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Abstract

nerves.

Background: Peripheral nerve injuries often trigger a hypersensitivity to tactile stimulation. Behavioural studies
demonstrated efficient and side effect-free analgesia mediated by opioid receptors on peripheral sensory neurons.
However, mechanistic approaches addressing such opioid properties in painful neuropathies are lacking. Here we
investigated whether opioids can directly inhibit primary afferent neuron transmission of mechanical stimuli in
neuropathy. We analysed the mechanical thresholds, the firing rates and response latencies of sensory fibres to
mechanical stimulation of their cutaneous receptive fields.

Results: Two weeks following a chronic constriction injury of the saphenous nerve, mice developed a profound
mechanical hypersensitivity in the paw innervated by the damaged nerve. Using an in vitro skin-nerve preparation
we found no changes in the mechanical thresholds and latencies of sensory fibres from injured nerves. The firing
rates to mechanical stimulation were unchanged or reduced following injury. Importantly, p-opioid receptor agonist
[D-Ala® N-Me-Phe” Gly®]-ol-enkephalin (DAMGO) significantly elevated the mechanical thresholds of nociceptive AS
and C fibres. Furthermore, DAMGO substantially diminished the mechanically evoked discharges of C nociceptors in
injured nerves. These effects were blocked by DAMGO washout and pre-treatment with the selective p-opioid
receptor antagonist Cys*-Tyr*-Orn’-Pen’-amide. DAMGO did not alter the responses of sensory fibres in uninjured

Conclusions: Our findings suggest that behaviourally manifested neuropathy-induced mechanosensitivity does not
require a sensitised state of cutaneous nociceptors in damaged nerves. Yet, nerve injury renders nociceptors
sensitive to opioids. Prevention of action potential generation or propagation in nociceptors might represent a
cellular mechanism underlying peripheral opioid-mediated alleviation of mechanical hypersensitivity in neuropathy.
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Background

Mechanical hypersensitivity is a common consequence of
peripheral nerve damage (e.g. compression, stretch or am-
putation). It includes dynamic (pain in response to light
stroking) and static (pain in response to pressure) sub-
types, both found in patients suffering from neuropathic
pain [1,2]. Similarly, behavioural mechanosensitivity is
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often reported in animal models of peripheral neuropathic
pain [3]. Elucidating the underlying mechanisms requires
examination of the relationships between enhanced pain
intensity to mechanical stimuli and the function of pri-
mary afferent neurons.

Sensitisation to heat manifested by increased dis-
charges and lowered thresholds in high threshold pri-
mary afferent neurons (nociceptors) was frequently
found under inflammatory and neuropathic conditions
[4-7]. However, there are controversial data on mechan-
ical sensitisation. Following inflammation, nociceptors
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revealed increased firing or lowered mechanical thresh-
olds in some [8-10], but not in other reports [4,5,11-13].
Notably, only few studies examined mechanical sensitiv-
ity of cutaneous nociceptors following nerve trauma,
reporting higher discharges and unaltered, decreased or
increased thresholds [6,7,14,15].

Opioids are undoubtedly the most efficacious analge-
sics for severe postoperative and cancer pain. However,
their satisfactory control of neuropathic pain is limited
by distressing side effects. These include nausea, dys-
phoria, physical dependence and addiction mediated by
opioids via p-, 8- or k-opioid receptors in the central
nervous system (CNS) [16]. Interestingly, opioids can
decrease pain devoid of CNS adverse effects through
activation of opioid receptors on primary afferent neu-
rons in somatic inflammatory pain [17]. Moreover,
behavioural studies revealed that immune cell-derived
and exogenously applied opioids acting at their periph-
eral receptors alleviate mechanical hypersensitivity in
animal models of neuropathic pain [18-27]. Also, a
clinical pilot trial reported attenuation of neuropathic
pain after peripherally applied morphine in patients [28].
Despite substantial behavioural evidence on peripheral
opioid-mediated reduction of mechanical hypersensitiv-
ity following nerve damage, the underlying neuronal
mechanisms are unknown yet.

Our goal was to elucidate whether activation of periph-
eral p-opioid receptors can directly reduce neuropathy-
induced mechanical excitability of primary afferent neurons.
In a mouse model of neuropathic pain, a chronic constric-
tion injury (CCI) of the saphenous nerve, we examined the
fibres’ thresholds, firing rates and response latencies to
mechanical stimulation of their cutaneous receptive fields.

Results

In vivo mechanical hypersensitivity following injury of

the saphenous nerve

Two weeks after CCI of the saphenous nerve mice
developed a profound mechanical hypersensitivity. This
was manifested by significantly lower thresholds of both
the plantar and dorsal surface of hind paws innervated
by the damaged nerves as compared to the thresholds of
contralateral paws, of both hind paws in sham-operated
animals, and to the thresholds before injury (P < 0.05).
There were no significant differences in von Frey thresh-
olds in paws contralateral to the CCI and in hind paws
of sham-operated mice (P > 0.05; Figure 1). Thus, mech-
anical hypersensitivity developed in the saphenous nerve
territory in vivo.

The impact of nerve injury on peripheral sensory fibre
responses to mechanical stimulation

We investigated myelinated AP and AJ fibres, and
unmyelinated C fibres from injured (2 weeks after CCI)
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and uninjured saphenous nerves in an in vitro skin-
nerve preparation. Uninjured nerves comprised non-
operated and sham-operated nerves, 2 weeks after
operation (Figure 2, Figure 3, Figure 4, Table 1 and
Figure 5A). They were pooled, as we did not observe
significant differences between the two conditions in the
fibres’ conduction velocities, thresholds, latencies and
discharge rates to mechanical stimulation (P > 0.05; data
not shown).

First we classified sensory fibres based on their con-
duction velocity. Fibres conducting > 10 m/s were
assigned to AP, those conducting 1.2 — 10 m/s to Ad
and those with conduction velocities < 1.2 m/s were
classified as C fibres, according to Koltzenburg et al.
[29]. Conduction velocities of AP and A8 fibres were
slightly decreased in injured compared to uninjured
nerves (P < 0.05), while those of C fibres were not sig-
nificantly altered by the injury (P > 0.05; Figure 2A).

To examine the mechanosensitivity of sensory fibres,
we assessed their thresholds with calibrated von Frey
hairs applied to the fibres’ receptive fields. Additionally,
we evaluated the response properties of some AP, Ad
and C fibres to increasing mechanical stimuli evoked
by the nanomotor, a computer-controlled mechanical
stimulator. Based on the discharge pattern, AB fibres
were further divided into rapidly adapting mechanore-
ceptors (RAM) and slowly adapting mechanoreceptors
(SAM), whereas AJ fibres were divided into slowly
adapting A8 mechanonociceptors (AM) and rapidly
adapting down-hair (D-hair) fibres [13]. D-hair fibres are
also characterized by very low mechanical thresholds
(the majority already responds to the lowest von Frey
hair, i.e. ~ 0.007 g) and relatively large receptive fields
[29]. All C fibres tested displayed a slowly adapting
discharge pattern, their firing rate increased progres-
sively to increasing mechanical stimulation (nanomotor),
and they revealed mechanical thresholds in the range of
0.07 — 4.5 g, indicating they were mainly nociceptors.
In contrast, low-threshold C fibres were described to
respond to von Frey hairs of < 0.25 mN (or ~ 0.02 g) in
rats [30] or to very fine von Frey hairs in mice (0.07 mN
or ~ 0.007 g) [31]. The mechanical thresholds of AB, A
and C fibres were not significantly changed by the nerve
injury (P > 0.05; Figure 2B). Similarly, the thresholds of
the AP and A8 subpopulations did not significantly dif-
fer between uninjured and injured nerves: RAM (0.07 +
0.02 g [n = 18] vs. 0.07 £ 0.02 g [n = 15]), SAM (0.18 +
0.03 g [n = 23] vs. 0.15 = 0.04 g [n = 18]), D-hair
(0.007 + 0 g [n = 11] vs. 0.017 + 0.004 g [n = 21]) and
AM (0.36 + 0.05 g [n = 26] vs. 0.54 = 0.06 g [n = 41])
(P > 0.05).

There is evidence that some A nociceptive afferents
conduct in the AP fibre conduction velocity range. As
the sensory properties of A§ and A nociceptive neurons
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Figure 1 In vivo mechanical hypersensitivity following nerve injury. Measurements were performed with von Frey hairs applied to the
plantar (A) and dorsal (B) surfaces of hind paws, before and 2 weeks after CCl or sham operation on the saphenous nerve. *P < 0.05, compared
to thresholds before injury, thresholds of contralateral paws of CCl animals, and of both hind paws of sham-operated animals (2-way RM ANOVA,
Bonferroni t test). Data are expressed as means + SEM. N = 6 mice per group.
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seem comparable [32], we attempted to classify AB noci-
ceptive fibres based on a “high mechanical threshold”
that is within the range of A§ (AM) nociceptors (i.e. a
mean threshold of > 0.3 g; see above). Such threshold
(range 0.3 — 0.54 g) was revealed by 18 of 68 Ap fibres
(27%) in uninjured nerves, and by 10 of 61 AP fibres
(16%) in injured nerves presented in Figure 2. Within
the AP fibre subpopulations, similar thresholds were
revealed by 10 of 23 SAM fibres (44%) in uninjured
nerves, and by 4 of 18 SAM fibres (22%) in injured
nerves. We did not find “high threshold” RAM fibres
(except for 1 RAM fibre in uninjured nerve, which had a
threshold of 0.3 g). All remaining fibres had lower mech-
anical thresholds (range 0.007 — 0.13 g). The proportion
of “high-threshold” AP fibres was not significantly differ-
ent between injured and uninjured nerves (P > 0.05).
The 27% of “high-threshold” AP fibres we estimated in
uninjured nerves is comparable to a result of a previous
study reporting ~ 25% of A fibre nociceptors conducting
in the AP fibre velocity range in the naive mouse saphe-
nous nerve ([29]; see also [32]).

Next, we assessed the latency and the discharge rate of
each fibre type to mechanical stimulation with the nano-
motor. The relationship between the latency and the
mechanical stimulus strength was very characteristic for
fibre types. In uninjured nerves, rapidly adapting RAM
and D-hair fibres had very short latencies, and the short-
est were found at the lowest mechanical stimuli. The
latencies of these fibres increased with increasing mech-
anical stimuli (Figure 3A,C), possibly as a result of a
desensitisation to repetitive stimulation, as discussed
earlier [13]. By contrast, mechanical latencies of slowly
adapting SAM, AM, and C fibres were initially very
long, but shortened to a plateau as stimulus strength

increased. They had the shortest latencies at higher
mechanical stimulations (Figure 3B,D,E), in line with
the study by Milenkovic et al. [13]. There were no sig-
nificant differences in mechanical latencies of RAM,
SAM, D-hair, AM and C fibres between uninjured and
injured nerves (P > 0.05; Figure 3).

Rapidly and slowly adapting fibre types also displayed
characteristic discharge rates. In uninjured nerves, RAM
and D-hair fibres had low discharge rates, slightly in-
creasing with higher mechanical stimuli (Figure 4A,C).
In contrast, SAM, AM and C fibres displayed a clear in-
crease in discharge rates with increasing stimulus
strength (Figure 4B,D,E), although the discharge rates of
SAM fibres tended to decrease at the highest mechanical
intensities (Figure 4B). The overall lower discharge rates
of rapidly adapting compared to slowly adapting fibres
results from measuring the total number of action poten-
tials per a 10 s ramp-and-hold stimulus (see methods).
Rapidly adapting fibres respond solely to the (shorter-
lasting) ramp phase of the stimulus, whereas slowly
adapting fibres respond to the (longer-lasting) hold
phase [13].

Interestingly, although all fibre types in injured nerves
displayed a similar discharge characteristic, the injury
differentially affected the frequency of their discharges.
Thus, the discharge rates significantly dropped following
injury at higher mechanical displacements (384 pm and
768 um) in SAM (P < 0.05; Figure 4B), and even more
evidently in AM fibres (at 96 pm, 192 pm, 384 pm
and 768 pum; P < 0.05; Figure 4D). The discharge rates
tended to decrease also in C fibres albeit not signifi-
cantly (P > 0.05; Figure 4E). RAM and D-hair fibres
revealed no significant differences in their discharge
rates following injury (P > 0.05; Figure 4A,C).
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Figure 2 Conduction velocity and mechanical thresholds of sensory fibres following nerve injury. (A) Conduction velocities of A and AS,
but not of C fibres, were slightly decreased in injured nerves (*P < 0.05 and P > 0.05, respectively; Mann-Whitney test). (B) Mechanical von
Frey thresholds of sensory fibres were not altered by nerve injury (P > 0.05; Mann-Whitney test). In uninjured nerves, the number of fibres from
sham-operated and nonoperated nerves is as follows: AB fibres (18 and 50), Ad fibres (12 and 53), and C fibres (5 and 14). All data are expressed
as means + SEM. N, number of fibres.
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Collectively, nerve injury slightly lowered the conduc-
tion velocities of myelinated AP and AS fibres. However,
it did not affect the mechanical thresholds and latencies
of any fibres, while the firing rates of SAM and AM
fibres were reduced. This indicates that sensory fibres
in injured nerves were not sensitised to mechanical
stimuli with respect to their thresholds, latencies and
discharge rates.

p-Opioid elevates mechanical thresholds of cutaneous Ad
and C nociceptors in injured nerves

We then investigated the effect of p-opioid receptor
agonist [D-Ala®,N-Me-Phe*Gly®]-ol-enkephalin (DAMGO;
100 pM) on mechanical von Frey thresholds of the fibres.
This dose was the most effective (of 1 — 500 uM) in our
pilot experiments. Analysis of all fibres tested with
DAMGO in uninjured nerves revealed no overall statisti-
cally significant differences in the mechanical thresholds
of AP, AS and C fibres after DAMGO application com-
pared to the baseline thresholds (P > 0.05; see “All fibres”
in Table 1). In contrast, analysis of all fibres tested with

DAMGO in injured nerves revealed a statistically signifi-
cant elevation in mechanical thresholds of A8 and C
fibres (P < 0.05), but not of A fibres (P > 0.05), follow-
ing DAMGO application (see “All fibres” in Table 1).
Among all fibres tested we identified fibres that
responded with increased thresholds by at least one von
Frey hair force following DAMGO application. This was
the lowest change we could measure. Due to the loga-
rithmic scale of the von Frey hairs’ force, such change
represents a nearly 2-fold or higher increase in the
mechanical thresholds. Possible subtle changes were
therefore not detected. Fibres which did not respond
were considered DAMGO-nonresponders (Table 1).
DAMGO did not decrease the fibres’ thresholds. In unin-
jured nerves, very few AP (~ 3%), AS (~ 6%) and C fibres
(~ 15%) revealed elevated thresholds by DAMGO. In
sharp contrast, ~ 30% of Ad and ~ 46% of C fibres,
but none of Ap fibres, responded to DAMGO with ele-
vated thresholds in injured nerves. The 28 DAMGO-
responding Ad fibres in injured nerves had a mean
mechanical threshold of 0.38 + 0.06 g (range 0.04 —
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Figure 3 Mechanical latency of sensory fibres following nerve injury. Latencies of RAM and SAM (AR), D-hair and AM (Ad), and C fibres to
nanomotor stimulation were not significantly altered by nerve injury (P > 0.05; 2-way RM ANOVA) (A-E). In uninjured nerves, the number of
fibres from sham-operated and nonoperated nerves is as follows: RAM (4 and 14), SAM (12 and 11), D-hair (4 and 7), AM (8 and 18), and C fibres
(4 and 7). Data are expressed as means + SEM. N, number of fibres.
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1.2 g), indicating they were AM nociceptors (Figure 5A).
The number of DAMGO-responding Ad and C fibres
was significantly higher following nerve injury (P < 0.05;
Figure 5A).

Therefore, the receptor specificity of the effect was
investigated in DAMGO-responding A8 and C fibres
in injured nerves (Figure 5B). We found that the ele-
vated von Frey thresholds of A8 and C fibres follow-
ing DAMGO application (P < 0.05) were reversed by
DAMGO washout (P < 0.05), and prevented by pre-
treatment of the fibres’ receptive fields with the selective
u-opioid receptor antagonist Cys>-Tyr>-Orn’-Pen’-
amide (CTOP; 100 pM) (P < 0.05). The thresholds after

washout or pre-treatment with CTOP were not signifi-
cantly different from baseline thresholds (P > 0.05;
Figure 5B). All A$ fibres in Figure 5B responded
throughout the static phase of the nanomotor stimula-
tion (i.e. were slowly adapting) and had localized recep-
tive fields, classifying them as AM nociceptors. D-hair
fibres did not respond to DAMGO. CTOP (100 pM)
alone did not significantly change the thresholds of A8
(0.52 + 0.1 g before and after CTOP; n = 11) and C
fibres (0.64 + 0.1 g before vs. 0.61 + 0.1 g after CTOP;
n = 10) (P > 0.05), tested in a separate group of fibres in
injured nerves. Likewise, control buffer (100 ul) did not
significantly alter the thresholds of A8 (0.45 + 0.09 g
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Figure 4 Discharges of sensory fibres to mechanical stimulation following nerve injury. Discharge rates to nanomotor stimulation were
not significantly altered in RAM (ARB), D-hair (AS) and C fibres (P > 0.05; 2-way RM ANOVA) (A, C, E), but were diminished in SAM (AB) and AM
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number of fibres from sham-operated and nonoperated nerves is the same as in Figure 3. All data are expressed as means £ SEM. N, number
of fibres.
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before vs. 0.46 + 0.09 g after buffer; n = 32) and C fibres
(0.79 £ 0.2 g before vs. 0.8 + 0.19 g after buffer; n = 11)
(P > 0.05). Together, these results clearly show that
DAMGO activates p-opioid receptors in cutaneous C
and A8 (AM) nociceptors, and elevates their mechanical
thresholds following nerve injury.

p-Opioid diminishes discharges to mechanical stimulation
in C nociceptors in injured nerves

DAMGO (100 pM) did not significantly change the
mechanical latencies of RAM, SAM, D-hair, AM and C

fibres in uninjured nerves (P > 0.05; data not shown),
nor did it affect the latencies of RAM, SAM and D-hair
fibres in injured nerves (P > 0.05; Figure 6A-C). To find
out whether the effects of DAMGO on von Frey thresh-
olds of AM and C fibres in injured nerves correlate with
possible effects on latencies and discharges, we analysed
the data from all AM and C fibres tested, and separately
only from AM and C fibres in which DAMGO elevated
the thresholds. This was not necessary for RAM and
SAM fibres, because DAMGO did not alter their thresh-
olds (see AP fibres in Table 1 and Figure 5A), similar to
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Table 1 Effects of DAMGO on mechanical thresholds of sensory fibres in uninjured and injured nerves

Fibre Group Uninjured nerves Injured nerves

type Numbers Baseline (g) DAMGO (g) Numbers Baseline (g) DAMGO (g)

AB All fibres n =68 0.14 + 0.02 0.15 + 0.02 n =46 011+ 002 011 +002
DAMGO-responders n=2 022 +0.09 042 +0.12 n=20 - -
DAMGO-nonresponders n =66 0.14 £ 0.02 0.14 + 0.02 n=46 0.11 £ 0.02 0.11 £ 0.02

Ad All fibres n =065 0.35 + 0.05 0.38 = 0.05 n=93 040 + 0.04 065 + 0.08 *
DAMGO-responders n=4 025+ 0.11 069 +0.13 n=28 0.38 £ 0.06 119+ 023
DAMGO-nonresponders n=6l 0.35 + 0.05 0.35 + 0.05 n =065 044 + 0.07 044 + 0.07

C All fibres n=19 061 +0.14 072 +0.17 n=39 0.64 + 0.09 1.03+0.18*
DAMGO-responders n=3 098 + 0.15 1.69 + 040 n=18 070 £ 013 1.56 + 0.31
DAMGO-nonresponders n=16 0.54 =+ 0.15 0.54 £ 0.15 n=21 059+ 0.12 059+ 0.12

DAMGO was applied at a concentration of 100 pM. N represents the number of fibres, and g refers to the fibre thresholds. *P < 0.05, compared to the respective
baseline thresholds (Wilcoxon test). No statistical evaluation was performed for DAMGO-responders or DAMGO-nonresponders in uninjured or injured nerves. In
uninjured nerves, the number of fibres from sham-operated and nonoperated nerves is the same as in Figure 2. Data are expressed as means + SEM.

D-hair fibres (see above). Of 26 AM fibres tested with  thresholds after DAMGO (0.66 + 0.1 g before vs. 1.58 +
the nanomotor (Figure 6D), 7 AM fibres had elevated 0.4 g after DAMGO). Nevertheless, the latencies of AM
von Frey thresholds after DAMGO (0.47 + 0.1 g before and C fibres were unaltered by DAMGO (P > 0.05),
vs. 1.05 + 0.3 g after DAMGO). Of 25 C fibres tested regardless whether the data were analysed from all fibres
(Figure 6E), 10 C fibres had increased mechanical tested (Figure 6D,E) or only from fibres in which
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Figure 5 Effects of DAMGO on mechanical thresholds of sensory fibres following nerve injury. (A) Percentages of DAMGO-responding
fibres in uninjured and injured nerves. The number of AS and C, but not of AR, fibres in which DAMGO (100 pM) increased von Frey thresholds
was significantly higher in injured compared to uninjured nerves (P < 0.05; Fisher exact test for C fibres, and chi-square test for AB and AS fibres;
calculated on raw data). In uninjured nerves, the number of fibres from sham-operated and nonoperated nerves is the same as in Figure 2. (B)
Elevation of mechanical thresholds of A and C fibres in injured nerves by DAMGO (100 uM), and its blockade by DAMGO washout or
pre-treatment with p-opioid receptor antagonist CTOP (100 uM). All AS fibres were classified as AM nociceptors. *P < 0.05, compared to all other
conditions (1-way RM ANOVA, Bonferroni t test for A fibres, and 1-way RM ANOVA on ranks, Tukey test for C fibres). Data are expressed as
means + SEM. N, number of fibres.
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Data are expressed as means + SEM. N, number of fibres.

DAMGO elevated the thresholds (data not shown).
There were also no significant effects of control buffer
in injured nerves in all fibre types (P > 0.05; data
not shown).

The discharge rates were evaluated analogously in
the same fibres. DAMGO did not affect the discharge
rates of any fibres in uninjured nerves (P > 0.05; data
not shown). It did not significantly modify the dis-
charge rates of RAM, SAM, D-hair and AM fibres in
injured nerves either (P > 0.05; Figure 7A-D). There was
a tendency to lower firing rates of AM fibres with ele-
vated thresholds (n = 7; see above), although the effect
was not significant (P > 0.05; Figure 8). Control buffer

had no effect on the discharge rates of AM fibres (P >
0.05; Figure 8).

In contrast, C fibre discharge rates were significantly
reduced by DAMGO (at 192 pm, 384 pm and 768 pm;
P < 0.05; Figure 7E). Apparently, this effect was attribu-
ted to C fibres in which DAMGO elevated von Frey
thresholds (n =10; see above) because a separate analysis
of only these fibres showed robustly diminished dis-
charge rates following DAMGO at the majority of dis-
placements (48 pm, 96 um, 192 pm, 384 um and
768 um; P < 0.05; Figure 9A). The discharge rates of C
fibres returned to baseline following DAMGO washout
(P > 0.05; data not shown). The data after washout were
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Figure 7 Effects of DAMGO on discharges of sensory fibres in injured nerves. Baseline discharge rates of AR (RAM, SAM) and Ad (D-hair,
AM) fibres to nanomotor stimulation were not significantly altered by DAMGO (100 uM) (P > 0.05; 2-way RM ANOVA) (A-D). DAMGO significantly
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evaluated in 7 of 10 C fibres depicted in Figure 9A
(lower panel), and it was not possible to run the nano-
motor a fourth time to assess the effect of pre-treatment
with CTODP, likely because of multiple repetitive stimula-
tions (see methods).

Therefore, the effect of CTOP was tested in 6 (of
total 11) additional C fibres at only one displacement
(384 pm; Figure 9B). The DAMGO-induced decrease in
the discharge rates of these C fibres (P < 0.05) was
reversed by DAMGO washout (P < 0.05) and pre-
vented by CTOP (P < 0.05). The effects of washout and
CTOP were not significantly different from the baseline
(P > 0.05; Figure 9B). CTOP (100 uM) alone did not

significantly change the discharges of C fibres (38.7 +
6.44 before vs. 33.8 + 6.38 after CTOP; n = 10) (P >
0.05), tested in a separate group of fibres in injured
nerves, at the 384 um displacement. Control buffer had
no effect on the discharge rates of C fibres (Figure 9A)
and of RAM, SAM and D-hair fibres (data not shown)
in injured nerves (P > 0.05). Together, DAMGO did not
affect the mechanical latencies of sensory fibres, but it
diminished the firing of C fibres in damaged nerves.

Discussion
Our findings suggest that primary sensory fibres are
not overtly sensitised to mechanical stimuli following
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neuropathy. However, nerve injury renders nociceptors
responsive to p-opioid receptor agonist. Inhibition of ac-
tion potential generation or propagation in nociceptors
might represent a possible mechanism that underlies
peripheral opioid-mediated alleviation of mechanical
hypersensitivity in neuropathic conditions.

Nerve injury and mechanical sensitivity of peripheral
sensory fibres
The primary afferents we tested were most likely spared
because the fibres do not fully regenerate 2 weeks after
nerve damage [33]. Reduction in the conduction veloci-
ties of AP and A9, but not C fibres, in injured nerves
suggests that we were recording from A fibres with mye-
lin damage, observed in neuropathy [34]. Earlier studies
found a decreased conduction velocity of C or AS fibres
following CCI of the sciatic nerve [15,35], or no changes
after spinal nerve ligation [7]. A variable degree of the
injury defined, for example, by the ligature tightness
around the nerves might account for these differences.
We did not detect changes in the mechanical thresh-
olds and latencies of any fibre type following CCI. Inter-
estingly, the discharges of SAM and AM fibres were
substantially decreased, and there was a tendency to
such effect in C nociceptors from injured nerves. This
was probably not related to the repetitive stimulation
per se because we did not find such changes in RAM
and D-hair fibres. In contrast to our findings, micro-
neurographic studies in patients with neuropathic pain
of diverse aetiology reported reduced mechanical thresh-
olds of C fibres, although there was no direct compari-
son to control patients, and data are based on
recordings from a small number of fibres in few patients
[36-38]. In animal models of diabetic neuropathy, Ad
fibres displayed decreased thresholds and increased dis-
charges to mechanical stimulation, whereas C fibres
responded with enhanced firing but unaltered thresholds

[39-42]. In models of traumatic neuropathy, a spinal
nerve ligation and saphenous nerve transection reduced
the thresholds or increased the firing of C or Ad fibres
to mechanical stimuli [6,7]. Conversely, C fibres revealed
elevated mechanical thresholds after CCI of the saphe-
nous nerve [15]. Similar to our results, unchanged C and
A nociceptor thresholds or lower SAM fibre discharges
were reported following nerve transection or partial
ligation [6,14]. Collectively, the diversity of neuropathic
conditions makes it difficult to draw a clear conclusion
on nociceptor mechanosensitivity. It appears, however,
that traumatic neuropathy does not overtly sensitise
skin-innervating nociceptors to mechanical stimulation,
in line with our findings.

Nevertheless, it is possible that mechanical sensitisa-
tion occurred in a different form (e.g. enhanced after-
discharges) [39] and/or in a subset of sensory afferents
that we did not identify (see for example [43]). It also
could arise in nociceptors from neighbouring uninjured
nerves [44] or could be acquired by previously mechan-
oinsensitive afferents [45]. The latter fibres could not
be tested in our experiments because mechanical rod
probing as a search stimulus prevented their inclusion.

Conversely, it is likely that central sensitisation is more
relevant to neuropathy-induced mechanical hypersensi-
tivity in vivo [46]. It can be triggered by spontaneous ec-
topic activity in nociceptive afferents [7,44,47]. We
observed spontaneous activity in primary afferent noci-
ceptors, however, we hardly detected cutaneous recep-
tive fields of these fibres, suggesting that it originated at
the nerve injury site, as reported previously [47,48].
Moreover, nerve damage reduces primary afferent-
evoked inhibitory (GABA) postsynaptic currents [49].
Together, even if primary nociceptive fibres in injured
nerves are not sensitised to mechanical stimuli, the
enhanced central responses to peripheral nociceptive
input could result in an augmented perception of mech-
anical stimulation in vivo.
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Peripheral p-opioid receptors and mechanical sensitivity
of cutaneous nociceptors following nerve injury

We demonstrate that DAMGO applied on cutaneous re-
ceptive fields substantially elevated the mechanical
thresholds of A§ (AM) and C nociceptors and dimin-
ished the firing rate of C fibres in injured nerves. The
effects of DAMGO were reversed by its washout and
were prevented by pre-application of CTOP, confirming
specific actions through p-opioid receptors. Whereas
hypersensitivity to innocuous dynamic mechanical stim-
uli (“allodynia”) is proposed to be mediated by large
myelinated afferents [50] and/or low-threshold C mech-
anoreceptors [31], responses to static pressure stimuli
(static mechanical hyperalgesia) seem to be mediated by

primary A and/or C afferents in animals [51,52] and
humans [1] under neuropathic pain conditions, suggest-
ing possible clinical implication of our findings.
DAMGO elevated the mechanical thresholds in 30 —
46% of A8 and C fibres in injured nerves. This corre-
sponds with the percentage of DRG neurons expressing
p-opioid receptor protein [19]. In line with this, DRG
neurons that did not respond to DAMGO in patch
clamp recordings exhibited little or no p-opioid receptor
mRNA [53]. Thus, fibres in which DAMGO did not
increase thresholds in our study likely represent neurons
that do not express p-receptors. Furthermore, our
results revealed a correlation between DAMGO-induced
elevated mechanical thresholds and decreased discharge
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rates in case of C fibres, but not AM fibres. The lack of
a significant change in the discharge rate of AM fibres
might be related to the relatively high response variabil-
ity (Figure 8). Alternatively, the effects of DAMGO on
the thresholds might be not predictive for its actions on
the firing of AM nociceptors. Following inflammation or
irradiation of the skin, opioids also more efficiently sup-
pressed the firing of C than AS$ fibres [10,54]. Further-
more, we did not observe significant alterations in the
responses of low threshold D-hair and AB (RAM and
SAM) fibres after DAMGO application. Similarly, mor-
phine applied on the spinal cord attenuated C fibre-, but
not Ap fibre-evoked spinal neuron responses after spinal
nerve ligation [55].

In uninjured nerves, very few AP, A§ and C fibres had
increased mechanical thresholds and none had altered
latencies and discharges following DAMGO application.
This is in agreement with previous recordings in naive
nerves [10,54]. Also, in vivo behavioural studies reported
absence [18,20] or very week [25] antinociceptive effects
of opioids injected into contralateral, uninjured paws of
animals with neuropathy. In fact, there is substantial
evidence that peripheral analgesic effects of opioids
are significantly more pronounced in injured than in
uninjured tissue, which was most extensively studied in
inflammation [17,56]. Some authors proposed that pro-
cesses characteristic for inflammatory pain (e.g. immune
cells and their mediators, perineurial barrier disruption)
are relevant to neuropathic pain as well [26]. However,
immune cells accumulate at the trunk of injured nerves
but usually not in paws innervated by these nerves
[24,56]. Also, although p-opioid receptors were up-
regulated in the paw skin following CCI, they were not
identified on nerve terminals [57], and their coupling
and signalling has not been investigated so far. Addition-
ally, while the blood-nerve barrier was disrupted at the
nerve injury site, this was not examined in paws [58].
Thus, although there is no doubt that opioid receptors
at the peripheral terminals of proximally injured nerves
are functional (our current findings; see also below), the
underlying mechanisms await exploration.

Opioid treatment of neuropathic pain is limited by ser-
ious side effects mediated by opioid receptors in the
CNS [16]. In inflammatory conditions this was overcome
by selective activation of peripheral opioid receptors,
in animals and humans [17,56]. Exploring a similar
approach in neuropathic pain patients is supported
by a promising clinical pilot trial [28] and numerous
behavioural studies reporting attenuation of mechanical
hypersensitivity in animal models of neuropathy. Antino-
ciceptive effects have been found following systemic in-
jection of classical and peripherally-restricted opioids
[18,22,23] as well as after application of opioids, includ-
ing DAMGO, in systemically inactive doses into hind
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paws innervated by the damaged nerves [20-22,25-27].
Clearly, despite substantial behavioural evidence, there
is a need for mechanistic approaches addressing such
peripheral actions of opioids in neuropathy.

Conclusions

We have demonstrated that primary nociceptive fibres in
injured nerves are not sensitised to mechanical stimuli
with respect to the thresholds, latencies and discharge
rates. However, enhanced central responses to a periph-
eral nociceptive input possibly result in an augmented
mechanosensation iz vivo. Activation of p-opioid receptors
in cutaneous nociceptors in injured nerves elevates the
thresholds and diminishes the firing as a consequence of
inhibition of nociceptor action potential generation or
propagation. This likely prevents an increased central
transmission and might represent a possible mechanism
underlying the opioid-mediated improvement of me-
chanohypersensitivity in painful neuropathies.

Methods

Ethical approval

Experiments were performed according to the guidelines
of the International Association for the Study of Pain
[59], and were approved and governed by the state ani-
mal care committee (Landesamt fiir Gesundheit und
Soziales, Berlin).

Animals and surgeries

Experiments were performed in male C57BL/6] mice
(6 — 8 weeks old) bred at the Charité, Campus Benjamin
Franklin, Berlin. Animals were housed in groups of 6 per
cage lined with ground corncob bedding. They were kept
on a 12 h light/dark schedule with food pellets and water
ad libitum. Room temperature was 22 + 0.5°C and the
relative humidity was 60 — 65%.

Chronic constriction injury of the saphenous nerve
was performed in deeply anesthetised mice. Animals
were placed in a glass chamber on a perforated ceramic
plate, which was located above tissues soaked with ap-
proximately 15 ml of isoflurane (Abbott, Wiesbaden,
Germany), until anaesthesia was initiated. Subsequently,
the animal’s nose was covered by a tube attached to
an anaesthesia machine (Aestiva 3000, Datex-Ohmeda,
GE Healthcare) delivering a gaseous mixture of isoflur-
ane (3 — 4%) and oxygen throughout the procedure. The
saphenous nerve was exposed at the level of the right
thigh, and three nylon sutures (8—0) were loosely tigh-
tened with about 1 mm spacing around the nerve [57].
The wound was closed using nylon sutures. Sham
operation was performed by exposing but not ligating
the nerve.
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Nociceptive testing

Animals (n = 6 per surgery type) were habituated to the
test cages with wire-mesh floor daily, starting 6 days
prior to the testing. Few hours before and 2 weeks after
CCI or sham operation the withdrawal thresholds of the
hind paws were determined with calibrated von Frey
hairs (Stoelting, Wood Dale, IL). In the same groups of
mice, von Frey hairs were applied to the plantar glabrous
skin and 1.5 — 2 h later to the dorsal hairy skin of the
hind paw, according to an up-down method [60]. Test-
ing began with a 0.4 g hair. If the mouse withdrew the
paw the next weaker hair was applied. In case of no
withdrawal the next stronger hair was applied. The max-
imal number of applications was 6 — 9 and the cut-off
was 4 g, as previously [24]. The examiner was unaware
of the surgery type. After completion of experiments
mice were killed with an overdose of isoflurane.

Skin-nerve preparation and electrophysiology

The skin-nerve preparation was used as previously
described [29]. Naive mice and those at 2 weeks after
CCI or sham surgery were killed with an overdose of
isoflurane. The examiner could not be blinded to the
surgery type due to the visible ligatures following CCI in
the dissected injured nerves. The shaved skin of the
lower hind limb, predominantly including the hairy skin
of the paw, and the saphenous nerve in continuity were
dissected free and placed with the corium side up in an
organ bath. The skin with a part of the nerve including
the CCI site was placed in one chamber which was per-
fused with a synthetic interstitial fluid (SIF; ~ 30°C). Its
composition was (in mM): NaCl 123, KCL 3.5, MgSO,
0.7, NaH,PO, 1.5 CaCl, 2, sodium gluconate 9.5, glu-
cose 5.5, sucrose 7.5, HEPES 10, at a pH of 7.4. The
remaining part of the nerve was placed in a second, ad-
jacent chamber filled with mineral oil for fibre teasing
and single-unit recordings. The perineurium was
removed and small bundles of fibres were teased and
attached to the recording electrode. The receptive field
of each fibre was identified by a mechanical search
stimulus (glass rod) applied to the paw skin. Its location
in relation to the nerve and blood vessels helped to
apply mechanical stimuli to the same site during subse-
quent stimulations. Action potentials from each fibre
were recorded extracellularly with a low-noise amplifier
(Digitimer, Hertfordshire, UK), visualized on an oscillo-
scope and on a computer with the help of a digital con-
verter (PowerLab 4/26, ADInstruments, Oxfordshire,
UK), and analyzed off-line using the LabChart (version
6, ADInstruments) spike histogram extension software.
Single fibres were classified by conduction velocity and
shape and width of the action potential, and by adapta-
tion properties to constant mechanical stimulation. The
conduction velocity was determined by electrically
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stimulating the fibre’s receptive field with suprathreshold
current pulses (in the range of 1 — 10 mA) with dura-
tions of 50, 150 or 500 ps using a sharp tungsten metal
electrode. The conduction velocity was calculated as the
distance (in mm) from the receptive field to the record-
ing electrode, divided by the electrical latency (in ms) of
the action potential [29]. Next, the mechanical threshold
of each fibre was estimated by evoking action potentials
to calibrated von Frey hairs (Stoelting). The hairs of the
following forces were used: 0.007, 0.008, 0.042, 0.072,
0.13, 0.3, 0.54, 0.82, 1.27, 2.5 and 4.5 g. Testing began
using a 0.13 g hair. If the fibre responded the just pre-
ceding weaker hair was applied. In case of no response
the next stronger hair was applied. The number of appli-
cations was 3 — 7, with an interval of 10 — 20 s between
individual von Frey hairs [40]. The threshold was defined
as the force (in grams) of the smallest von Frey
hair necessary to evoke at least one action potential.
Most fibres were subsequently tested with a computer-
controlled mechanical stimulator (nanomotor; Kleindiek,
Reutlingen, Germany) equipped with a stainless metal
probe. The nanomotor was used to apply ramp-and-hold
displacement stimuli to the skin. The ramp phase of the
stimulus had a constant velocity (2.9 mm/s) throughout
the stimulation protocol. Standardised increasing dis-
placement stimuli (12, 24, 48, 96, 192, 384 and 768 pm)
of 10 s duration were applied to the receptive field at
regular intervals (30 s). Before each stimulation protocol,
the nanomotor probe was positioned above the receptive
field. Using small movements (96 pum) it was advanced
onto the receptive field until one action potential was
evoked. Then the probe was moved 96 um upwards
again. The same approach was applied while stepwise
reducing the movement to the smallest stimulus (12 pm)
used in the nanomotor stimulation protocol. The starting
position of the probe was therefore just above the
threshold for each recorded unit. The nanomotor was
moved only vertically allowing its positioning at the
same site each time. The discharge rate was defined as
the number of action potentials per 10 s. The mechanical
latency (in ms) was defined as the latency between
the onset of the mechanical stimulus and the first action
potential corrected for conduction delay, and was mea-
sured for each mechanical displacement. Both para-
meters were calculated off-line with the spike histogram
extension software.

Drug treatment in the skin-nerve preparation

Drugs were applied in SIF buffer (100 ul; ~ 30°C). The
effects of DAMGO (100 uM) on von Frey thresholds of
sensory fibres were assessed as follows: After determin-
ation of the fibre’s baseline threshold, a metal ring
(6 mm in diameter) was sealed over the receptive field
and the SIF buffer inside the ring was replaced with
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DAMGO for 2 min. Afterwards, DAMGO was taken
out, the ring was removed and the fibre’s von Frey thresh-
old was re-evaluated. Next, the fibre’s receptive field was
washed for 10 — 15 min [10], and the threshold was
assessed a third time. If the threshold was elevated by
DAMGTO, its p-opioid receptor selectivity was tested with
the antagonist CTOP (100 pM). In this case, the ring was
again sealed (after DAMGO washout), filled for 3 min
with CTOP which was then replaced with DAMGO for
2 min. Subsequently, DAMGO was taken out, the ring
was removed and the von Frey threshold was tested a
fourth time. As a control treatment, SIF buffer (100 pl)
was tested accordingly on a separate group of fibres.

We also investigated the effects of DAMGO on the
discharge rates and the mechanical latencies of sensory
fibres using the nanomotor. After determining the fibre’s
mechanical threshold with von Frey hairs, the computer-
controlled nanomotor protocol was run, as described
above. DAMGO or SIF buffer were applied to the recep-
tive field for 2 min, as described above. After removal
of DAMGO or buffer, the von Frey threshold was re-
evaluated and the nanomotor protocol was run a second
time. We also attempted to evaluate the discharge rate
and mechanical latency following DAMGO washout and
pre-application of CTOP, however, only some fibres were
successfully stimulated a third time with the nanomotor
protocol (i.e. after DAMGO washout; 21 stimulations),
as observed previously [13]. This was likely related to
multiple repetitive stimulations. Therefore, the effects of
DAMGO washout and CTOP pre-treatment on the dis-
charge rate were accordingly tested in additional C fibres
at only one nanomotor displacement (384 um). Add-
itionally, the effect of CTOP alone was examined in a
separate group of C fibres.

Statistical analysis

Data are expressed as means + SEM. Two-sample com-
parisons were made using a ¢ test for independent
normally distributed data, a Mann—Whitney test for
independent not normally distributed data, a paired
t test for dependent normally distributed data and a
Wilcoxon test for dependent not normally distributed
data. A chi-square test and Fisher exact test were used
for comparison of proportions. Multiple comparisons
were evaluated with 1-way or 2-way repeated measures
(RM) analysis of variance (ANOVA) followed by a
Bonferroni ¢ test for normally distributed data, or with
1-way RM ANOVA on ranks followed by a Tukey test
for not normally distributed data. The data were defined
statistically significant if P < 0.05. All tests were per-
formed with SigmaPlot 11 software.

Abbreviations
AM: A mechanonociceptors; ANOVA: Analysis of variance; CCl: Chronic
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