Lee and Ho Molecular Pain 2013, 9:45
http://www.molecularpain.com/content/9/1/45

MOLECULAR PAIN

REVIEW

Open Access

Sex differences in opioid analgesia and addiction:
interactions among opioid receptors and

estrogen receptors

Cynthia Wei-Sheng Lee'?" and Ing-Kang Ho'**

Abstract

the downstream gene transcriptional regulators.

Opioids are widely used as the pain reliever and also notorious for being addictive drugs. Sex differences in the
opioid analgesia and addiction have been reported and investigated in human subjects and animal models. Yet,
the molecular mechanism underlying the differences between males and females is still unclear. Here, we reviewed
the literature describing the sex differences in analgesic responses and addiction liabilities to clinically relevant
opioids. The reported interactions among opioids, estrogens, opioid receptors, and estrogen receptors are also
evaluated. We postulate that the sex differences partly originated from the crosstalk among the estrogen and
opioid receptors when stimulated by the exogenous opioids, possibly through common secondary messengers and
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Introduction

Opioids are potent analgesics used to treat acute and
chronic pain, and also notorious for their potential to
cause addiction [1-4]. Gender differences in the experi-
ence of clinical and experimental pain [5-7] and the sus-
ceptibility to opioid addiction [8] have been reported.
General observations suggest that there are more adult
men than women involved in illicit drug abuse [9]. How-
ever, this contrasts to the clinical and animal studies in-
dicating that females are more susceptible to drug abuse
problem than males [10]. Besides the sociocultural fac-
tors, there must be true differences between the bio-
logical differences that influence drug abuse and pain
perception, and estrogen has been proposed to be one of
the key players [11,12].

Sex differences in opioid analgesia and addiction

Population-based studies suggest that women are more
likely to experience chronic pain syndromes and report
more severe pain at a higher frequency than men
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[13-19]. Human studies indicate that females and males
have similar thresholds for cold and ischemic pain
[20,21], while pressure pain thresholds are lower in fe-
males than males [22,23]. Females tolerate less thermal
pain (cold, heat) and pressure than males [24-26], but
this is not the case for tolerance to ischemic pain, which
is comparable in both genders [27,28]. Based on a review
of the available literature published between 1966 and
1998, Miaskowski and Levine suggest that opioids are
better analgesics for women [29]. A Chinese population
study conducted in southern Taiwan also shows that fe-
males consume significantly less morphine via patient-
controlled analgesia than males during the first three
postoperative days [30]. However, the majority of more re-
cent studies comparing gender report that the potency and
efficacy of morphine administered systemically is higher in
males than in females against a variety of nociceptive mo-
dalities [31-33]. The controversy might be due to that earl-
ier studies did not correct for the body weight differences
between men and women. In addition, there are sex differ-
ences in reporting pain and seeking pain relief, and health
care providers make unwarranted psychogenic attributions
regarding pain in female but not male [7,34-36].

A profile of a heroin-addiction epidemic showed that
74 percent of the addicts are males [37]. In the United
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States, the past year and life time rates of heroin use are
higher among men (men = 0.2% vs. women = 0.1%; 2.3%
vs. 0.8%, respectively), while equivalent rates of men and
women are reported to inject heroin (42.0% vs. 40.7%)
[8]. Among adolescent drug users administrated during
2002-2003 in the National Survey on Drug Use and
Health, females are 3.91 times more likely to inject her-
oin than males [38]. Gender differences in the clinical
profiles of opioid-dependent individuals have been ob-
served in substance use severity, craving, medical condi-
tions, and impairment in associated areas of functioning.
Craving for opioids is significantly higher among
women, and women have higher drug, employment,
family, medical, and psychiatric Addiction Severity Index
composite scores [8]. Among patients entering the main-
tenance program in Italy, there seems to be an emerging
pattern of males who tend to use heroin as their opiate
of choice, and are more likely to combine it with
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cannabis, while females are more likely to using street
methadone, with adjunctive use of ketamine, benzodiaz-
epines, hypnotic drugs and/or amphetamines [39].
Moreover, women are at higher risk of abusing opioids
through initial prescription painkiller use, and later re-
sort to street methadone to cope with prescription pain
killer addiction [39]. Analysis from the U.S. indicates
that opioid-addicted women work less and use more co-
caine than their male counterparts [40]. The use of
drugs of abuse in women may be influenced by psycho-
social and hormonal factors, such as psychiatric comor-
bidity (a higher rate of anxiety disorders) [41-44], more
distressing drug-related environment, lower rate of anti-
social personality traits [45], and estrogen-regulated neu-
roendocrine functions [12,39,46]. Sex differences in
opioid analgesia and addiction in human and animals have
been investigated extensively, and clinically-relevant repre-
sentative studies are listed in Tables 1 and 2. Effects of

Table 1 Sex differences in opioid analgesia and addiction in human

Opioid Receptor Model Effect Reference
Buprenorphine ORLT agonist Postoperative pain M < F [47-49]
MOR partial agonist
KOR antagonist
Butorphanol MOR partial agonist Acute injury M= [50]
KOR agonist Thermal, pressure, and ischemic pain (experimental) M= [51]
Postoperative dental surgery M < F [52]
Cold-water stimulus (experimental) M > F [53]
Fentanyl MOR agonist Postoperative pain M < F [54]
M=F [55]
Ketobemidone MOR agonist Postoperative pain M=F [56]
NMDA antagonist
Methadone MOR agonist Cancer pain M=F [57]
Morphine MOR agonist Acute injury M >F [50]
KOR agonist Thermal, pressure, and ischemic pain (experimental) M= [51]
DOR agonist
Postoperative pain M>F [32,33]
M=F [58-60]
M < F [30,61-64]
Nalbuphine KOR agonist Postoperative pain M=F [65]
MOR antagonist Postoperative dental surgery M<F [52,66]
Pentazocine KOR agonist Acute pain (experimental) M=F [67,68]
MOR partial agonist M<F [69]
Postoperative dental surgery M < F [70]
Pethidine MOR agonist Postoperative pain M=F [60,71]
KOR agonist
Heroin MOR agonist Addiction epidemic M > F [8,37]
KOR agonist Adolescent drug users M < F [38]

DOR agonist
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Table 2 Sex differences in opioid analgesia and addiction in animals

Opioid Receptor Species Model Effect Reference
Buprenorphine ORL1 agonist Rat Hot plate M=F [72]
MOR partial agonist Tail withdrawal M > F [73-75]
KOR antagonist
M= [72]
Temporal summation (thermal stimulus / tail withdrawal) M > F [76]
Butorphanol MOR partial agonist Rat Capsaicin-induced hyperalgesia (Tail withdrawal) M=F [771
KOR agonist Temporal summation (thermal stimulus / tail withdrawal) M > F [76]
Fentanyl MOR agonist Rat Tail flick M=F [78]
Methadone MOR agonist Rat Tail flick M>F [79]
Morphine MOR agonist Rat Abdominal constriction M > F [80,81]
KOR agonist Hot plate M>F [81-86]
DOR agonist M < F [87]
Tail flick M >F [76,81,88-94]
M= [95]
Tail withdrawal M>F [74,75,85,86]
Temporal summation (thermal stimulus / tail withdrawal) M > F [96]
Mouse Hot plate M > F [97-99]
Tail Flick M > F [100]
Tail Withdrawal M > F [101,102]
M= [101]
M < F [101]
Nalbuphine KOR agonist Rat Tail withdrawal M > F [74,103,104]
MOR antagonist
Heroin MOR agonist Rat Acquisition of self-administration M < F [105-107]
KOR agonist
DOR agonist

opioids are inconsistent among different studies and spe-
cies, which might result from different genetic back-
grounds, ages of the subjects, doses of the opioids used,
and assays or end points of the measurements.

Factors contributing to sex differences in drug abuse in-
clude pharmacokinetics, behavioral phenotypes for drug
abuse vulnerability, sensitivity to aversive properties of
drugs, puberty and adolescence, and genetic factors be-
yond hormones as reviewed by Wetherington [108]. Given
the ubiquitous actions and gender differences of sex hor-
mones in the central nervous system, many investigators
have attempted to relate sex differences in opioid analgesia
to gonadal hormone levels [73,80-82,88-93,100,109-118].
Yet, the neurological and cellular mechanisms underlying
the sexually dimorphic analgesic and addictive responsive-
ness to opioids remain poorly understood [31].

Estrogen regulation of opioid receptors
The analgesic effects and addiction liability of opioids are
mediated by opioid receptors. Based on the molecular and

pharmacological properties, three conventional opioid re-
ceptors — g (MOR), § (DOR), and « (KOR) — have been
characterized [119]. A non-opioid branch of opioid recep-
tors, opioid receptor-like 1 (ORL1) receptor, also known
as the nociceptin/orphanin FQ peptide (NOP) receptor,
has also been identified and displays pharmacological pro-
files distinct from those of conventional opioid receptors
[120]. Activation of opioid receptors inhibits (acute) /
superactivates (chronic) adenylate cyclase (AC) activity
[121], impedes N- and L-type Ca®* channels, increases
phospholipase C activity, activates inwardly rectifying K*
channels, and turns on mitogen-activated protein kinases
(MAPK) [122,123].

Estrogens, besides the well-established effects on fe-
male reproductive functions, exert various actions on
the nervous system influencing pain sensation, mood,
susceptibility to seizures, and neuroprotection against
stroke damage and Alzheimer’s disease [124]. Ovarian
steroids have been found to modulate the activity of opi-
oid receptors in healthy women and migraine sufferers
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[125], and replacement therapies through estrogens and
progestagens could restore the activity of central opioid
tonus in migraine patients [125]. Estrogen has also been
demonstrated to decrease the secretion of f-endorphin,
an endogenous opioid peptide, from the Ishikawa cells,
an endometrial carcinoma cell line, in a concentration-
and time-dependent manner [126]. The spinal KOR and
DOR, but not MOR, activity is required for opioid-
mediated elevations in maternal nociceptive thresholds,
indicating the ability of estrogen to modulate spinal opi-
oid antinociceptive activity [127].

Sexually dimorphic KOR-mediated antinociception has
been demonstrated in antithetical antinociceptive/noci-
ceptive responsiveness of female vs. males to KOR
agonists-antagonists [128]. Compared to men, women
reported greater analgesic effects from the mixed MOR/
KOR ligands: pentazocine, nalbuphine and butorphanol
[52,66]. In contrast, selective KOR agonists produced
greater antinociceptive effects in male than female ani-
mals [129]. An animal study demonstrated that spinal
morphine antinociception in females requires concomi-
tant activation of MOR and KOR, and the expression of
MOR/KOR heterodimers is more prominent in the spinal
cord in females than males [130]. The same group further
demonstrated that blockade of coexpressed ERa and
GPR30, two types of estrogen receptors (detailed in the
following section), substantially decreased MOR/KOR and
eliminates mediation by KOR of spinal morphine antino-
ciception, suggesting MOR/KOR could serve as a molecu-
lar target for analgesia in women [131] (Figure 1).

17p-estradiol (E2), the major ligand of estrogen recep-
tors during reproductive years, rapidly attenuates the
ability of p-opioids to hyperpolarize guinea pig hypothal-
amic (B-endorphin, an opioid peptide) neurons. E2 does
not compete for MOR or alter the affinity of MOR, but
binds to a specific receptor that activates PKA to rapidly
uncouple MOR from its K" channel [132]. Increased
PKA activity maintains cellular tolerance to MOR ago-
nists in the hypothalamic arcuate nucleus (ARC) neuro-
secretory cells caused by chronic morphine treatment.
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Moreover, acute E2 and chronic opioid treatment at-
tenuate MOR-mediated responses via a common PKA
pathway [133]. Based on the high density of MOR, but
the lack of effects of estrogen on [**S]JGTPyS binding, it
is concluded that MOR interaction with its G-protein is
not the target of estrogen’s actions [134]. E2 may modu-
late the behavioral effects of cocaine by regulating MOR
and KOR signaling in mesocorticolimbic brain structures
in female rats [135]. In addition, sex-dependent differ-
ences have been found in the intake of ethanol in the ab-
sence of [-endorphins in mice [136], and in the
regulation of gonadal hormone, DOR binding, and MOR
density in the hippocampus by prenatal exposure to
morphine in rats [137,138].

Multiple antinociceptive assays demonstrated that
male rats are markedly more sensitive to morphine anal-
gesia than females [128]. The difference cannot be at-
tributed to gender-linked differences in serum levels of
morphine after its injection [81], the acute effects of ste-
roids [81], the pharmacokinetics of morphine [83], MOR
number and the binding affinity of the MOR agonists
[139], and morphine stimulation of G protein deter-
mined using GTPase and [**S]JGTPyS binding assays
[139]. It is postulated that the organizational effects of
steroids during critical periods in development, which
determine gender-related distinctions, may be significant
in the male—female differences [81]. Another explan-
ation for this gender difference is that pathways down-
stream of MOR and G protein are more efficient in male
rats than in female rats such that there is a larger recep-
tor reserve for morphine-mediated antinociception
[139]. One mystery that remains poorly understood is
that many aspects of sexually dimorphic opioid respon-
siveness in humans are opposite to that observed in la-
boratory animals [128].

Opioid regulation of estrogen receptors

Estrogens act on two types of receptors, nuclear estro-
gen receptors (ERa and ERP) and the membrane-
associated estrogen G protein-coupled receptor (GPR30,

GPR30
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Figure 1 Schematic representation of the facilitation of KOR/MOR heterodimerization by E2. Biochemical and behavioral experiments
suggest that ERs work cooperatively to increase KOR/MOR expression. We postulate that E2 triggers a signaling complex containing one or
multiple ERs, which via an unknown mechanism enhances the formation of KOR/MOR heterodimers and thereby creates the sex difference in
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also known as GPER). ERa and ERB modulate the long-
lasting effect of estrogen by regulating gene transcrip-
tion, whereas GPR30 produces more rapid effects by
generation of the secondary messengers and activation
of receptor tyrosine kinases [140].

Estrogen promotes the growth and development of
breast cancer via ER. ERa is the major ER in neoplastic
breast epithelium, whereas ERp is the predominant ER
in normal breast tissue [141,142]. The MOR agonist
morphine promotes tumor neovascularization in E2-
dependent human breast tumor xenograft model, MCE-
7 cell, in mice leading to increased tumor progression at
medically relevant concentrations [143]. In contrast, the
opioid receptor antagonist naloxone inhibits MCF-7
breast cancer growth in mice [144,145]. Naloxone mod-
ulates ERa activity directly as well as indirectly via
MOR, suggesting that naloxone-like compounds can be
developed as novel therapeutic molecules for breast can-
cer therapy [145]. Additionally, ERf is expressed in human
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vascular endothelial cells, and morphine down-regulates
this receptor as determined by real-time RT-PCR [146].
The DOR agonist SNC80 decrease anxiety- and
depression-like behavior following withdrawal from
chronic cocaine use in male rats [147], and may serve as a
potential anxiolytic in females [148]. Further research fo-
cusing on the contribution of circulating hormones and
DOR agonists on cocaine withdrawal-induced anxiety in
females and understanding the sex differences is needed.
The regulatory actions of opioids on estrogen recep-
tors have been described in breast cancer, yet never been
linked to the sex differences in opioid analgesia and ad-
diction. Significance of such opioid actions in the sex
difference remains elusive, and may be explored both
in vitro and in vivo. The in vitro assays can be done by
applying the opioids to neuronal cells expressing specific
estrogen receptors to characterize the cellular responses
of the estrogen receptors. The in vivo assays measuring
the extent of opioid analgesia and addiction in estrogen

Extracellular

Intracellular

Figure 2 Diagram of the postulated cross-talk between estrogen and opioid receptors. Upon binding of the opioids, opioid receptors (OR)
activate different intracellular signaling pathways through the G protein (composed of g, 3 and y subunits). The activation of phospholipase C (PLC)
catalyzes the hydrolysis of membrane-bound phosphatidylinositol 4,5-bisphosphate (PIP,) into inositol 1,4,5-trisphosphate (IPs) and diacylglycerol
(DAG). IP3 induces calcium release from the endoplasmic reticulum that activates calcium-dependent signaling. DAG activates protein kinase C (PKC).
PKC activates adenylate cyclase (AC), which increases cAMP production, and subsequently stimulates protein kinase A (PKA). PKA can phosphorylate
various proteins including ion channels (L-type voltage-gated Ca”* channels [L-VGCC], G protein-coupled inwardly rectifying K* channels [GIRK], and
small conductance Ca”—dependent K* channels [SK]) and cAMP-responsive element binding protein (CREB). The activation of the mitogen-activated
protein kinase (MAPK) transduction cascades can stimulate multiple targets, including nuclear transcription factors (such as CREB), cytoplasmic enzymes
(including tyrosine hydroxylase), cytoskeletal proteins, and ion channels. Estradiol (E2) can activate the membrane-bound estrogen receptor (mER) and
modulate the ionic conductance through phosphorylation of ionotropic receptors or uncoupling of OR from their ionic channels or intracellular
effectors. E2 can also bind to nuclear ER dimers and thereby bind to the estrogen-responsive element (ERE) on the DNA, resulting in the activation of
specific gene transcription. Additionally, rapid effects of E2 mediated by mER can lead to CREB phosphorylation, altering gene transcription through
the interaction with the cAMP responsive element (CRE). Modified from [181].
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receptor knockout mice, with females of different stages
of estrous cycle and males, should be performed. Spe-
cific antagonists to the opioid receptors should be ap-
plied to characterize the interacting opioid receptors.

Interactions among opioid and estrogen receptors

MOR internalization is correlated with MOR-mediated in-
hibition of lordosis [149]. MOR antagonists block receptor
internalization and facilitate lordosis [149,150]. ERa, but
not ER, is required for estrogen-induced MOR internal-
ization, suggesting that ERa can mediate rapid actions of
estrogen [151]. The mRNA of the ORL1 receptor, the
non-canonical member of the opioid receptor family, is
present in majority of ERa and/or ERp mRNA-containing
neurons, and the sex-related differences in the ORL1 gene
expression in the trigeminal nucleus caudalis appear to be
determined in part by estrogen levels [152].

GPR30, the plasma membrane ER, is expressed in
pain-relevant areas of the rat central nervous system,
and the expression levels are similar in the male and fe-
male [153-156]. GPR30 activation leads to hyperalgesia
in rats [157,158] and spinal nociception in mice [159],
and is involved in mediating the rapid pronociceptive ef-
fects of E2 [155,157,160]. The downstream mechanisms
involve cytosolic calcium increase [161,162], ROS accu-
mulation [163], and neuronal membrane depolarization
[159]. Stimulation of plasma membrane ERs is coupled
to the activation of the same signaling molecules that
participate in most membrane initiated signaling cas-
cades as opioid receptors, e.g., protein kinase A, protein
kinase B, protein kinase C, phospholipase C, inositol tri-
phosphate, MAPK, ERK, tyrosine kinases, etc. [164-180]
Due to the overlapping of the secondary messenger
pathways, activation of GPR30 by estrogen is postulated
to influence the signaling cascades of the opioid recep-
tors, leading to the sex differences in the effects of opi-
oids because of different GPR30 expression patterns
between males and females (Figure 2).

Although opioids and estrogen can activate common
signaling pathways, there is no direct evidence that signal-
ing crosstalk among estrogen and opioid receptors con-
tributes to the sex differences in opioid analgesia and
addiction. This data gap should be filled by performing as-
says measuring the extent of opioid analgesia and addic-
tion in opioid receptor knockout mice, with males and
females of different stages of estrous cycle. Specific antag-
onists to the estrogen receptors are required to identify
the interacting estrogen receptors in the behavioral assays.

Conclusions

Although numerous reports have addressed gender dif-
ferences of opioid receptor agonists, very few directly ex-
amined the mechanism. It has been proposed that
differences in opioid receptor levels, distribution and
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efficiency of signaling and neural circuitry modulated by
opioid receptor activation cause the sexual dimorphism
[129]. However, direct evidence of the interactions
among estrogen and opioid receptors is lacking. Animals
deficient of estrogen receptors ERa, ERP, or GPR30 lack
the estrogen-regulated opioid effects, and hence display
distinct analgesic and addictive responses to morphine.
Functional interactions between estrogens and opioids
should be investigated to provide the insight into gender
differences in analgesia and addiction at both cellular and
physiological levels. Male sex hormone such as testoster-
one may also play a role in opioid analgesia and addiction,
as anabolic androgenic steroids have been shown to alter
opioid receptor expression in SH-SY5Y human neuroblast-
oma cells [182]. This review focuses on estrogen receptors,
but does not exclude the possibility that androgen recep-
tors could cross-talk with opioid receptors and thereby
contribute to the sex differences of opioid effects. Organis-
mal factors must be considered when interpreting the data,
since just as a male is not a female, a mouse is not a small
rat, and a primate is not a human. Developmental stages,
drug doses, routes of drug administration, types of assays
employed, and genetic backgrounds should be considered
and matched in future randomized clinical studies to de-
fine the sex differences in opioid analgesia and addiction.
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