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Abstract

presynaptic terminals.

engagement in the right compartment is essential.

Background: Sodium channel Nav1.7 has emerged as a target of considerable interest in pain research, since
loss-of-function mutations in SCN94, the gene that encodes Nav1.7, are associated with a syndrome of congenital
insensitivity to pain, gain-of-function mutations are linked to the debiliting chronic pain conditions erythromelalgia
and paroxysmal extreme pain disorder, and upregulated expression of Nav1.7 accompanies pain in diabetes and
inflammation. Since Nav1.7 has been implicated as playing a critical role in pain pathways, we examined by
immunocytochemical methods the expression and distribution of Nav1.7 in rat dorsal root ganglia neurons, from
peripheral terminals in the skin to central terminals in the spinal cord dorsal horn.

Results: Nav1.7 is robustly expressed within the somata of peptidergic and non-peptidergic DRG neurons, and
along the peripherally- and centrally-directed C-fibers of these cells. Nav1.7 is also expressed at nodes of Ranvier in
a subpopulation of Ad-fibers within sciatic nerve and dorsal root. The peripheral terminals of DRG neurons within
skin, intraepidermal nerve fibers (IENF), exhibit robust Nav1.7 immunolabeling. The central projections of DRG
neurons in the superficial lamina of spinal cord dorsal horn also display Nav1.7 immunoreactivity which extends to

Conclusions: The expression of Nav1.7 in DRG neurons extends from peripheral terminals in the skin to preterminal
central branches and terminals in the dorsal horn. These data support a major contribution for Nav1.7 in pain
pathways, including action potential electrogenesis, conduction along axonal trunks and depolarization/invasion of
presynaptic axons. The findings presented here may be important for pharmaceutical development, where target
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Introduction

Voltage-gated sodium channels are critical participants
in neuronal excitability and transmition of electrical
impulses along pain pathways, and have emerged as
major targets for therapeutic intervention in pain disor-
ders [1-4]. Of the nine sodium channel isoforms that
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have been cloned [5], four channels — Navl.3, Navl.7,
Nav1l.8 and Navl.9 — have received intense scrutiny for
their contributions to nociception and chronic pain dis-
orders [3,6]. In particular, Navl.7 has recently emerged
as a target of considerable interest, since loss-of-
function mutations in SCN9A, the gene that encodes
Navl.7, are associated with congenital insensitivity to
pain [7-9] and gain-of-function mutations have been
linked to pain in erythromelalgia [10-13] and paroxysmal
extreme pain disorder (PEPD) [14-16]. In addition gain-
of-function variants in Nav1.7 have more recently been
identified in nearly 30% of patients diagnosed with
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painful idiopathic small fiber neuropathy, suggesting of a
contribution of hyperactive Nav1.7 channels in axonal
degenerative pathways and pain that accompanies neu-
ropathies [17-19].

Navl.7 is a tetrodotoxin-sensitive (TTX-S), fast-
activating and fast-inactivating sodium channel that
recovers (reprimes) slowly from fast-inactivation [20].
Navl.7 is also characterized by slow closed-state inacti-
vation, which allows the channel to pass sodium current
(ramp current) in response to small, slow depolarizations
[21-23].

Navl.7 is preferentially expressed in dorsal root ganglia
(DRG) and sympathetic neurons [13,24-27], and has re-
cently beenshown to be the main sodium channel isoform
in olfactory sensory neurons and their processes [28,29].
In DRG, Navl.7 is expressed in A- and C-fiber type neu-
rons, but is more prominently expressed in small diameter
neurons, with 85% of functionally-identified nociceptive
neurons exhibiting Navl.7 immunolabeling [26]. While
Nav1.7 has been localized to the somata of DRG neurons,
descriptions of the expression and organization of Navl.7
along peripheral and central unmyelinated and myelinated
projections of these sensory cells are limited. Nav1.7 was
colocalized with peripherin-positive fibers [30] in a teased
nerve preparation, and it recently was demonstrated that
intraepidermal nerve fibers (IENF), which are the
peripherally-directed terminals of nociceptive DRG neu-
rons, express Nav1.7 [31]. While Nav1.7 labeling has been
reported in spinal cord dorsal horn [32], it has yet to be
established whether Nav1.7 is expressed within the axon
branches or central terminals of DRG neurons.

In the present report, the expression and distribution
of Nav1l.7 in unmyelinated and myelinated DRG neurons
along the entire trajectory from peripheral to central
terminals is described. The results demonstrate that
Navl.7 is highly-expressed in small diameter DRG and
their peripherally- and centrally-directed processes from
the skin to the CNS. Notably, Nav1.7 is clearly present
in both peripheral axon terminals of DRG neurons and
also in their centrally-directed axons within the dorsal
horn, extending to central perterminal and terminal
regions of these pain-signalling neurons. Moreover,
Navl.7 is robustly expressed at nodes of Ranvier in a
subpopulation of small diameter myelinated fibers.
These observations are consistent with critical roles for
Navl.7 channels at multiple sites within nociceptive
DRG neurons and their processes.

Results

Sodium channels play important roles in nociception
and chronic pain syndromes [3,6], with a specific sodium
channel isoform, Navl.7, being identified that is critical
in pain signaling [33]. To provide a molecular anatom-
ical substrate for understanding the contribution of
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Navl.7 channels to nociception and pain disorders, we
examined by immunocytochemical methods the expres-
sion and distribution of Nav1.7 in dorsal root ganglion
(DRG) neurons from peripheral free nerve ending term-
inals in the epidermis to central terminals in spinal cord
dorsal horn.

DRG were triple-labeled with antibodies to peripherin,
a C-fiber marker [34], neurofilament-200, a marker of
A-fibers [35], and Nav1l.7 to determine the expression of
Navl.7 in unmyelinated and myelinated sensory neu-
rons. Peripherin-positive DRG neurons were generally of
small (<30 um) diameter and the majority of these neu-
rons exhibited robust Nav1l.7 immunolabeling (Figure 1).
Approximately 63% (232/367) of peripherin-positive
DRG neurons exhibited Navl.7 immunoreactivity. A
limited number of small DRG neurons displayed prom-
inent Navl.7 labeling but were peripherin-negative. In
contrast to the pronounced co-localization of Navl.7
and peripherin, most neurofilament-positive DRG neu-
rons lacked detectable Nav1.7 immunolabeling (Figure 1).
Of neurofilament-positive DRG neurons, about 15% (57/
377) exhibited Navl.7 immunolabeling, which was gen-
erally displayed in medium diameter (30-40 pm) neu-
rons. The intensity of the label in the medium diameter
neurons was substantially reduced compared to that
displayed by peripherin-positive cells. Large (>40 pm)
diameter neurofilament-positive neurons rarely exhibited
Navl.7 immunolabeling, which was of limited intensity
when present.

C-fiber DRG neurons, which are predominantly noci-
ceptive, can be divided into subpopulations of peptidergic,
which express neuropeptides as substance P and calci-
tonin gene-related protein (CGRP), and non-peptidergic,
which bind isolectin B4 (IB4) and lack neuropeptide ex-
pression, neurons [36]. To determine the expression of
Navl.7 in peptidergic versus non-peptidergic DRG neu-
rons, we triple-labeled DRG with IB4, CGRP and Navl.7.
Approximately equal numbers of neurons exhibited
IB4 and CGRP labeling, and there was very limited
co-expression of these markers in individual neurons
(Figure 1). IB4-labeled DRG neurons exhibited robust
Navl.7 immunoreactivity (Figure 1). Navl.7 immuno-
labeling was also displayed in CGRP-positive neu-
rons. Quantitative analysis of the triple-labeled DRG
demonstrated that similar percentages of IB4" (64.8%;
187/287) and CGRP" (57.8%; 158/273) DRG neurons
exhibited Navl.7 immunolabeling.

DRG neurons are psuedo-unipolar cells whose single
process bifurcates, sending one branch peripherally to
terminate in somatic targets and one branch centrally to
terminate centrally in CNS. To determine the expression
of Navl.7 in peripherally-directed DRG fibers, sections
of sciatic nerves were immunoreacted with Navl.7,
peripherin, to label unmyelinated fibers [34], and caspr
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Figure 1 Expression of Nav1.7 in DRG neurons. A. DRG sections were reacted to antibodies against peripherin, neurofilament 200 (NF) and
Nav1.7. Peripherin-positive (green) neurons are generally of small diameter (<30 um) and most exhibit colocalization (yellow) with Nav1.7 (red).
A few small peripherin-negative neurons display robust Nav1.7 immunolabeling (arrows). Neurofilament 200 (NF)-positive (blue) neurons are
generally larger than peripherin-positive cells and most do not display colocalization with Nav1.7. A few smaller NF-positive cells exhibit Nav1.7
immunolabeling (magenta). B. DRG sections were reacted with 1B4-488 and antibodies to CGRP and Nav1.7. Virtually all IB4-positive (green)
neurons display colocalization (yellow) with Nav1.7. Similarly, nearly all CGRP-positive (blue) neurons exhibit colocalization (magenta) with Nav1.7
(red). Few DRG neurons (arrow) display colocalization of B4, CGRP and Nav1.7.

(contactin-associated protein), to label paranodal regions
of myelinated fibers [37]. Peripherin-positive C-fibers
exhibited Navl.7 immunolabeling (Figure 2). In favor-
able sections, diffuse continuous Navl.7 labeling was
observed that extended for hundreds of microns along
the lengths of the C-fibers. Approximately 27% (28/104)
of peripherin-positive fibers in the sciatic nerve dis-
played Navl.7 immunolabeling above background levels.

In contrast to unmyelinated fibers, myelinated fibers
in sciatic nerve sections generally did not exhibit detect-
able Navl.7 expression along extended lengths of the
axons beneath myelin sheaths. Only ~3% (2/75) of NF*
axons exhibited Navl.7 immunoreactivity along the
myelinated fibers, and, when present, the immunosignal
was of low intensity. In addition, Nav1.7 immunoreactiv-
ity was generally not exhibited at nodes of Ranvier.
However, a subset of small diameter (<1 pm at nodes)
myelinated axons displayed robust Navl.7 labeling at
their nodes (Figure 2). The Navl.7 immunoreactivity
was confined specifically to the nodal region and did
not extend into the paranodal regions. Nodes of ~36%
(38/107) small diameter axons displayed robust Navl.7
labeling. Nav1.7 labeling at nodes was not detected in
myelinated axons >1 pm diameter.

Within the skin, intraepidermal nerve fibers (IENF)
branch perpendicularly from bundles of C- and AS-

fibers that run parallel and subjacent to the dermis/
epidermis boundary and ascend within layers of the epi-
dermis. Peptidergic fibers generally terminate in the
stratum spinosum layer, while non-peptidergic fibers ter-
minate in stratum granulosum [38]. Subepidermal nerve
bundles exhibited PGP9.5 labeling and were strongly
Navl.7 immunolabeled (Figure 3). As demonstrated in
Figure 3, Navl.7 was expressed in the free nerve term-
inals of both peptidergic and non-peptidergic fibers
within the epidermis. Importantly, Navl.7 immunoreac-
tivity in IENF extended from the point of branching from
the dermal nerve bundles to the terminal tips of the
fibers.

The central processes of DRG neurons form dorsal
roots along their projection to synaptic terminations in
the spinal cord. Dorsal roots exhibited extensive periph-
erin labeling of unmyelinated sensory fibers, as well as
neurofilament-positive myelinated fibers (Figure 4).
Peripherin-positive fibers in dorsal roots displayed robust
Navl.7 immunolabeling along their lengths (Figure 4).
The Nav1.7 labeling of peripherin-positive fibers was not
focal, but could extend continuously for hundreds of
microns. Similar to sciatic nerve, approximately 30%
(54/185) peripherin-positive fibers in dorsal roots
exhibited Navl.7 immunoreactivity. In contrast to the
Navl.7 labeling of dorsal roots, ventral roots, which
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labeling at nodes.

Figure 2 Expresion of Nav1.7 in sciatic nerve. A. Numerous peripherin-positive (green) unmyelinated fibers are immunolabeled in sciatic nerve
and these fibers exhibit extensive colocalization (yellow) with Nav1.7 (red). Inset. At increased magnification, peripherin-positive (green) fiber
displays colocalization (yellow) with Nav1.7. B. Nodal regions in sciatic nerve were identified by paranodal caspr (green) labeling. Nav1.7 (red)
immunolabeling at a node is displayed by a small diameter (<1 um) myelinated fiber. Not all small diameter myelinated fibers exhibit Nav1.7

are composed primarily of peripherally-directed,
neurofilament-positive axons of ventral motor neurons,
did not display detectable Nav1.7 labeling.

To determine whether small diameter myelinated
fibers in dorsal roots display Nav1l.7 immunolabeling at
nodes, similar to that observed in sciatic nerves, dorsal
root sections were immunoreacted with Navl.7 and
caspr antibodies. As in sciatic nerve, a subset of small
diameter (<1 pm) myelinated fibers exhibited nodal
Navl.7 immunolabeling (Figure 4). The nodal labeling

was focal and was not observed in paranodal or juxta-
paranodal regions, similar to that observed in sciatic
nerves. Approximately 34% (20/67) of the small diameter
myelinated fibers displayed robust Navl.7 labeling at
their nodes. In contrast to dorsal roots, nodes in ventral
roots did not exhibit Nav1l.7 immunolabeling (Figure 4).

As demonstrated in Figure 1, cell bodies of IB4- and
CGRP-positive  DRG neurons exhibit robust Navl.7
labeling. The central projections of IB4- and CGRP-
positive neurons are targeted to differing lamina of the

Figure 3 Expression of Nav1.7 in glabrous skin. PGP9.5 (green) intraepidermal nerve fibers (IENF) branch from nerve bundles (arrowheads) at
dermis/epidermis boundary (dotted line) and ascend in the epidermis. PGP9.5-positive IENF exhibit Nav1.7 (red) immunolabeling. Inset. Both IENF
extending to stratum granulosum (more superficial) and to the stratum spinosum exhibit Nav1.7 labeling.
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to node.

-

Figure 4 Expression of Nav1.7 in dorsal and ventral roots. A., B. Sections of dorsal (A
peripherin, neurofilament 200 (NF) and Nav1.7. Numerous peripherin-positive (green) ﬂbers are present in dorsal root but few in ventral root.
There is extensive colocalization (yellow) of peripherin (green) and Nav1.7 in dorsal root fibers. Ventral roots do not exhibit detectable Nav1.7
labeling. C., D. Both dorsal (C) and ventral (D) roots display caspr paranodal labeling (green). Nav1.7 (red) immunolabeling is displayed by small
diameter fiber in dorsal root but not in ventral root. Inset. Increased magnification of nodal region demonstrates that Nav1.7 labeling is confined

o
1 um

) and ventral (B) roots were reacted with antibodies to

J

spinal cord dorsal horn, with IB4-positive terminating in
lamina IIi and CGRP-positive terminating in lamina I
and IIo [36]. In spinal cord sections triple-labeled with
Nav1l.7, IB4 and CGRP, prominent Nav1.7 immunoreac-
tivity was present in superficial lamina of dorsal horns
(Figure 5). The Navl.7 immunolabeling was colocalized
with IB4 staining in lamina IIi and with CGRP labeling in
lamina I and Ilo.

The labeling pattern of Navl.7 with IB4 and CGRP in
the dorsal horn strongly suggests that Nav1.7 is localized
within pre-synaptic central terminals of nociceptive DRG
neurons. To address this suggestion, we co-labeled spinal
cord sections with synaptophysin, a marker of synapses
[39], and Navl.7. As expected, substantial synaptophysin
labeling was present within the dorsal horn, consistent
with the formation of numerous synapses within this re-
gion. Laminas I and II of the dorsal horn exhibited a high
degree of co-localization of Navl.7 with synaptophysin
(Figure 6), consistent with localization of Nav1.7 within
pre-synaptic terminals. To determine whether the Nav1.7
immunoreactivity within superfical lamina of dorsal horn
might reflect labeling of post-synaptic neurons, spinal

cord sections were also labeled with NeuN, a marker of
neuronal nuclei and to a lesser extent cytoplasm [40],
and Navl.7. An abundance of neurons were labeled with
NeuN in lamina I and II of the dorsal horn (Figure 6).
However, these NeuN-positive cells did not exhibit
Navl.7 immunolabeling, rather labeling was localized
extracellular to these neurons. Notably, spinal cord ven-
tral motor neurons did not exhibit Nav1.7 immunolabel-
ing above background levels (Figure 6 inset)

Discussion

The present results demonstrate that Navl.7 is robustly
expressed in the somata of virtually all small diameter
(<30 um) DRG neurons, which predominantly give rise
to nociceptive C- and Ad-fibers [26,41]. In addition,
Navl.7 is expressed in peripheral and central terminal
processes of these DRG neurons, with robust expression
in the intraepidermal nerve fibers (IENF) within skin
and the superficial lamina of spinal cord dorsal horn, the
major site of synaptic connectivity between primary
nociceptive and secondary sensory neurons. The prefer-
ential expression of Navl.7 in small diameter DRG
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Figure 5 Nav1.7 expression in spinal cord dorsal horn. Sections of spinal cord were labeled for IB4 (green), CGRP (blue) and Nav1.7 (red). A
IB4 labeling is prominent in lamina lli, while CGRP immunoreactivity is localized to lamina | and llo. Robust Nav1.7 immunolabeling is present
within lamina | and I, and exhibits co-localization with 1B4 (yellow) and with CGRP (magenta). There is limited overlap of I1B4 and CGRP in the
superficial lamina. B. Increased magnification of 1B4, CGRP and Nav1.7 labeling in superficial lamina of dorsal horn.

neurons and its localization at sites of nociceptive im-
pulse genesis and synaptic transmission are consistent
with major roles for this channel at multiple loci,
extending from peripheral terminals in the skin to cen-
tral axonal branches and terminals in the dorsal horn, in
first-order neurons within peripheral pain pathways.

The Navl.7 channel has recently garnered substantial
interest in pain research, due to its association with
human pain disorders, including inherited channelopa-
thies, diabetic neuropathy, small fiber neuropathy, neur-
omas and inflammation. Loss-of-function mutations in
Navl.7 are associated with congenital insensitivity to
pain (CIP) [7-9], while gain-of-function mutations in
Nav1.7 are linked to the painful conditions of inherited
erythromelalgia and paroxysmal extreme pain disorder
(PEPD) [10,11,14,42]. In addition, Faber et al. [18] re-
cently identified gain-of-function variants in Navl.7 in
nearly 30% of patients who met stringent criteria for
idiopathic small fiber neuropathy, including reduced
IENF and chronic pain. These studies provide a clear as-
sociation between inherited alterations in Navl.7 chan-
nel function and pain perception.

The activity of wild-type Nav1.7 channels is also impli-
cated in chronic human pain syndromes. Injury to per-
ipheral nerves can result in the formation of painful
neuromas, tangles of proliferating connective tissue and
blind-ending axons, which often exhibit spontaneous
ectopic activity [43,44]. Nav1.7 has been shown to accumu-
late in the blind-ending axons of painful human neuromas
[45-47]. Interestingly, the MAP kinase, ERK1/2, which

phophorylates Nav1.7 and enhances its activation [48], also
accumulates in painful human neuromas [47], and has
recently been shown in experimental neuromas to co-
localize within individual axons with Navl.7 [49].

Animal studies provide additional support for a major
contribution of Navl.7 in nociception and chronic pain.
Experimentally-induced diabetes results in mechanical
allodynia and thermal hyperalgesia that is accompanied
by an upregulation of Navl.7 in DRG neurons [50-52].
Significantly, continuous §-opioid receptor activation via
HSV-infection of DRG with a proenkephalin-expressing
vector attenuated responses to noxious thermal and
mechanical stimuli and the increased Nav1.7 expression
in diabetic rats [53]. Nav1.7 has also been shown to play
an important role in inflammatory pain. Experimental
models of inflammation have been shown to induce
upregulation of Navl.7 [54-56]. HSV-delivered antisense
sequence to Navl.7 in hindpaws of mice injected with
Freund’s adjuvant prevented an increase in Navl.7
expression that is accompanied by decreased hypersensi-
tivity compared to control mice [57].

A major role for Navl.7 in inflammatory pain is sup-
ported by knock-out studies. Deletion of Navl.7 in
Navl.8-expressing DRG neurons, which are principally
nociceptive, greatly attenuated or eliminated behavioral
responses to a range of inflammatory agents [58]. Inter-
estingly, mechanical and thermal responses to noxious
stimuli were not altered in these knock-out mice. How-
ever, it was recently shown that ablating Nav1.7 in all
sensory neurons within DRG in Advillin-Cre/1.7 loxP
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horn lack Nav1.7 immunolabeling (red).

Figure 6 Nav1.7 is expressed in pre-synaptic fibers in dorsal horn. A. Synaptophysin (green), a marker of synapses, exhibits prominent
labeling in the dorsal horn. Nav1.7 (red) and synaptophysin display extensive colocalization in the superfical layers of the dorsal horn. Inset.
Increased magnification of superfical lamina of dorsal horn demonstrates colocalization of synaptophysin and Nav1.7. B. NeuN (green)
immunolabels nuclei and cell bodies of neurons in dorsal horn. Post-synaptic neurons in the superficial lamina exhibit a lack Nav1.7 (red) labeling,
which is localized in extracellular regions to the post-synaptic neurons. Right inset: increased magnification demonstrating lack of Nav1.7
immunoreactivity (red) within NeuN-labeled (green) dorsal horn neuronal cell bodies. Left inset: NeuN-labeled motor neurons (green) in ventral

250 gm

mice abolished mechanical, inflammatory and thermal,
but not neuropathic, pain responses [59]. Neuropathic
pain was eliminated only when Nav1.7 was knocked out
in DRG sensory neurons and sympathetic neurons.
Interestingly, in a burn injury model utilizing conditional
Nav1l.7 knockout mice, Shields et al. [60] demonstrated
that Navl.7 selectively contributed to burn-induced
hypersensitivity to heat but not mechanical stimuli. In
addition, whole cell patch clamp studies showed an in-
crease in TTX-sensitive current density and hyperpolar-
izing shift in steady-state activation in DRG neurons
following burn injury in WT mice that was absent in
Nav1l.7 knockout mice [60], consistent with a contribu-
tion of Nav1.7 channels to increased excitability of DRG
neurons following burn injury. In the aggregate, these
animals studies convincingly demonstrate an important

contribution of Navl.7 to nociception and pain
syndromes.

The Navl.7 sodium channel exhibits fast-activation
and fast-inactivation, similar to the other tetrodotoxin-
sensitive (TTX-S) channels, Nav1.1, Navl.2, Navl.3, and
Navl.6, expressed in nervous tissue [5,20]. However,
Navl.7 displays unique properties that poise it to play a
critical role in affecting the excitability of neurons that
express it. Navl.7 is distinguished from other TTX-S
channels by a slow recovery from fast inactivation (slow
repriming) [21,22]. In addition, Navl.7 has a slow
closed-state inactivation that yields a sodium current
(ramp current) in response to small, slow depolariza-
tions. These properties position Navl.7 channels to
amplify generator potentials and thus act as a threshold
channel for setting the sensitivity of action potential
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electrogenesis [23]. In nociceptive neurons, increased ac-
tivity or density of Navl.7 channels, as in gain-of-
function mutations and inflammation, respectively,
would be expected to lower the threshold for firing and
amplify the response to stimuli, likely leading to
enhanced pain perception.

Navl.6 is the predominant sodium channel isoform
aggregated at nodes of Ranvier in adult tissue [61]. How-
ever, our results demonstrate robust Navl.7 expression
at nodes of Ranvier in a subpopulation of small diameter
(A8) myelinated fibers in sciatic nerve and dorsal root.
The expression of Navl.7 at these nodes is coincident
with the expression of Navl.6, as <90% of the Navl.7-
positive nodes co-expressed detectable Nav1l.6 (data not
shown). While it cannot be unambiquously determined
that fibers with the Nav1.7-positive nodes are continuous
peripheral and central projections of a subset of DRG
neurons, sciatic nerve and dorsal root have nearly equal
percentages (36 vs. 34%, respectively) of these fibers with
nodal Navl.7 labeling, suggesting the presence of a sub-
set of fibers that express Nav1.7 at nodes from the skin
to dorsal horn. At this time it cannot be determined
whether expression of Nav1.7 at nodes in a subset of Ad-
fibers is associated with a specific function. In this regard,
it has been reported that 40% of Ad-fibers are only
mechanoresponsive [62], which is similar to the percent-
age of Ad-fibers expressing Navl.7 at nodes in sciatic
nerve and dorsal root . It is not clear how co-expression
of Navl.7 and Nav1.6 may effect pain signal transmission
along thse fibers, but it may provide a high safety factor
for the conduction of noxious mechical stimuli.

We demonstrated the co-expression of Navl.7 with
CGRP and IB4 in lamina I/Ilo and IIi, respectively, of
spinal cord dorsal horn. We further demonstrated co-
localization of Navl.7 with synaptophysin, a marker of
pre-synaptic terminals, and a lack of Nav1.7 labeling in
NeuN labeled post-synaptic neurons in the superficial
layers of dorsal horn. These results support the observa-
tions of Minett et al. [59] in which the stimulated release
of Substance P in dorsal horn was significantly attenu-
ated in Nav1.7 null DRG neurons compared to WT mice.
Taken together, these results provide evidence for a con-
tribution of Nav1.7 in the regulation of neurotransmitter
release in nociceptive fibers. Interestingly, Nav1.7 is the
predominant sodium channel expressed in rodent olfac-
tory sensory neurons, with Navl.7 accumulation extend-
ing to the presynaptic termini in the glomeruli of the
olfactory bulb [28], and a critical role for Navl.7 in the
regulation of synaptic transmission by the olfactory
sensory neurons has been convincingly demonstrated [29].

Conclusions
In summary, our results demonstrate that Navl.7 is
expressed by nociceptive DRG neurons along their entire
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trajectory, with expression extending from the peripheral
terminals of IENF in the skin to preterminal projections
of these axons with the dorsal horn, and to central syn-
aptic terminals in the spinal cord. The expression of
Navl.7 at central and peripheral terminals, as well as
along the peripherally- and centrally-directed trunk of
nociceptive fibers, suggests functional contributions of
Navl.7 at multiple foci within pain pathways, extending
from peripheral axons within the skin to central pre-
terminal axons and axon terminals in the dorsal horn.
These observations may have important implications for
development of pain pharmacotherapy, where target
engagement in the right compartment is essential.

Methods

Animal care

Sprague—Dawley male rats (adult, 225-250 gm, Harlan,
Indianapolis, IN) were housed under a 12 hr light/dark
cycle in a pathogen-free area with ad libitum access to
water and food. The experimental procedures were
approved by the VA Connecticut Healthcare System
Institutional Animal Care and Use Committee, in ac-
cordance with NIH guidelines.

Immunocytochemistry

Rats were deeply anesthetized with ketamine/xylazine
(80/5 mg/kg, i.p.) and transcardially perfused with 0.01
M PBS (pH 7.4) followed by ice-cold 4% paraformalde-
hyde in 0.14 M Sorensen’s phosphate buffer (pH 7.4).
Tissues (sciatic nerve, L4 and L5 dorsal root ganglia,
dorsal roots, ventral roots, and spinal cord) were
removed, immersion-fixed for an additional 20 min
(total fixation time 30 min) and cryoprotected with 30%
(w/v) sucrose in PBS overnight at 4°C. Hindpaw glabrous
skin was immersion-fixed in Zamboni’s fixative for 8
hours at 4°C, which yielded more robust labeling of
intraepidermal nerve fibers than paraformaldehyde fix-
ation, prior to cryoprotection. Ten-pm thick cryosec-
tions were mounted on slides (Fisher, Pittsburgh, PA)
and processed for detection of Na,1.7 protein and cell-
specific markers as described previously [54]. In brief,
sections were incubated in the following (1) blocking so-
lution (PBS containing 3% cold water fish skin gelatin,
3% normal donkey serum, 2% BSA, 0.1% Triton X-100,
and 0.02% sodium azide) for 15 min at room
temperature; (2) primary antibodies [rabbit anti-Nav1.7
(1:250, Y083 [47]; mouse anti-peripherin (1:1000,
Abcam, Cambridge, MA); chicken anti-neurofilament
200 (1:1000, Aves Lab, Tigard, OR), IB4-Alexa Fluor 488
(1:100, Invitrogen, Carlsbad, CA), sheep anti-calcitonin
gene-related protein (1:100, Abcam); mouse anti-PGP9.5
(1:2000, Encor Biotechnology, Gainsville, FL), guinea pig
anti-caspr  (1:2000, 085 [13]) and mouse anti-
synaptophysin (1:50, GeneTex, Irvine, CA)] in blocking
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solution for 24—48 hours at 4°C; (3) PBS, 6 x 5 min each;
(4) appropriate secondary antibodies in blocking solution
for 12-24 h at 4°C; (5) PBS, 6 x 5 min each. Control
experiments were performed without inclusion of pri-
mary antibodies, which yielded only background levels
of fluorescence (data not shown). Tissue sections were
examined with a Nikon C1 confocal microscope (Nikon
USA, Melville, NY) using a 20x objective and operating
with frame lambda (sequential) mode and saturation
indicator to prevent possible bleed-through between
488, 549 and 633 nm channels.

Quantitative analysis

Images of dorsal roots (3 sections each for n=4 rats),
sciatic nerves (3 sections each for n=4 rats) and DRG
(3 sections each for n=5 rats) were acquired, yielding
12, 12, and 15 separate images of dorsal root, sciatic
nerve and DRG tissue, respectively, for quantification.

For determination of co-localization of Nav1.7, periph-
erin, and neurofilament in sciatic nerve and dorsal root,
a line was placed on the images orthogonal to the axis of
the fibers, which extended from edge to edge of the tis-
sue (~350-500 pm). Navl.7 (red)-, peripherin (green)-
and NF (blue)-positive fibers (at least 10 um in length)
that intersected the line were counted separately and
merged (i.e. Navl.7 and peripherin = yellow). Percentage
of peripherin- or neurofilament-positive fibers expres-
sing Navl.7 was calculated as total number of
peripherin- or neurofilament-positive fibers co-localized
with Nav1.7 (i.e. yellow or violet, respectively) divided by
the total number of peripherin or neurofilament-positive
fibers (i.e. green or blue).

For determination of Navl.7 immunolabeling at nodes
of Ranvier, sections of sciatic nerve and dorsal root were
reacted with antibodies to Nav1.7 and caspr, which is a
marker of paranodes [37]. Images were acquired of every
small diameter (<1 um) node in the section, and the
percentage of Navl.7-positive nodes calculated.

To determine the number of DRG neurons expressing
Navl.7 (red), IB4 (green),CGRP (blue), peripherin
(green) and neurofilament (blue) in triple-labeled sec-
tions (i.e. Nav1.7, IB4 and CGRP; Navl.7, peripherin and
neurofilament), the number of positive neurons for each
channel was assessed. The numbers of neurons exhibit-
ing co-localization of Nav1.7/IB4, Nav1.7/CGRP, Nav1.7/
peripherin and Navl.7/neurofilament were then counted
and the percentage of neurons displaying colocalization
was calculated.
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