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Abstract

administration of Ang Il into mice.

Background: It has been demonstrated that angiotensin Il (Ang Il) participates in either the inhibition or the
facilitation of nociceptive transmission depending on the brain area. Neuronal Ang Il is locally synthesized not only
in the brain, but also in the spinal cord. Though the spinal cord is an important area for the modulation of
nociception, the role of spinal Ang Il in nociceptive transmission remains unclear. Therefore, in order to elucidate
the role of Ang Il in nociceptive transmission in the spinal cord, we examined the effect of intrathecal (i.t)

Results: |t. administration of Ang Il produced a behavioral response in mice mainly consisting of biting and/or licking
of the hindpaw and the tail along with slight hindlimb scratching directed toward the flank. The behavior induced by
Ang Il (3 pmol) was dose-dependently inhibited by intraperitoneal injection of morphine (0.1-0.3 mg/kg), suggesting
that the behavioral response is related to nociception. The nociceptive behavior was also inhibited dose-dependently
by it. co-administration of losartan (0.3-3 nmol), an Ang Il type 1 (AT;) receptor antagonist, and SB203580 (0.1-1 nmol),
a p38 MAPK inhibitor. However, the Ang Il type 2 (AT,) receptor antagonist PD123319, the upstream inhibitor of ERK1/2
phosphorylation U0126, and the JNK inhibitor SP600125 had no effect on Ang Il-induced nociceptive behavior. Western
blot analysis showed that the it. injection of Ang Il induced phosphorylation of p38 MAPK in the lumbar dorsal spinal

cord, which was inhibited by losartan, without affecting ERK1/2 and JNK. Furthermore, we found that AT, receptor
expression was relatively high in the lumbar superficial dorsal horn.

Conclusions: Our data show that i.t. administration of Ang Il induces nociceptive behavior accompanied by the
activation of p38 MAPK signaling mediated through AT, receptors. This observation indicates that Ang Il may act as a
neurotransmitter and/or neuromodulator in the spinal transmission of nociceptive information.

Background

Angiotensin II (Ang II), a main bioactive component of the
renin-angiotensin system (RAS), plays a critical role in sym-
pathetic regulation, cardiovascular control, fluid balance
and hormone secretion (for review, see Refs [1,2]). In the
RAS, renin converts angiotensinogen to angiotensin I (Ang
I), which in turn is cleaved by angiotensin-converting en-
zyme (ACE) to Ang II. Ang II mediates its biological effects

* Correspondence: koichi@tohoku-pharm.ac.jp

'Department of Pharmacology, Tohoku Pharmaceutical University, 4-4-1
Komatsushima, Aoba-ku, Sendai 981-8558, Japan

Full list of author information is available at the end of the article

( BioMed Central

through Ang II type 1 (AT)) receptors and Ang II type 2
(AT,) receptors, which are seven transmembrane receptors
with approximately 30% amino acid sequence similarity.
Most species express a single type of AT, receptors, but
two related AT, and AT g receptor subtypes are expressed
in rodents (for review, see Ref [3]). Ang II is not only gener-
ated by circulating ACE, but also produced locally in tis-
sues. The existence of local tissue-based RAS, independent
of the classical circulating RAS, has been established in sev-
eral organs (for review, see Ref [4]). The tissue RAS is
characterised by the presence of all RAS components, in-
cluding angiotensinogen, renin, ACE, Ang I, Ang II and
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Ang II receptors, and is found in the heart [5], blood vessels
[6], kidney [7], pancreas [8], brain [9] and adipose tissue
[10]. Evidence indicates that Ang II is involved in the
modulation of nociceptive transmission. Namely, Ang II
causes hyperalgesia in the caudal ventrolateral medulla
(CVLM) [11] and hypoalgesia in the periaqueductal gray
(PAG) and the rostral ventromedial medulla (RVM)
[12-14]. However, the role of spinal Ang II in the modula-
tion of nociceptive transmission remains unclear.

Ang II acts as an activator of mitogen-activated protein
kinase (MAPK) [15-17], a family of Ser/Thr kinases that
convert extracellular stimuli into a wide range of cellular
responses. The MAPKs include extracellular signal-
regulated kinase (ERK) 1/2, c-Jun N-terminus kinase (JNK)
and p38 MAPK. These MAPKs have common activation
motif (T-X-Y), which are phosphorylated by MAPK kinase.
It has been reported that ERK1/2 and JNK are activated in
several pain models involving peripheral inflammation,
noxious heat and electric stimulation, and that the corre-
sponding nociceptive behaviors are blocked by their re-
spective kinases inhibitor [18-21]. In addition, p38 MAPK,
which is activated by cellular stress and proinflammatory
cytokines, is considered as a stress-induced kinase and
plays a critical role in inflammatory responses. Spinal p38
MAPK is activated by complete Freund's adjuvant (CFA)-
induced peripheral inflammation and nociceptive responses
accompanying the inflammation are markedly decreased by
p38 MAPK inhibitor [22]. Inhibition of p38 MAPK also re-
duces the mRNA expression of proinflammatory cytokines
such as IL-1f, IL-6 and TNFa [22]. These observations in-
dicate that ERK1/2, INK and p38 MAPK are involved in
the facilitation of nociceptive transmission.

We have previously found that intrathecal (i.t.) adminis-
tration into mice of dynorphin [23,24], spermine [25], D-
cycloserine [26] and serotonin releaser [27] produces
nociceptive behavior. In the present study, we found that
i.t.-administered Ang II also produced nociceptive behav-
ior. To gain insight into the mechanism of Ang II-induced
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nociceptive behavior, we determined whether Ang II re-
ceptor subtypes and MAPK signaling were involved.

Results

Behavioral response induced by i.t.-administered Ang Il
Lt.-administered Ang II (3 pmol) produced a characteristic
behavioral response consisting of scratching, biting and
licking, which almost disappeared 25 min after the injection
(Figure 1a). Two-way repeated-measures ANOVA revealed
significant effects of the treatment (F5=6.89, p<0.05)
and time (Fs599 =241, p<0.05) but not treatment x time
interaction (F5g90=0.89, p=0.17). As seen in Figure 1b, a
dose-dependent increase in the total time of scratching, bit-
ing and licking for 25 min was observed following it.
administration of Ang II (1-3 pmol). One-way ANOVA
revealed a significant effect of treatment (F336=3.47,
p < 0.05). A post-hoc test demonstrated a significant in-
crease in the behavioral responses induced by injection of
Ang II (3 pmol) compared to the Ringer-administered
group (p <0.05). Therefore, the latter dose of Ang II was
used in subsequent injections which were followed by a
25 min observation period.

To determine whether the Ang II-induced behavior is
related to nociception, we examined the effect of a pre-
treatment with morphine. As shown in Figure 2, mor-
phine (0.1-0.3 mg/kg, i.p.) inhibited the Ang II-induced
behavior in a dose-dependent manner with an ID50
value of 0.19 (0.14-0.27) mg/kg, suggesting that the be-
havioral response is related to nociception (one-way
ANOVA analysis, Fy45=3.34, p<0.05; post hoc test,
p < 0.01 for Ringer versus Ang II, p < 0.05 for Ang II ver-
sus Ang II plus 0.3 mg/kg morphine).

Effects of Ang Il receptor antagonists on Ang ll-induced
nociceptive behavior

To determine which type of Ang II receptors is in-
volved in the nociceptive behavior, we compared the
effects of losartan, an AT; receptor antagonist, to
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Figure 1 Scratching, biting and licking responses induced by i.t.-administered Ang Il in mice. (a) Time course of behavioral response
induced by Ang Il (3 pmol) or Ringer's solution alone. The ordinate shows the total time of scratching, biting and licking that occurred during
each 5 min of measurement. (b) Effects of varying doses of Ang Il (1-3 pmol/mouse). The duration of scratching, biting and licking induced by
Ang Il or Ringer's solution was determined over a 25 min period starting immediately after i.t. injection. Values represent the means + S.E.M. for

N

o 150
£z
g-E *k
s € 100
[LT)
s<
58 50
gL
D
o
0
Ringer 1 1.73 3

Angiotensin Il (pmol, i.t.)




Nemoto et al. Molecular Pain 2013, 9:38
http://www.molecularpain.com/content/9/1/38

150+

—_

o

o
1

a
o
f

Behavioral Response
(sec /25 min)

0 T
Ringer

Ringer 0.1

Morphine (mg/kg, i.p.)

Angioteisin Il (3 pmol, i.t.)

Figure 2 Effect of morphine on Ang ll-induced scratching,
biting and licking responses in mice. Morphine was administered
i.p. 5 min prior to injection of Ang Il (3 pmol). The duration of
scratching, biting and licking induced by Ang Il was determined over a
25 min period starting immediately after it. injection. Values represent
the means + SEM. for groups of 10 mice. **p < 0.01 compared with
Ringer controls and # p < 0.05 compared with Ang Il alone.

PD123319, an AT2 receptor antagonist. Losartan (0.3-
3 nmol) co-administered i.t. with Ang II caused a dose-
dependent inhibition of Ang II-induced nociceptive behavior
with an ID50 value of 0.55 (0.47-0.63) nmol (one-way
ANOVA analysis, Fy45=3.45, p<0.05; post hoc test,
p<0.01 for Ringer versus Ang II, p <0.05 for Ang II
versus Ang II plus 1 and 3 nmol losartan, Figure 3a). In
contrast, i.t.-administered PD123319 (1 and 3 nmol)
did not affect the nociceptive behavior induced by Ang
II (one-way ANOVA analysis, F3 36 = 2.74, p < 0.05; post
hoc test, p >0.05 for Ang II versus Ang II plus 1 and
3 nmol PD123319, Figure 3b). These results indicate i.t.
Ang II-induced nociceptive behavior is mediated through
AT receptors but not through AT, receptors.
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Distribution of AT, receptors in mouse spinal cord

The distribution of AT, receptor fluorescence intensity in
mouse spinal cord (L5) was determined by microphotom-
etry and categorized into 18 levels (shown as different
colors in Figure 4b, with the lowest concentration shown as
black and the highest concentration represented by white).
Relatively high intensity of AT, receptor fluorescence was
seen in the superficial dorsal horn (laminae I and II).

Effects of MEK and MAPK inhibitors on Ang ll-induced
nociceptive behavior

The role of ERK1/2, JNK and p38 MAPK signaling in Ang
[I-induced nociceptive behavior was examined using the
inhibitors U0126, SP600125, and SB203580, respectively.
U0126 (1 and 3 nmol) co-administered i.t. with Ang II did
not affect the nociceptive behavior induced by Ang II
(one-way ANOVA analysis, F336=5.11, p <0.01; post hoc
test, p > 0.05 for Ang II versus Ang II plus 1 and 3 nmol
U0126, Figure 5a). Similarly, SP600125 (0.3 and 3 nmol)
did not affect the nociceptive behavior induced by Ang II
(one-way ANOVA analysis, F3 36 =5.82, p <0.01; post hoc
test, p > 0.05 for Ang II versus Ang II plus 0.3 and 3 nmol
SP600125, Figure 5b). On the other hand, i.t.-administered
SB203580 (0.1-1 nmol) caused a dose-dependent inhib-
ition of Ang II — induced nociceptive behavior with an
ID50 value of 0.34 (0.32-0.37) nmol (one-way ANOVA
analysis, Fy45=4.72, p<0.01; post hoc test, p <0.05 for
Ang II versus Ang II plus 1 nmol SB203580, Figure 5c¢).
These results suggest that p38 MAPK, but not ERK1/2
and JNK is critically involved in the nociceptive behavior
produced by Ang IL

Phosphorylation of MAPKs in the dorsal spinal cord after
i.t. injection of Ang Il

To investigate whether spinal MAPKs were activated by
i.t. injection of Ang II (3 pmol), we examined the phos-
phorylation of ERK1/2, JNK and p38 MAPK in the
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Figure 3 Effects of Ang Il receptor antagonists on i.t. Ang ll-induced nociceptive behavior in mice. Losartan (a) or PD123319 (b) was
co-administered i.t. with Ang Il (3 pmol). The duration of scratching, biting and licking induced by Ang Il was determined over a 25 min period
starting immediately after it. injection. Values represent the means + S.EM. for groups of 10 mice. **p < 0.01 compared with Ringer or vehicle
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Figure 4 Distribution of the immunohistochemical fluorescence intensity for AT, receptors in mouse lumbar spinal cord (L5). (a) Diagram
representing segment L5 of the spinal cord. (b) Quantitative immunohistochemical distribution of AT, receptors in the lumbar spinal cord.
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lumber dorsal cord extracted 10 min after i.t. injection
by Western blotting. Ang II did not affect the phosphor-
ylation of ERK1/2 (t=0.47, p > 0.05, Figure 6a) and JNK
(¢=0.97, p > 0.05, Figure 6b). As shown in Figure 6¢ and
d, Ang II increased the phosphorylation of p38 MAPK in
the lumber dorsal cord. In addition, as seen in Figure 6c,
losartan inhibited the p38 MAPK phosphorylation in-
duced by Ang II (one-way ANOVA analysis, Fgq =4.50,
p <0.05; post hoc test, p<0.05 for Ang II versus Ang II
plus 3 nmol losartan). In contrast, PD123319 did not
affect the p38 MAPK phosphorylation induced by Ang II

(one-way ANOVA analysis, F,9=6.99, p <0.05; post hoc
test, p>0.05 for Ang II versus Ang II plus 3 nmol
PD123319, Figure 6d). These results indicate that i.t.-
administered Ang II produces p38 MAPK phosphoryl-
ation mediated through AT; receptors but not through
AT, receptors in the lumber dorsal cord.

Discussion

In the present study, we demonstrated for the first time
that i.t.-administered Ang II in mice induced a charac-
teristic behavioral response mainly consisting of biting
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Figure 5 Effects of MEK and MAPK inhibitors on i.t. Ang ll-induced nociceptive behavior in mice. U0126 (a), SP600125 (b) and SB203580
(c) were co-administered i.t. with Ang Il (3 pmol). The duration of scratching, biting and licking induced by Ang Il was determined over a 25 min
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Figure 6 Alterations in spinal MAPKs phosphorylation by Ang Il and the effects of losartan and PD123319. Dorsal spinal cord samples
were taken 10 min after it. injection of Ang Il (3 pmol). Phosphorylation of ERK1/2 (a), JNK (b) and p38 MAPK (c, d) were examined by Western
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and/or licking of the hindpaw and the tail along
with slight hindlimb scratching directed toward the
flank, indicative of nociceptive responses, accompan-
ied by the activation of p38 MAPK mediated through
AT, receptors.

Ang II was originally discovered as a potent vasocon-
strictor, while recent studies have shown that Ang II af-
fects a wide range of central and peripheral components
of sensory systems [13,28,29]. It has been demonstrated
that the administration of Ang II either i.c.v. or directly
in key components of the supraspinal pain modulatory
system, namely the PAG or RVM (for review, see Ref
[30]), induces antinociceptive effects, which are re-
versed by losartan [12,13,31,32]. On the other hand,

Marques-Lopes et al. [11] have recently reported that
the microinjection of Ang II into the CVLM induces
hyperalgesia through AT, receptors, and that the effect
of Ang II on spinal nociceptive processing is likely indir-
ect, since few AT, receptor-expressing CVLM neurons
were found to project to the spinal cord. These reports
lead us to suggest that supraspinal Ang II may partici-
pate in both inhibition and facilitation of the nocicep-
tive transmission and its effect is region-dependent.
However, the role of Ang II in the modulation of noci-
ceptive transmission in the spinal cord has not been
reported until this study. Therefore, it is important to
clarify the role of spinal Ang II in the modulation
of nociception.
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Recently, it has been reported that Ang II is colocalized
with calcitonin gene-related peptide (CGRP) and substance
P, the neuropeptides established as the key regulators of
sensory transmission and nociception, in rat and human
dorsal root ganglia (DRG) [33]. Takai et al. [34] have re-
vealed that repeated oral administration of AT1 receptor
antagonist and ACE inhibitors show antinociceptive effect
in hot-plate test. Furthermore, we have found that it.-
administered losartan produces antinociceptive effect in a
mouse formalin test (data not shown). These findings sug-
gest that Ang II may act as a neurotransmitter and/or
neuromodulator in the transmission of nociceptive infor-
mation in the spinal cord. In the present study, we found
that i.t.-administered Ang II (3 pmol) produced a nocicep-
tive behavior consisting of scratching, biting and licking.
We also observed that the Ang II-induced nociceptive be-
havior was inhibited by losartan but not by PD123319,
indicationg that receptor type 1 and not type 2 for Ang II
is involved. Regarding the distribution of spinal AT} recep-
tors, Pavel et al. [35] have reported that the receptors are
present in high density in the lumbar superficial dorsal
horn (laminae I and II) using autoradiography in rat. In
this study, we also detected a relatively high intensity
of fluorescence for AT, receptors in the mouse lumbar
superficial dorsal horn. Our results obtained with behav-
joral and immunohistchemical experiments suggest that
spinal AT, receptors are responsible for the nociceptive
response.

Ang II induced two peaks of nociceptive behavior, one
at 5-10 and the other 20-25 min after injection, although
there was no significant difference between time x treat-
ment interaction. The hydrolysis of Ang II by a homogen-
ate of rat ventrolateral PAG forms Ang III, a major
hydrolysis product, Ang IV, Ang (1-7) and Ang (1-4)
[36]. Moreover, microinjection of Ang III into the ventro-
lateral PAG produces the antinociceptive effect mediated
through AT; and AT, receptors [36]. Therefore, we may
speculate that in our time course experiment, Ang II is re-
sponsible for the first peak while Ang III generated from
Ang II is responsible for the second peak.

ERK1/2, JNK and p38 MAPK are phosphorylated in the
presence of Ang II in mouse atrial fibroblasts [15] and nat-
ural killer cells [16], while only ERK1/2 and p38 MAPK
but not JNK are phosphorylated by Ang II in RVM [17].
In addition, Sung et al. [37] have reported that i.t.-
administered IL-1p activates only p38 MAPK without
affecting ERK1/2 and JNK in the spinal cord. Similarly,
in this study, only the spinal p38 MAPK was activated
after i.t. administration of Ang II, although the ERK1/2,
JNK and p38 MAPK were constitutively expressed in the
spinal cord. There are four p38 MAPK isoforms: p38a,
p38p, p38y and p388. Whereas p38a and p38p are two of
the major isoforms in the mature nervous system, p38ua is
the most abundant isoform in DRG neuron and spinal
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cord (for review, see [38]). Therefore, we used SB203580
to inhibit p38 MAPK signaling in the spinal cord since it
can inhibit the activity of both p38a and p38p isoforms
[39]. In this study, the behavioral observation revealed that
Ang II-induced nociceptive response was almost com-
pletely inhibited by SB203580. On the other hand, neither
U0126 nor SP600125 affected the Ang II-induced nocicep-
tive behavior. Ample evidence suggest that the spinal p38
MAPK is involved in several types of pain. Phosphorylation
of spinal p38 MAPK has been observed not only in neuro-
pathic pain models such as chronic constriction injury
[40,41] and spinal nerve ligation [42-44], but also in per-
ipheral inflammation induced by CFA [22], bee-venom
[45], formalin [46-48] and capsaicin [48]. Moreover, i.t. ad-
ministration of N-methyl-D-aspartate (NMDA) produces
thermal hyperalgesia through spinal p38 MAPK phosphor-
ylation [49]. Taken together with these previous reports,
our present results indicate that the phosphorylation of
spinal p38 MAPK, but not of the other MAPKSs, is involved
in Ang II-induced nociceptive behavior. In addition, since
the nociceptive behavior arises rapidly and declines within
25 min to resemble controls, we suggest that the phos-
phorylation of p38 MAPK leads to the behavior via non-
transcriptional mechanisms. Mizushima et al. [50] have
reported that intraplantar injection into rats of capsaicin
induces phosphorylation of p38 MAPK in DRG neurons
and thermal hyperalgesia which peak at 2-5 min after in-
jection. Although the specific target proteins of p38
MAPK are not clearly identified, p38 MAPK signaling
pathway leads to Ang Il-induced nociceptive behavior
through post-transcriptional modifications of kinases, re-
ceptors and ion-channels.

Finally, we examined the effects of Ang II receptor an-
tagonists on p38 MAPK phosphorylation in the dorsal
spinal cord. Whereas p38 MAPK phosphorylation was
inhibited by losartan, it was resistant against PD123319,
and these results were consistent with those of the be-
havioral experiments. It has been reported that Ang II
increases the phosphorylation of p38 MAPK in cultured
rat neonatal cardiomyocytes, which is attenuated by
losartan similarly to SB205380, a p38 MAPK inhibitor,
and p38 siRNA [51]. Taken together, the present results
suggest that phosphorylation of p38 MAPK mediated
through AT; but not AT, receptors contributes to i.t.
Ang II-induced nociceptive behavior.

Conclusions

In conclusion, our data show that it.-administered Ang
II induces nociceptive behavior accompanied by p38
MAPK phosphorylation mediated through spinal AT,
receptors. Moreover, it is suggested that Ang II may be a
neurotransmitter and/or neuromodulator in the trans-
mission of nociceptive information in the spinal cord.
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Methods

Animals

Male ddY strain mice (weighing 22-24 g, Japan SLC,
Japan) were used in all experiments. Mice were housed in
cages with free access to food and water under conditions
of constant temperature (22 +2°C) and humidity (55 +
5%), on a 12 h light—dark cycle (lights on: 08:00 to 20:00).
Groups of 10 mice for behavioral experiments and 4 mice
for Western blotting and immunohistchemical experi-
ments were used in single experiments. All experiments
were performed following the approval from the Ethics
Committee of Animal Experiment in Tohoku Pharma-
ceutical University and according to the National Insti-
tutes of Health Guide for the Care and Use of Laboratory
Animals. Efforts were made to minimize suffering and to
reduce the number of animals used.

Intrathecal injections

The it. injections were made in unanaesthetized mice at
the L5, L6 intervertebral space as described by Hyden and
Wilcox [52]. Briefly, a volume of 5 pl was administered i.t.
with a 28-gauge needle connected to a 50-pl Hamilton
microsyringe, the animal being lightly restrained to main-
tain the position of the needle. Puncture of the dura was
indicated behaviorally by a slight flick of the tail.

Behavioral observation

Approximately 60 min before the i.t. injection, the mice
were habituated to an individual cage (22.0x 15.0 x
12.5 cm) which was also used as the observation chamber
after injection. Immediately after the i.t. injection, the mice
were placed in the transparent cage and the accumulated
response time of hindlimb scratching directed toward the
flank, biting and/or licking of the hindpaw and the tail was
measured for 25 min with the exception of the 30 min
time course experiment in which the response was divided
into 5 min intervals.

Drugs and antibodies

The following drugs and chemicals were used: Ang
II (Peptide Institute, Japan); morphine hydrochloride
(Sankyo, Japan); losartan potassium (LKT Laboratories,
USA); 1-[[4-(dimethylamino)-3-methylphenyl]methyl]-
5-(diphenylacetyl)-4,5,6,7-tetrahydro-1H-imidazo[4,5-c]
pyridine-6-carboxylic acid ditrifluoroacetate (PD123319),
1,4-diamino-2,3-dicyano-1,4-bis[2-aminophenylthio]butadi-
ene (U0126), 4-[5-(4-fluorophenyl)-2-[4-(methylsulphonyl)
phenyl]-1H-imidazol-4-yl]pyridine hydrochloride (SB2
03580 hydrochloride) (Tocris Biosciense, USA); anthra
(1,9-cd) pyrazol-6(2H)-one, 1,9-pyrazoloanthrone (SP6
00125) (Alexis, USA); sodium pentobarbital (Dainippon
Sumitomo Pharma, Japan); antibodies against ERK1/2,
phospho-ERK1/2, JNK, phospho-JNK, p38 MAPK,
phospho-p38 MAPK, and horseradish peroxidase
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(HRP)-conjugated goat anti-rabbit IgG antibody (Cell Sig-
naling Technology, USA); anti-AT; receptor antibody
(Alpha Diagnostic, USA); enhanced chemiluminescence
(ECL) assay kit (GE Healthcare, England). For it. injec-
tions, Ang II and losartan were dissolved in Ringer’s solu-
tion. PD123319, U0126, SB203580 and SP600125 were
dissolved in Ringer’s solution containing 6.8% dimethyl
sulfoxide (DMSO). When the effects of Ang II receptor
antagonists and MAPK-related inhibitors were tested, they
were co-injected with Ang II in a volume of 5 pl. Mor-
phine was dissolved in physiological saline and adminis-
tered intraperitoneally (i.p.) 5 min prior to injection of
AngIL

Immunohistochemical staining

Spinal cords for measurement of AT, receptors were pre-
pared within 24 h following delivery. Mice were anesthe-
tized with sodium pentobarbital (50 mg/kg, ip.) and
perfused through the heart with ice-cold phosphate-
buffered saline (PBS, pH 7.2), immediately followed by a
fixative containing 4% paraformaldehyde (Sigma—Aldrich,
USA) and 0.2% glutaraldehyde (Nacalai Tesque, Japan) in
PBS. Spinal cords (lumbar 5; L5) were then postfixed with
the same fixative solution at 4°C for 1 h and then placed
in a 20% sucrose-buffered solution at 4°C for 12 h. Tissues
were frozen on dry ice and cut into 20 um-thick coronal
sections on a cryostat (Micro-edge Instruments Co. Ltd.,
Germany). The immunohistochemical staining procedure
was carried out as previously described [53]. Briefly, a
rabbit anti-AT) receptor antibody (diluted 1:100 with PBS
and 5% normal goat serum (NGS); Millipore Co., USA)
was applied to spinal cord slices, which were then incu-
bated at 4°C for 12 h. The secondary antibody consisted of
FITC-labeled anti-rabbit IgG goat serum (diluted 1:200
with PBS; Millipore Co.), and was allowed to react in the
dark at room temperature for 2 h. The stained sections
were mounted in Dako Fluorescence Mounting Medium
(Dako North America, USA), and kept at 4°C in a dark
room until measurements were carried out. The distribu-
tion of AT; receptor immunofluorescence intensities
was quantitatively analyzed using a MapAnalyzer (Yamato
Scientific Co., Japan). The background value, including
non-specific fluorescence originating from glutaraldehyde,
was subtracted photometrically from the total fluores-
cence intensity value at each point measured.

SDS-polyacrylamide gel electrophoresis and
immunoblotting

Samples used for immunoblotting were prepared as fol-
lows. At 10 min after it. injection, mice were decapi-
tated and the whole spinal cord was taken by pressure
expulsion with physiological saline. The dorsal part of
lumbar spinal cord was dissected quickly on ice-cooled
glass dish. The tissue samples were homoginaized in
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0.15 ml of CelLytic™ MT Manmalian Tissue Lysis/Extrac-
tion Reagent (Sigma Aldrich, USA) and centrifuged the lysis
sample at 15,000x g for 15 min at 4°C. Supernatants were
dissolved in 4 x Laemmli sample buffer (300 mM Tris—HCl
pH 6.8, 8% SDS, 40% glycerol, 12% 2-mercaptoethanol and
0.012% bromophenol blue), and boiled at 95°C for 10 min.
Electrophoresis was performed on 10% acrylamide gels.
Proteins were transferred electrically from the gel onto a
polyvinylidene difluoride membrane (Bio-Rad Laboratories,
Japan) by the semi-dry blotting method. The blots were
blocked for 30 min with 5% skim-milk in Tris-buffered sa-
line supplemented with 0.1% Tween-20, and incubated with
primary antibodies overnight at 4°C. The blots were washed
several times and then incubated at room temperature for
2 h with a secondary antibody (HRP-conjugated anti-rabbit
IgG antibody). Blots were developed using an enhanced
chemiluminescence assay kit, and visualized by chemilu-
minescence on Hyper-film ECL. The densities of the bands
were analyzed by densitometry (Image-] 1.43u, National
Institute of Health).

Statistical methods

Data were expressed as mean + SEM. The IDs values with
95% confidence limits were calculated for reduction in
Ang Il-induced scratching, biting and licking response by
a computer-associated curve-fitting program (GraphPad
Prism; GraphPad Software, USA). The significant differ-
ences were analyzed by a one-way or two-way analysis of
variance (ANOVA), followed by Fisher’s PLSD test for
multiple-comparisons. Student’s ¢ test was used for com-
parisons between two groups. In all comparisons, P < 0.05
was considered statistical significance.
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