation of CTR mRNA on intact
sciatic nerves. However, eCT injections did not have an
effect on gene expression of Na+ channels in intact L4-
L5 DRG (Figure 2e). The behavioral study indicated that
eCT had no effect under normal conditions before the
CCI operation (Figure 7b). Surprisingly, the prophylactic
administration of eCT prevented the development of
hyperalgesia even though there was little CTR expres-
sion (Figure 7b).

Discussion
We demonstrated that eCT exhibits anti-hyperalgesic
effects on neuropathic pain by restoring the CCI-
induced abnormal gene expression of Na+ channels in
the ipsilateral DRG neurons through the activation of
CTR. CTR expression was drastically increased by CCI
and was confined to the constricted region. Unexpec-
tedly, CTR was expressed in peripheral nerve tissues,
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including Schwann cells, blood vessels, connective tissue,
and others, but not on DRG neurons. Though we
detected the more expression of CTR in spinal cord and
hypothalamus than peripheral nerve tissue, the anti-
hyperalgesic effect and normalization of Na+ channel
mRNA by eCT was parallel to the change of the CTR
mRNA expression in peripheral nerve tissues but not in
the spinal cord and hypothalamus. Therefore, our stud-
ies suggest that the eCT-induced recovery of the abnor-
mal expression of Na+ channel mRNA in DRG neurons
could be mediated by a “calcitonin signal” released as a
result of the activation of CTR to prevent the action of
unknown factor(s) from the injured peripheral tissues.
This might contribute to the anti-hyperalgesic effect of
calcitonin on neuropathic pain.
The downregulation of CTR expression is well known.

It has been reported that the stimulation of osteoclast by
calcitonin causes not only an inhibition of bone resorp-
tion via activation of protein kinase A [3], but also a de-
crease in 125I-calcitonin binding, which is related to the
amount of CTR mRNA [18]. Therefore, the downregula-
tion of CTR mRNA could be mediated by calcitonin it-
self or an unknown calcitonin-induced signal following
the activation of CTR. The downregulation of CTR most
likely controls the generation of the calcitonin signal.
Our results suggest the existence of a peripheral CTR-
mediated system that serves as a feedback mechanism to
regulate the levels of calcitonin signal. On the other
hand, eCT injections did not influence the CTR mRNA
expression in the spinal cord and hypothalamus, because
eCT could not pass through the blood brain barrier,
Calcitonin signal may also be induced under the nor-

mal conditions by eCT acting on the CTR in peripheral
nerve tissues, because eCT suppressed CTR mRNA in
the intact nerve tissue (Figure 7a). However, this signal
was thought to be non-functional based on the fact that
eCT had no influence on the expression of Na+ channels
(data not shown) or on the behavioral responses before
surgery (Figure 7b). As shown our speculation in
Figure 8a, the “silent” signaling pathway of CT will be
dependent on the unknown factor which induced the
abnormal expressions of Na+ channel. Therefore, the
calcitonin signal was presumed to be silent under nor-
mal conditions (Figure 8a); however, a nerve injury could
trigger the silent unknown factor to active. Application
of eCT activated the calcitonin signal which prevent the
activation of unknown factor, resulting in normalization
of Na+ channel expression (Figure 8b).
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A recent review shows that Nav1.3, Nav1.7, Nav1.8 and
Nav1.9 play pivotal roles in pain transmission [17]. Nav1.3
expression, a low threshold sodium channel, is upregulated
in adult rat DRG neurons by peripheral nerve injury [19,20].
In contrast, the expression of Nav1.8 and Nav1.9, high-
threshold TTX-resistant sodium channels, is significantly
attenuated in injured neurons [19,21,22]. These observations
suggest that the injured nerves become sensitive to small
membrane potential changes and could initiate spontaneous
spikes. Our results demonstrating the alteration of sodium
channel expression following CCI were consistent with pre-
vious reports [19-22]. Moreover, repeated administration of
eCT normalized the gene expression of Na+ channels in
CCI rats (Figure 2). This normalization of sodium channel
mRNA by eCT parallels the anti-hyperalgesic effect and the
change of the CTR mRNA expression in peripheral nerve
tissues. Accordingly, the anti-hyperalgesic action of calci-
tonin in CCI rats could function to normalize the sodium
channel expression, which was exerted by a calcitonin signal
produced through the CTR in peripheral nerve tissues but
not in DRG neurons.
Cellular localization of CTR in peripheral nerve tissues
and a factor related to calcitonin signalling has not been
identified. We tried to detect a specific band and signal by
immunohistochemistry and in situ hybridization, but we
could not. The reasons may be that it was unavailable to
get a specific anti-CTR antibody or CTR expression was
too low to detect under the condition we used. After nerve
injury, the induction of demyelination and proliferation of
Schwann cells is well known [23,24]. We, therefore,
assumed that the CTR was expressed in Schwann cells,
and the decrease or increase in the expression of CTR
level might contribute to the demyelination or prolifera-
tion of Schwann cells. Previous studies have shown that
glial cell line-derived neurotrophic factor (GDNF) or nerve
growth factor (NGF) regulates the activity of Na+ channels
or the Na+ current density in DRG neurons [25,26].
Schwann cells are known to produce these neurotrophic
factors [27,28]. The calcitonin-induced signal, via the acti-
vation of CTR in peripheral nerve tissue, could modify
those factors and consequently restore the abnormal ex-
pression of Na+ channels. Cellular distribution of CTR
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and factors related to calcitonin including GDNF and
NGF are under study.
Our previous studies demonstrate that hyperalgesia

observed in ovariectomized (OVX) rats, a model for osteo-
porosis, is attributed to the elimination or reduction of
serotonin receptors expressed at the primary C afferent
terminals in the spinal cord [14,29]. The change in sero-
tonin receptor expression is restored by repeated injection
of eCT [14,29]. Considering the drastic change in the level
of expression of serotonin receptors on DRG neurons in
OVX rats, calcitonin may produce an anti-hyperalgesic ef-
fect via CTR on peripheral nerve tissue.
Although eCT disappeared within 2 h from human

[30] and rat plasma (in house data) following an injec-
tion, subsequent injection of eCT gradually enhanced
the anti-hyperalgesic effect (Figure 1). In addition, the
anti-hyperalgesic effect was maintained for several days
after cessation of eCT administration (Figure 1). There-
fore, the calcitonin system might be sustained for several
days and the accumulation of signals probably increases
the strength of the anti-hyperalgesic effect.
In spite of the low levels of expression of CTR before

operation, the preventive injection of eCT inhibited the
development of hyperalgesia (Figure 7). In contrast, we
could not detect any anti-hyperalgesic effect when eCT in-
jection was performed at the acute phase after nerve injury
(Figure 5b and d). It could be speculated that sustained
CT signal before the surgery contributed the prevention of
hyperalgesia, while the level of CTR was significantly
decreased by nerve injury (Figure 5b and d).

Conclusions
Our study, for the first time, revealed that there appeared
to be a CTR-mediated system which might regulate the
excitability of primary afferents by activation of calcitonin-
induced signals via the calcitonin receptors to control the
sodium channel transcription in DRG neurons. We also
showed that this CTR-mediated system was silent under
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ANOVA revealed the significant differences (P < 0.01). Significant differences by Dunnett’s test: **P < 0.01,*P < 0.05, as compared to the CCI-vehicle.
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normal conditions but became active following nerve in-
jury, and this system exhibited to provide the negative
feedback. The accumulation and maintenance of the
calcitonin-induced signal and further analysis of the CTR-
mediated system in the peripheral nerve tissue may be one
of plausible strategies for alleviate neuropathic pain.

Methods
Animals and surgical procedure
All experiments performed were approved by the Institu-
tional Animal Care Committee of the Pharmaceutical Re-
search Center of Asahi Kasei Pharma Corporation and the
experimental procedures were conducted in accordance
with the Guiding Principles for the Care and Use of Ani-
mals recommended by the Physiological Society of Japan.
Male Sprague–Dawley rats (7 weeks-old; 230-370 g)

purchased from Charles River laboratory (Atsugi, Japan)
were used. The rats were individually housed in a room
in which the temperature was controlled to 23 ± 3°C and
humidity to 55 ± 10%, with a 12-h light–dark cycle and
free access to food and water.
The CCI model rats were made according to the

method described by Bennett and Xie [31] with a slight
modification. Briefly, under ether anesthesia, the right
sciatic nerve was exposed, and 4 loosely constrictive
ligatures, using braided silk 4-0 (Niccho Industry Co.
Ltd., Tokyo, Japan), were made around the sciatic nerve
at the mid-thigh level in an area 5 mm in length. The in-
cision was then closed with braided silk sutures (2-0;
Natsume Seisakusho Co. Ltd., Tokyo, Japan). In sham-
operated rats, the sciatic nerve was exposed without
ligation.

Drugs and treatments
Elcatonin (Asahi Kasei Pharma Corporation, Tokyo,
Japan), a synthetic derivative of eel calcitonin, was dis-
solved in 0.1 mM sodium acetate buffer (pH 5.5) with
0.9% sodium chloride and 0.02% bovine serum albumin,
and administered subcutaneously 5 times per week at a
dose of 1.5, 5, 15, 20 or 30 U/kg/day in a volume of
1.0 ml/kg.

Behavioral analysis
Thermal hyperalgesia was monitored before surgery.
Thermal hypersensitivity was tested according to the Har-
greaves procedure [32] using the plantar test (Ugo Basile,
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Varese, Italy). Briefly, animals were placed in a clear Plexi-
glas box and allowed to acclimatize. A constant intensity
radiant heat source was aimed at the midplantar area of
the hind paw. The time from initial heat source activation
until paw withdrawal was recorded. The cutoff time was
set for 22.5 s. Mechanical hyperalgesia was measured using
the Randall-Selitto procedure with an analgesic-meter
(Ugo Basile, Varese, Italy) which exerts a force (g) that
increases at a constant rate. The investigator confirmed the
effects of eCT by masking the animal conditions.

Real-time RT-PCR analysis
Rats were sacrificed by decapitation under ether anesthesia,
and the L4-L5 DRG, sciatic nerve, spinal cord and/or
hypothalamus were rapidly removed. The tissue samples
were immersed in 0.5 mL RNAlater (Ambion, Austin, TX),
and then stored at -80°C until use. RNA was extracted by a
single step using TRIzol (Invitrogen, Carlsbad, CA) and
chloroform. After centrifugation at 15000 rpm for 15 min,
the RNA-containing aqueous phase was precipitated in iso-
propanol. The RNA pellet was then washed once in 75%
ethanol and re-suspended in μL of RNase-free water. Total
RNA from each sample was extracted using Qiagen
RNeasy mini columns with DNase I (QIAGEN, Tokyo,
Japan) to reduce contamination of genomic DNA prior to
PCR analysis.
Nav1.8 and Nav1.9 probes and primers were designed

as Sleepers [22]. Nav1.3, CTR (both C1a and C1b) and
RPL19 probes and primer were designed by using Primer
Express (Applied Biosystems, Foster City, CA). BLAST
searches were performed to avoid sequence homology
with other genes. Commercially available pre-developed
TaqMan reagents (Applied Biosystems) were used for
Nav.1.7 (Rn00591020_m1) and Rodent GAPDH Control
Reagents (VIC Probe, 4308313). GAPDH or RPL19 was
used as an endogenous internal control to normalize.
Target genes were amplified by using specific primers
for Nav1.8 (forward: 50-TGGTCAACTGCGTGTGCAT-
30; reverse: 50-AATCAGAGCCTCGAAGGTGTAAA-30;
probe: 50-FAM-CCGAACTGATCTTCCAGAGAAAGTC
GAGTACGT- TAMRA-30), Nav1.9 (forward: 50-TGCCCT
ACCCACCTCACAAC-30; reverse: 50-CCGGGCTAGT
GAGCTGCTT-30; probe: 50-FAM-TICAGGCCGGTG
ACCTCCCTCC-TAMRA-30), Nav1.3 (forward: 50-CCAA
TAACACGGGCATCGA-30; reverse: 50-CACC0CCGCTG
GTGGTT-30; probe: 50-FAM-ATAAGCAAAGAGCTTAA
CTACCTT-30 (TaqMan MGB)), CTR (forward: 50-GCCC
TGACTACTTTCCGGACTT-30; reverse: 50-GGTGTCTA
AACCACTCTCCATTTTC-30; probe: 50-FAM-ACCCAA
CAGAAAAGGTTTCAAAATACTGCGA-TAMRA-30), RP
L19 (forward: 50-GACCCCAATGAAACCAACGA-30; Reverse:
50-TCAGGCCATCTTTGATCAGCTT-30; Probe: 50-FAM-CG
CCAATGCCAACTCTCGTCAACAG-TAMRA-30).
Primers for GAPDH and the others were used at a

final concentration of 100 and 900 nM, respectively,
whereas the probes were used at a final concentration of
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200 and 250 nM, respectively. Real-time RT-PCR was
performed with the TaqMan Onestep RT-PCR reaction
mix Reagent (Applied Biosystems). Amplification was
done in a 50-μl final volume under the following cycling
conditions: 30 min at 48°C, 10 min at 95°C and then 40
cycles of 95°C, for 15 s each, followed by 60°C for 1 min.
To determine levels of transcripts, the relative standard
curve method [33,34] was used. Standard curves were
constructed using serial dilutions of RNA from each tis-
sue. Standards and experimental conditions were ampli-
fied in duplicate [Additional file 1, 2, 3 and 4].

125I-calcitonin binding assay
Rats were sacrificed by decapitation under ether
anesthesia, and the DRG and sciatic nerve were rapidly
removed. The respective tissues from two rats were
pooled, homogenized in 4 ml of ice-cooled 10% sucrose,
and centrifuged at 1000×g for 10 min. The supernatant
was removed and further centrifuged at 31000×g for
20 min. The pellet was homogenized in 4 ml of ice-cold
50 mM Tris–HCl, pH 7.4, and centrifuged at 31000×g
for 20 min. The pellet was homogenized in the same
buffer. The suspension was then centrifuged as above,
and the final pellet was resuspended in the same buffer
and stored at -80°C until use. The membrane suspen-
sions were melted rapidly and added to ice-cold binding
buffer (50 mM Tris–HCl, pH 7.4, 1 mM EDTA) with
20 mg/ml bovine serum albumin. Each of the membrane
solutions was incubated in triplicate with 0.025, 0.05,
0.1, 0.2 or 0.4 nM 125I-calcitonin salmon (Peninsula La-
boratories, San Carlos, CA) at 25°C for 60 min (0.5 ml
of total volume per tube). Nonspecific binding was
defined with 2 μM unlabeled eCT. The binding reaction
was terminated by rapid filtration under vacuum
through 0.3% polyethyleneimine presoaked GF/C filters.
The filters were washed four times with 3.5 ml of the
binding buffer. Radioactivity was measured using a
gamma counter COBRA II (PerkinElmer, Waltham,
MA). Protein concentration was determined using a
BCA protein assay kit (PIERCE, Rockford, IL).

Statistical analysis
All results are presented as mean ± SEM. Differences were
considered statistically significant when p<0.05. Effects of
eCT in behavioral tests (Figure 1a,b,c,d and 7) were ana-
lyzed using two-way repeated measure analysis of variance
(RM-ANOVA). CCI-induced hyperalgesia were done by
one-way (Figure 1c and 1d) or two-way (Figure 1a,b and 7)
RM-ANOVA. Other multiple groups’ data were analyzed
by one-way or two-way ANOVA. Multiple and two
group’s comparisons were done using post hoc Dunnett’s
test and t-test, respectively. The calculation was done
using SAS software Version 8.2 (SAS Institute Japan Ltd.,
Tokyo, Japan).
Additional files

Additional file 1: A raw chart of real time RT-PCR (Nav1.8 mRNA on
L4-5 DRG).

Additional file 2: A standard curve of Nav1.8 mRNA on L4-5 DRG,
as determined by a raw chart (Additional file 1).

Additional file 3: A raw chart of real time RT-PCR (GAPDH mRNA
on L4-5 DRG).

Additional file 4: A standard curve of GAPDH mRNA on L4-5 DRG,
as determined by a raw chart (Additional file 3).
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