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Abstract

Background: Essential oils are often used in alternative medicine as analgesic and anti-inflammatory remedies.
However, the specific compounds that confer the effects of essential oils and the molecular mechanisms are largely
unknown. TRPM8 is a thermosensitive receptor that detects cool temperatures and menthol whereas TRPA1 is a
sensor of noxious cold. Ideally, an effective analgesic compound would activate TRPM8 and inhibit TRPA1.

Results: We screened essential oils and fragrance chemicals showing a high ratio of human TRPM8-activating
ability versus human TRPA1-activating ability using a Ca2+-imaging method, and identified 1,8-cineole in eucalyptus
oil as particularly effective. Patch-clamp experiments confirmed that 1,8-cineole evoked inward currents in HEK293T
cells expressing human TRPM8, but not human TRPA1. In addition, 1,8-cineole inhibited human TRPA1 currents
activated by allyl isothiocyanate, menthol, fulfenamic acid or octanol in a dose-dependent manner. Furthermore,
in vivo sensory irritation tests showed that 1,8-cineole conferred an analgesic effect on sensory irritation produced
by TRPA1 agonists octanol and menthol. Surprisingly, 1,4-cineole, which is structurally similar and also present in
eucalyptus oil, activated both human TRPM8 and human TRPA1.

Conclusions: 1,8-cineole is a rare natural antagonist of human TRPA1 that has analgesic and anti-inflammatory
effects possibly due to its inhibition of TRPA1.

Keywords: 1,8-cineole, Pain relief, TRP channels, TRPA1
Background
Essential oils are often used in alternative medicine as
analgesic and anti-inflammatory remedies. However, the
specific compounds that confer the effects of essential
oils and the molecular mechanisms are largely unknown.
For example, linalool, a monoterpene compound com-
monly found as a major component of several essential
oils has been reported to produce antinociception in two
different pain models in mice although the mechanism
of its analgesic effects is unknown [1].
Transient receptor potential (TRP) channels respond

to a wide variety of sensory stimuli, including tem-
perature, nociceptive compounds, touch, osmolarity, and
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pheromones [2-4]. TRPA1 is a TRP channel that func-
tions as a receptor for noxious cold temperatures and
allyl isothiocyanate (AITC), the pungent ingredient of
mustard oil [5-9]. Although the role of TRPA1 in sens-
ing noxious cold and somatic mechanosensation
in vivo remains unsettled, especially in mammals
[6,7,10], TRPA1 is an established chemical nocisensor
for a wide variety of reactive compounds. TRPA1 is a
receptor for the irritation induced by parabens on the
skin [11] and for pain produced by alkaline pH [12].
TRPA1 is also activated by flufenamic acid (FFA), 2-
aminoethoxydiphenyl borate (2-APB), icilin, menthol,
intracellular calcium or zinc ions [8,13-21]. However,
menthol has different effects on TRPA1 in human and
mouse. A previous study identified a bimodal action of
mouse TRPA1 (mTRPA1) gating by menthol: submi-
cromolar to low micromolar-concentrations of men-
thol cause robust channel activation, whereas higher
concentrations lead to a reversible channel block. Such
bimodal action is not observed on human TRPA1
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.



Takaishi et al. Molecular Pain 2012, 8:86 Page 2 of 12
http://www.molecularpain.com/content/8/1/86
(hTRPA1) [22,23]. TRPA1 has also been reported to be
involved in inflammation produced by several airway
irritants that cause asthma [24,25]. TRPA1 is an excita-
tory ion channel targeted by cold nociception and
inflammatory pain. Therefore, TRPA1 is considered to
be a promising target for use in identifying analgesic
drugs [26-31]. Moreover, TRPM8 is a thermosensitive
receptor that detects cool temperatures and menthol
[32,33], a natural non-reactive cooling compound, which is
also involved in antinociception to some extent [34,35].
Menthol, the main ingredient of peppermint, is used for
pain relief in daily life through TRPM8 activation [35,36].
However, high doses of menthol caused sensory irritation
[37] because it acts as a TRPA1 activator in humans [23].
Camphor, another essential oil component, is now known
to exert analgesic effects probably through inhibition of
TRPA1 [31] and activation of TRPM8 [38]. However,
camphor is not suited for use as an analgesic compound
because it causes a warm and hot sensation [39], probably
through TRPV1 activation [31]. Therefore, we thought an
effective analgesic compound would activate TRPM8 and
inhibit TRPA1, but not activate TRPV1.
Several TRP channels are known to be activated or

inhibited by plant-derived substances, such as menthol
and camphor, some of which are contained in essential
oils. Essential oils have been used for a long time and
their side effects are generally considered to be minimal.
Accordingly, essential oils, especially ones acting on TRP
channels, could be a promising source for the develop-
ment of analgesic agents.
Therefore, we have been screening essential oils for

the ability to activate human TRPM8 (hTRPM8) but not
hTRPA1, distinct from menthol. Through the screening,
we found that eucalyptus oil exhibited relatively high
hTRPM8-activating ability with less activation of
hTRPA1. Furthermore, 1,8-cineole, a main component
of eucalyptus oil, was identified as a novel natural antag-
onist of hTRPA1.

Results
Eucalyptus oil shows hTRPM8-activating ability with little
activation of hTRPA1
First, in order to find promising essential oils for devel-
opment of analgesics, we evaluated the effects of essen-
tial oils (0.01 wt%) by comparing their abilities to
activate hTRPM8 or hTRPA1 with that caused by 1 mM
menthol using a Ca2+-imaging method with Human em-
bryonic kidney-derived 293 T (HEK293T) cells expres-
sing hTRPM8 or hTRPA1. As expected, the effect of
peppermint oil presented as the fura-2 ratio (corre-
sponding to cytosolic Ca2+ concentrations) of changes
by peppermint oil to those caused by menthol, the main
component of peppermint oil, was nearly 1.0. Among
the essential oils examined, clove oil and eucalyptus oil
were found to exhibit some hTRPM8 activation
(Figure 1A). Although many of the examined essential
oils exhibited hTRPA1 activation like menthol, sage oil
and eucalyptus oil showed less hTRPA1 activation
(Figure 1B). When we calculated the Ratio of hTRPM8-
activating ability versus hTRPA1-activating ability by
simply dividing the values in Figure 1A by the values in
Figure 1B, the Ratio of eucalyptus oil was comparable to
that of peppermint oil and much higher than any other
oil examined (Figure 1C).

1,8-cineole activates hTRPM8 but not hTRPA1
Next, we examined the effects of fragrance chemicals,
many of which are contained in the essential oils tested
above. We compared the same parameters used for the
essential oils. As shown in Figure 2A and B, 1,8-cineole,
menthone and eugenol showed relatively high response
as measured by the sample/menthol fura-2 ratio in
HEK293T cells expressing hTRPM8 compared with
other chemicals. This is consistent with the observation
that peppermint oil, clove oil and eucalyptus oil, which
contain menthone, eugenol and 1,8-cineole, respectively,
similarly showed relatively high ratios (Figure 1A). Inter-
estingly, 1,8-cineole, but not menthone or eugenol,
showed a low fura-2 ratio changes in HEK293T cells
expressing hTRPA1 (Figure 2C, D). Although linalool
was reported to produce antinociception [1], the Ratio
of hTRPM8-activating ability versus hTRPA1-activating
ability for linalool was found to be low, suggesting it was
a poor candidate as an analgesic. Accordingly, the Ratio
of 1,8-cineole was found to be very high as shown in
Figure 2E. These data indicate that 1,8-cineole contained
in eucalyptus oil can activate hTRPM8 without activating
hTRPA1.

1,8-cineole acts on hTRPM8 and hTRPV3, but not on
hTRPV1, hTRPV2 or hTRPA1
In order to examine whether 1,8-cineole can activate other
TRP channels expressed in sensory neurons, we per-
formed Ca2+-imaging experiments using HEK293T cells
expressing hTRPV1 or hTRPV2 [6,24,32,33,35,40-44].
Treatment with 1,8-cineole increased the fura-2 ratio
(340 nm/380 nm) in HEK293T cells expressing hTRPM8,
but not in cells expressing hTRPA1, hTRPV1 or hTRPV2
(Figure 3A, B, D). These results are consistent with previ-
ous findings in rodent cell lines expressing these proteins.
Because 1,8-cineole, like menthol, was reported to activate
mouse TRPV3 in a Xenopus oocyte expression system
[38,45,46], we checked the effect of 1,8-cineole on
hTRPV3. Basal fura-2 ratio levels were slightly higher for
hTRPV3-expressing HEK293T cells compared to cells
expressing hTRPM8, hTRPA1, hTRPV1 or hTRPV2, prob-
ably because hTRPV3 can be activated by the warm tem-
peratures to which the cells are exposed in the incubation



Figure 1 Abilities of essential oils to activate hTRPM8 or hTRPA1. (A, B) Comparison of the effects of essential oils (0.01 wt%) on hTRPM8
(n = 34–134) (A) or hTRPA1 (n = 16–67) (B) using a Ca2+-imaging method with HEK293T cells expressing hTRPM8 or hTRPA1. Fura-2 ratio (340/
380 nm; cytosolic Ca2+ concentrations) increases by each oil were normalized to the fura-2 ratio increases by 1 mM menthol. (C) The Ratio of
hTRPM8-activating ability versus hTRPA1-activating ability by dividing the values in (A) by the values in (B).

Figure 2 Abilities of fragrance chemicals to activate hTRPM8 or hTRPA1. (A, C) Effects of 1,8-cineole on fura-2 ratio in HEK293T cells
expressing hTRPM8 (n = 32) (A) or hTRPA1 (n = 41) (C). (B, D) Comparison of the effects of fragrance chemicals (1 mM) on hTRPM8 (n = 16–80)
(B) or hTRPA1 (n = 30–90) (D). Fura-2 ratio increases by each chemical were normalized to the fura-2 ratio increases by 1 mM menthol.
(E) The Ratio of hTRPM8-activating ability versus hTRPA1-activating ability by dividing the values in (B) by the values in (D).
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Figure 3 Effects of 1,8-cineole on fura-2 ratio in HEK293T cells. (A-C) Fura-2 ratio changes upon 1,8-cineole (5 mM) application in cells
expressing hTRPV1 (n = 65) (A), hTRPV2 (n = 26) (B) or hTRPV3 (n = 79) (C). CAP (capsaicin), LPC (lysophosphatidylcholine), 2-APB
(2-aminoethoxydiphenyl borate). Horizontal bars indicate duration of the applied stimuli. (D) 1,8-cineole caused significant fura-2 ratio increases in
HEK293T cells expressing hTRPM8 (n = 32) or hTRPV3 (n = 79), but not in cells expressing hTRPV1 (n = 65), hTRPV2 (n = 26) or hTRPA1 (n = 41).
Statistical significance was evaluated using ANOVA followed by two-tailed multiple t-test with Bonferroni correction. *: p < 0.05.
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conditions (Figure 3C). 1,8-cineole caused small but sig-
nificant fura-2 ratio increase as expected (Figure 3C, D).

1,4-cineole activates hTRPM8 and hTRPA1 expressed in
HEK293T cells
Since eucalyptus oil contains not only 1,8-cineole but
also 1,4-cineole, and because these chemicals have
Figure 4 1,4-cineole activates hTRPM8 and hTRPA1. (A) Molecular struc
increased fura-2 ratio (340/380 nm) in cells expressing hTRPM8 (n = 35). (C)
similar structures (Figure 4A), the actions of 1,4-cineole
on hTRPM8 and hTRPA1 were assessed using a
Ca2+-imaging method. Surprisingly, 1,4-cineole (5 mM)
caused fura-2 ratio increases not only in cells expressing
hTRPM8 (Figure 4B), but also in cells expressing
hTRPA1 (Figure 4C). This result might explain the ap-
parent difference in the effects between eucalyptus oil
tures of menthol, camphor, 1,8-cineole and 1,4-cineole. (B) 1,4-cineole
1,4-cineole increased fura-2 ratio in cells expressing hTRPA1 (n = 17).
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and 1,8-cineole regarding the ratio of hTRPM8-
activating versus hTRPA1-activating abilities (Figure 1C,
2E) in which the ratio for 1.8-cineole is very low while
the ratio for eucalyptus oil is comparable to that of
peppermint oil.

1,4-cineole but not 1,8-cineole activates hTRPA1
Next, we performed patch-clamp experiments to confirm
the effects of 1,8-cineole and 1,4-cineole on hTRPM8
and hTRPA1 expressed in HEK293T cells. Both 1,8- and
1,4-cineole (5 mM) evoked inward currents with out-
wardly rectifying current–voltage (I-V) relationship in
cells expressing hTRPM8 (Figure 5A, C). On the other
hand, 1,8-cineole (5 mM) did not activate hTRPA1 in
cells responding to AITC, a TRPA1 agonist, while 1,4-
cineole evoked an inward current with outwardly rectify-
ing I-V relationship in cells expressing hTRPA1
(Figure 5B, D), showing that similar structural chemicals
exhibited different effects on hTRPA1. Menthol has bi-
modal action on mTRPA1; lower concentrations of men-
thol activate mTRPA1 whereas higher concentrations of
menthol inhibit it [22]. To confirm whether low concen-
trations of 1,8-cineole activate hTRPA1, we performed
Figure 5 Effects of 1,8- or 1,4-cineole on HEK293T cells expressing hT
(A) with an outwardly rectifying current–voltage relationship, but not hTRP
outwardly rectifying current–voltage relationship. The insets (A, C and D) in
the left trace.
patch-clamp experiments. 10 μM and 100 μM 1,8-cineole
did not activate hTRPA1 in cells responding to AITC
(data not shown).

1,8-cineole inhibits hTRPA1 currents activated by
different agonists
Because 1,8-cineole has analgesic and anti-inflammatory
effects in vivo [47,48], we hypothesized that 1,8-cineole
inhibits TRPA1 [24]. hTRPA1 currents induced by AITC
(20 μM), a TRPA1 agonist that acts through cysteine co-
valent modification [19,20], were inhibited by 1,8-cineole
in a dose-dependent manner with a half-maximal inhib-
ition (IC50) of 3.4 ± 0.6 mM (Figure 6A, B). The effects of
1,8-cineole on hTRPA1 activated by other TRPA1 ago-
nists were also determined. Several TRPA1 agonists with
different activation mechanisms were chosen: menthol,
which seems to interact specifically with residues within
transmembrane domain 5 to gate TRPA1 [22]; flufenamic
acid (FFA), thought to be a cysteine-nonreactive com-
pound [21]; and octanol, whose action is largely un-
known [49]. For menthol- or FFA-evoked hTRPA1
currents, we measured the current responses in the ab-
sence of extracellular Ca2+ to minimize desensitization
RPM8 or hTRPA1. (A, B) 1,8-cineole (5 mM) activated hTRPM8
A1 (B). (C, D) 1,4-cineole activated both hTRPM8 and hTRPA1 with an
dicate the current–voltage relationship at the point indicated by * in



Figure 6 1,8-cineole inhibits but does not activate hTRPA1-mediated currents in HEK293T cells. (A) A representative AITC (20 μM)-evoked
hTRPA1 current that was inhibited by 1,8-cineole in a dose-dependent manner in the absence of extracellular Ca2+. (B) Dose-dependent
inhibition of AITC (20 μM)-evoked hTRPA1 current by 1,8-cineole. IC50 and Hill’s coefficient values are 3.4 ± 0.6 mM and 1.7 ± 0.4, respectively. Data
are shown as the mean ± SEM (n = 5–8). (C) A representative whole-cell menthol (500 μM)-evoked hTRPA1 current that was inhibited by 1,8-
cineole (5 mM) in the absence of extracellular Ca2+. (D) Dose-dependent inhibition of menthol (500 μM)-evoked hTRPA1 current by 1,8-cineole.
IC50 and Hill’s coefficient values are 0.5 ± 0.1 mM and 1.0 ± 0.2, respectively. Data are shown as the mean ± SEM (n = 5–8). (E) A representative
whole-cell FFA (100 μM)-evoked hTRPA1 current that was inhibited by 1,8-cineole (5 mM) in the absence of extracellular Ca2+. (F) Dose-
dependent inhibition of FFA (100 μM)-evoked hTRPA1 current by 1,8-cineole. IC50 and Hill’s coefficient values are 5.3 ± 0.1 mM and 2.4 ± 0.8,
respectively. Data are shown as the mean ± SEM (n = 6–8). (G) A representative whole-cell octanol (1 mM)-evoked hTRPA1 current that was
inhibited by 1,8-cineole (5 mM) in the presence of extracellular Ca2+. (H) 1,8-cineole did not inhibit hTRPV1 (n = 25), hTRPV2 (n = 50) or hTRPV3
(n = 32 responses) by capsaicin, 2-APB or cocktail (2-APB + carvacrol), respectively.

Takaishi et al. Molecular Pain 2012, 8:86 Page 6 of 12
http://www.molecularpain.com/content/8/1/86



Takaishi et al. Molecular Pain 2012, 8:86 Page 7 of 12
http://www.molecularpain.com/content/8/1/86
similarly to the experiment examining the effects on
AITC-evoked currents. For examination of octanol-
evoked hTRPA1 currents, we collected patch-clamp
recordings in the presence of extracellular Ca2+ because
octanol-evoked responses were too small to analyze in the
absence of extracellular Ca2+ (data not shown), thus lead-
ing to difficulties in plotting a dose-dependent curve.
Similar to hTRPA1 currents activated by AITC, hTRPA1
currents activated by menthol (500 μM) or FFA (100 μM)
were inhibited by 1,8-cineole in a dose-dependent manner
with an IC50 value of approximately 0.5 ± 0.1 or 5.3 ±
0.1 mM, respectively (Figure 6C, D, E, F). Octanol
(1 mM)-evoked hTRPA1 currents were inhibited revers-
ibly by 1,8-cineole (5 mM) (Figure 6G). These results
again suggest that 1,8-cineole is an antagonist of hTRPA1.
Interestingly, AITC-, menthol-, or FFA-evoked currents
were increased upon washout of 1,8-cineole (Figure 6A,
C, E) probably through the release of blocking by 1,8-
cineole. We confirmed that 1,8-cineole did not inhibit
hTRPV1, hTRPV2 and hTRPV3 responses activated by
capsaicin, 2-APB and cocktail (2-APB + carvacrol), re-
spectively (Figure 6H).

1,8-cineole inhibits mouse DRG neuron activated by
TRPA1 agonist
To confirm the inhibitory effect of 1,8-cineole on TRPA1
in native sensory neurons, we performed Ca2+-imaging
experiments using isolated mouse dorsal root ganglion
(DRG) neurons. We examined the ability of 1,8-cineole
to inhibit fura-2 ratio increases by AITC. Almost all
AITC-sensitive neurons were inhibited by 1,8-cineole
(5 mM) and the inhibition was statistically significant
(Figure 7).

1,8-cineole inhibits sensory irritation caused by hTRPA1
agonists in vivo
To confirm the inhibitory effect of 1,8-cineole on
hTRPA1 in vivo, sensitive human subjects were recruited
Figure 7 Inhibitory effect of 1,8-cineole in mouse DRG neurons. (A) In
increases caused by 100 μM AITC (n = 42). (B) 1,8-cineole can significantly i
neurons ( n = 42). Statistical significance was made by using ANOVA with t
for sensory irritation tests. Sensory irritation caused by
1,8-cineole itself was comparable to that by vehicle alone
(Figure 8A, B), indicating that 1,8-cineole does not cause
sensory irritation. Next, we examined inhibitory effect of
1,8-cineole with concomitant application of the TRPA1
agonist octanol [49] and 1,8-cineole. Octanol (0.2 wt%)
caused sensory irritation for 7 min with a gradual in-
crease after application (Figure 8C), as was previously
reported [50]. The octanol-induced sensory irritation was
significantly reduced by concomitant application of 1,8-
cineole at the 7 min time point (Figure 8C). Analysis of
the total sensory irritation score indicated that 1,8-
cineole significantly inhibited sensory irritation caused by
octanol (Figure 8D). This further supports the inhibitory
action of 1,8-cineole on octanol-induced irritation, which
could involve regulation of TRPA1 activity. Menthol is
known to activate both TRPM8 and TRPA1 which can
simultaneously cause comforting and irritating sensa-
tions. In order to examine whether 1,8-cineole can re-
duce the menthol-induced irritation, we applied menthol
with or without 1,8-cineole. Concomitant application of
menthol with 1,8-cineole significantly reduced irritation
probably through inhibition of TRPA1 by 1,8-cineole
(Figure 8E, F).

Discussion
In this study, we screened several essential oils and fra-
grance chemicals to find substances that activate
hTRPM8 but not hTRPA1, which presumably cause a
comforting sensation. We identified 1,8-cineole as a
substance with these properties although we used one
concentration of 1,8-cineole (5 mM). Furthermore, 1,8-
cineole could inhibit hTRPA1, suggesting this substance
might act as an analgesic.
TRPA1 is an excitatory ion channel targeted by pun-

gent irritants such as those from mustard oil and garlic
and is thought to function in diverse sensory processes,
including cold nociception and inflammatory pain.
hibitory effects of 1,8-cineole (5 mM) on fura-2 ratio (340/380 nm)
nhibit fura-2 ratio increases caused by AITC (100 μM) in mouse DRG
he Bonferroni’s post-hoc test. *: p < 0.05 **: p < 0.01.



Figure 8 Inhibitory effect of 1,8-cineole in sensory irritation tests in humans. (A and B) 0.5 (wt%) 1,8-cineole did not cause a difference of
sensory irritation scores compared with vehicle (n = 10). (C) Sensory irritation caused by 0.2 (wt%) octanol was significantly inhibited by
concomitant application of 0.1 (wt%) 1,8-cineole 7 min after application. (D) Total score of sensory irritation by octanol was significantly inhibited
by 1,8-cineole. Statistical significance was evaluated using Wilcoxon signed-rank test. *: p < 0.05. n = 11. (E) Sensory irritation caused by 0.5 (wt%)
menthol was significantly inhibited by concomitant application of 0.5 (wt%) 1,8-cineole 5 min after application. (F) Total score of sensory irritation
by menthol was significantly inhibited by 1,8-cineole. Statistical significance was evaluated using Wilcoxon signed-rank test. *: p < 0.05. n = 11.
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Therefore, TRPA1 is considered to be a promising target
for use in identifying analgesic drugs. A natural analgesic
compound that does not accelerate pain signaling is de-
sirable for pharmaceutical or cosmetic pain relief. Sev-
eral reports showed that TRPA1 antagonists, such as
ruthenium red, HC-030031, AMG5445, A967079 and
camphor, possess analgesic properties [26-31]. Of these,
camphor is the only naturally occurring compound and
is often used in cosmetics because of its minimal adverse
effects. However, camphor is not suited for use as an
analgesic compound because it causes a warm and hot
sensation [39]. It has become clear that this warm and
hot sensation is mediated through activation of TRPV1
[31,38]. Moreover, TRPM8 contributes to sensing un-
pleasant cold stimuli or mediating the effects of cold an-
algesia [34,35]. Although menthol, the main ingredient
of peppermint, is used for pain relief in daily life through
TRPM8 activation [35], its ability to activate hTRPA1
restricts widespread use of menthol as an analgesic [36].
Therefore, chemicals that activate TRPM8 and inhibit
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TRPA1, but do not activate TRPV1, would be ideal as
analgesic agents.
We found that activation of hTRPA1 induced by several

agonists with different activation mechanisms can be
inhibited by 1,8-cineole. Moreover, 1,8-cineole activated
hTRPM8 and hTRPV3, but not hTRPA1, hTRPV1 or
hTRPV2. It was recently shown that both peripheral and
central activation of TRPM8 could produce an analgesic
effect that specifically reverses the sensitization of behav-
ioral reflexes elicited by peripheral nerve injury [34-36].
From this point of view, 1,8-cineole appears to be an ideal
natural analgesic that activates hTRPM8 and inhibits
hTRPA1.
1,8-cineole is known to act as an agonist of the

TRPM8 channel with lower efficacy and potency (3.4 ±
0.4 mM) on TRPM8 than menthol [32,38]. 1,8-cineole
also activates the TRPV3 channel in mice, but not the
western clawed frog TRPV3 [45]. Furthermore, 1,8-
cineole inhibits the chemical nociception produced by
several irritants, and has an anti-inflammatory efficacy
in patients with severe asthma [51]. The present study
suggests that the known analgesic and anti-inflammatory
actions of 1,8-cineole can be attributed to its TRPM8-
activating and TRPA1-inhibiting abilities.
1,8-cineole has a fresh smell and elicits a cooling sen-

sation when ingested or applied to the skin and is a
common additive in flavorings, food, mouthwashes and
cough suppressants. 1,8-cineole is also often used in
aromatherapy, as a stimulant in skin baths, by the
pharmaceutical industry in drug formulations to en-
hance percutaneous penetration and as a decongestant
and antitussive [52-54]. Experimental data have shown
that 1,8-cineole is an analgesic and anti-inflammatory
agent with beneficial effects for patients with severe
asthma [51]. Although inhibitory effects of 1,8-cineole
on the formation of prostaglandins and cytokines by sti-
mulated monocytes have been observed in vitro, the mo-
lecular targets and mechanisms of the analgesic effect of
1,8-cineole remain unclear [55].
In a human study, we examined whether 1,8-cineole

could inhibit sensory irritation caused by octanol and
menthol with senseitive volunteers. Because of the clin-
ical setting, especially in the cosmetic research field,
both menthol and octanol are well-known chemicals
causing skin irritation, and neither cinnnamaldehyde nor
allicin is used for human skin studies. The result that
1,8-cineole, whose ability to activate TRPM8 is lower
than menthol, inhibited menthol-evoked skin irritation
clearly suggests that the inhibitory effects of 1,8-cineole
are probably due to inhibition of TRPA1 but not activa-
tion of TRPM8.
The inhibitory effects of 1,8-cineole on menthol-

induced hTRPA1 activation was a little greater than
those for AITC- or FFA-induced hTRPA1 activation
(Figure 6B, D, F). Menthol has bimodal action through
transmembrane domain 5 of TRPA1 in some species
[22]. Therefore, the similarity between the molecular
structures of menthol and 1,8-cineole (Figure 4A) sug-
gests that 1,8-cineole could act on the same domain of
TRPA1 as menthol, although the structural basis for
menthol-evoked hTRPA1 activation is not known. Four
compounds with similar structures (Figure 4A) exhibited
different effects on hTRPM8 and hTRPA1: i) menthol
and 1,4-cineole activate both hTRPM8 and hTRPA1 [56];
ii) camphor inhibits hTRPA1 [31]; iii) 1,8-cineole
activates hTRPM8 and inhibits hTRPA1 (Figures 2, 3, 4).
The fact that the four compounds exhibit promiscuous
effects on hTRPM8 and hTRPA1 suggests that more
detailed analyses would lead to a better understanding of
the structural basis for the action of these compounds on
TRPM8 and TRPA1.
Conclusions
1,8-cineole was found to be a rare natural antagonist of
hTRPA1. 1,8-cineole activates hTRPM8 but inhibits
hTRPA1 activated by several agonists. Moreover, the
sensory irritation caused by octanol or menthol, TRPA1
agonists, was inhibited by concomitant 1,8-cineole ap-
plication in humans. Thus, the analgesic and anti-
inflammatory effects of 1,8-cineole might be related to
its capacity to inhibit TRPA1 activity, suggesting there
may be many effective uses for 1,8-cineole based on its
unique action on TRPM8 and TRPA1.
Methods
Molecular cloning
Full-length hTRPA1, hTRPM8, hTRPV1, and hTRPV2
were obtained from Life Technologies (Carlsbad, CA,
USA) and hTRPV3 was generously provided by Dr.
Hwang (Korea University). cDNAs were cloned into the
pcDNA3.1 vector.
Cell culture
HEK293T cells were maintained in DMEM (WAKO Pure
Chemical Industries, Ltd., Osaka, Japan) supplemented
with 10% FBS (Biowest SAS, Caille, France), 100 units/mL
penicillin (Life Technologies Corp., Carlsbad, CA, USA),
100 μg/mL streptomycin (Life Technologies Corp.), and
2 mM L-glutamine (GlutaMAX, Life Technologies Corp.)
at 37°C in 5% CO2. For Ca

2+-imaging, 1 μg plasmid DNA
containing hTRPA1, hTRPV1, hTRPV2, hTRPV3 or
hTRPM8 in pcDNA3 in OPTI-MEM medium (Life Tech-
nologies Corp.) were transfected into HEK293T cells using
Lipofectamine Plus Reagent (Life Technologies Corp.).
After incubating for 3 to 4 h, the cells were reseeded on
coverslips and further incubated at 37°C in 5% CO2.



Table 1 Sensory irritation scores

Sensory perception Score Scoring criteria

5 Unbearable intense sensation

Itching 4

Slightly unusual 3 Distinct sensation

Stinging pain 2

Burning sensation 1 Obscure sensation
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Animals
Male C57BL/6 mice (4–5 weeks, SLC, Shizuoka, Japan)
were used. Animals were housed in a controlled environ-
ment (12 h light/dark cycle, room temperature 22–24°C,
50–60% relative humidity) with free access to food and
water. All procedures involving the care and use of ani-
mals were approved by The Institutional Animal Care and
Use Committee of National Institutes of Natural Sciences
and performed in accordance with the Guide for the Care
and Use of Laboratory Animals (National Institutes of
Health publication number 85–23, revised 1985).

Preparation of primary mouse DRG neurons
Mouse dorsal root ganglions (DRGs) were dissected
from mice, incubated with 1.25 mg/mL collagenase
(Sigma-Aldrich) at 37°C for 15 min, and dissociated
using mechanical trituration. After filtration with a cell
strainer (70 μm, BD, Franklin Lakes, USA), cells were
plated on poly-D-lysine-coated coverslips and incubated
in medium (MEM supplemented with 10% FBS, penicil-
lin, streptomycin, and l-glutamine) containing nerve
growth factor (100 ng/mL).

Human subjects
Japanese male subjects in their 20s and 30s were selected
as participants to eliminate confounding factors that may
influence the perception of sensitive skin, including race,
age, gender, and hormonal and psychosocial interactions.
To evaluate sensory irritation, we selected skin sensitive
male volunteers. Female volunteers were excluded because
of possible hormonal influences. Ethics approval and
informed consent was obtained from all participants.

Ca2+-imaging
Ca2+-imaging was performed 1 day after transfection.
HEK293T cells on coverslips were mounted in an open
chamber and superfused with standard bath solution
(140 mM NaCl, 5 mM KCl, 2 mM MgCl2, 2 mM CaCl2,
10 mM HEPES, 10 mM glucose, pH 7.4). Cytosolic-free
Ca2+ concentrations in HEK293T cells were measured
by dual-wavelength fura-2 (Molecular Probes, Invitrogen
Corp.) microfluorometry with excitation at 340/380 nm
and emission at 510 nm. The fura-2 ratio image was cal-
culated and acquired using the IP-Lab imaging proces-
sing system (Scanalytics Inc., Fairfax, VA USA).

Electrophysiology
Whole-cell patch-clamp recordings were performed
1 day after transfection. The standard bath solution was
the same as that used in the Ca2+-imaging experiments,
and extracellular Ca2+ was removed and 5 mM EGTA
was added for the recording of AITC-, menthol- and
FFA-induced current responses. The pipette solution
contained 140 mM KCl, 5 mM EGTA, 10 mM HEPES,
pH 7.4 (adjusted with KOH). Data from whole-cell volt-
age-clamp recordings were sampled at 10 kHz and fil-
tered at 5 kHz for analysis (Axon 200B amplifier with
pCLAMP software, Axon Instruments, Sunnyvale, CA,
USA). Membrane potential was clamped at −60 mV and
voltage ramp-pulses from −100 to +100 mV (500 ms)
were applied every 5 sec. All experiments were per-
formed at room temperature.

Sensory irritation tests
The study was conducted at a temperature of 21–23°C
and a relative humidity of 45-55%. Areas of skin were
cleaned with a wet towel and acclimatized for 10 min prior
to testing. Blind randomized half-region (left vs. right)
trials were performed with two different samples applied
to the neck region. A total of 200 μl of base was applied.
The subjects evaluated pricking, stinging, burning and
itching sensations after 1, 3, 5, 7 and 10 min of com-
pound/chemical application in accordance with the cri-
teria summarized in Table 1. The total sensory irritation
scores were calculated for the entire period.

Data analysis
Data in all figures are shown as means ± standard error of
the mean (SEM). Statistical significance of effects of 1,8-
cineole on several TRP channels were evaluated using
ANOVA followed by two-tailed multiple t-test with
Bonferroni correction, inhibitory effects of 1,8-cineole on
mouse DRG neuron activation were made by using
ANOVA with the Bonferroni’s post-hoc test. Sensory irrita-
tion tests were evaluated using a Wilcoxon signed-rank test.

Abbreviations
AITC: Allyl isothiocyanate; FFA: Flufenamic acid; HEK: Human embryonic
kidney; TRPA1: Transient receptor potential ankyrin 1; TRPM8: Transient
receptor potential melastatin 8; TRPV: Transient receptor potential vanilloid;
CAP: Capsaicin; LPC: Lysophosphatidylcholine; 2-APB: 2-aminoethoxydiphenyl
borate.
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