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coupling of delta opioid receptors to
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Abstract

Background: Opioid receptors regulate a diverse array of physiological functions. Mu opioid receptor agonists are
well-known analgesics for treating acute pain. In contrast, animal models suggest that chronic pain is more
effectively relieved by delta opioid receptor agonists. A number of studies have shown that chronic pain results in
increased function of delta opioid receptors. This is proposed to result from enhanced trafficking of the delta opioid
receptor to the cell membrane induced by persistent tissue injury. However, recent studies have questioned this
mechanism, which has resulted in some uncertainty as to whether delta opioid receptors are indeed upregulated in
chronic pain states. To clarify this question, we have examined the effect of chronic inflammatory pain over time
using both an ex vivo measure of delta function: receptor-Ca2+ channel coupling, and an in vivo measure; the relief
of chronic pain by a delta opioid receptor agonist. In addition, as beta-arrestin 2 can regulate delta opioid receptor
trafficking and signaling, we have further examined whether deleting this scaffolding and signal transduction
molecule alters delta opioid receptor function.

Results: We used the Complete Freund’s Adjuvant model of inflammatory pain, and examined the effectiveness of the
delta agonist, SNC80, to both inhibit Ca2+ channels in primary afferent neurons and to attenuate mechanical allodynia.
In naïve beta-arrestin 2 wildtype and knockout mice, SNC80 neither significantly inhibited voltage-dependent Ca2+

currents nor produced antinociception. However, following inflammatory pain, both measures showed a significant
and long-lasting enhancement of delta opioid receptor function that persisted for up to 14 days post-injury regardless
of genotype. Furthermore, although this pain model did not alter Ca2+ current density, the contribution of N-type Ca2+

channels to the total current appeared to be regulated by the presence of beta-arrestin 2.

Conclusions: Our results indicate that there is an upregulation of delta opioid receptor function following chronic pain.
This gain of function is reflected in the increased efficacy of a delta agonist in both behavioral and electrophysiological
measures. Overall, this work confirms that delta opioid receptors can be enhanced following tissue injury associated
with chronic pain.
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Background
Opioid receptors regulate diverse physiological pro-
cesses, including reward, pain, and stress (see [1,2]). The
mu opioid receptor (μOR) is the best characterized
member of this family, and μOR agonists are some of
the most clinically effective analgesics. However, there
are a number of severe drawbacks with the use of μOR
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reproduction in any medium, provided the or
agonists such as respiratory depression, sedation, and
constipation. Importantly, μOR agonists are also ex-
tremely addictive, as shown by the high abuse rates of
the pharmaceutical opiates vicodin and oxycodone [3].
Drugs that activate the delta opioid receptors (δORs)

do not result in these severe μOR-associated side-effects
and so could offer a promising alternative for treatment
of certain types of pain [4]. Although δOR agonists are
not highly efficacious in relieving acute pain, selective
activation of these receptors has been shown to relieve
chronic inflammatory [5-8] and neuropathic [5,9,10]
l Ltd. This is an Open Access article distributed under the terms of the Creative
ommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
iginal work is properly cited.

mailto:wwalwyn@ucla.edu
http://creativecommons.org/licenses/by/2.0


Table 1 Voltage-dependent properties of Ca2+ channels
in DRGs from naive and CFA-treated mice

Naive CFA

Activation

Gmax 308 ± 51 288 ± 41

Slope 6.1 ± 0.8 6.5 ± 0.9

V1/2 −25.2 ± 1.0 −25.6 ± 1.0

Inactivation

Slope 16.5 ± 2.5 9.9 ± 0.9

V1/2 −13.2 ± 4.8 −14.0 ± 1.3

Constitutive Inhibition

1.00 ± 0.02 1.01 ± 0.02

GABAB inhibition (%)

42.4 ± 3.2 45.5 ± 4.3

Patch-clamp recordings under voltage-clamp conditions were used to examine
Ca2+ channel function in medium to large-sized L4-L6 DRG neurons from naive
(61± 5 pF) and CFA (64 ± 6 pF) treated mice. CFA did not alter the maximal
current amplitude (Gmax; pA/pF; F(13, 234) = 0.21), the kinetics of channel activation
(p > 0.05, F(13,126) = 0.04), steady-state inactivation ( p > 0.05, F(12,2040) = 1.3),
constitutive current inhibition (p > 0.05, t14 = 0.89) or GABAB inhibition of the Ca2+

channels (p > 0.05, t12 = 0.59). V1/2 = half-maximal potential of the
conductance-voltage relationship.
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pain in rodent models. These observations suggest that
chronic pain is associated with a functional upregulation
of δORs, proposed to be due to enhanced trafficking of
δORs to the cell membrane. Electron microscopy studies
propose that δORs are, for the most part, found in the
sub-plasmalemmal space and that tissue injury relocates
these receptors to the cell membrane [6,11-18]. How-
ever, the specificity of the antibodies used to label δORs
has recently been questioned ([19,20] and see [21,22]).
In addition, mice expressing δORs fluorescently tagged
with enhanced Green Fluorescent Protein (DOR-eGFP)
in place of endogenous receptors indicate that δORs are
normally found at the cell surface in the central and per-
ipheral nervous systems [7,8,20,23]. These results sug-
gest that increased trafficking of δORs to the cell
membrane following a painful insult may not be solely
responsible for the increased functionality of these re-
ceptors. This controversy is further complicated by the
known differences in resolution of standard confocal
fluorescence vs. electron microscopy, and the possibility
that a C-terminus eGFP tag may alter the cellular
localization of δORs [24]. These differences have led to
some uncertainty as to how δORs are upregulated in
chronic pain states.
Irrespective of the mechanism by which δOR function

is altered in chronic pain, we have asked a fundamental
question: does chronic pain induce a functional en-
hancement of δORs in dorsal root ganglia (DRG)? We
have used two measures of δOR functionality; δOR in-
hibition of voltage-dependent Ca2+ currents (VDCCs) in
acutely dissociated DRGs and the ability of SNC80 to re-
lieve chronic pain, and compared the ability of a δOR
agonist to alter these parameters in naive and chronic
pain states. We focused on medium-large sized DRGs
that have been shown to express the δOR and to modu-
late mechanical pain [20]. Furthermore, as β-arrestin 2
has been shown to play a key role in δOR agonist-induced
receptor trafficking and function [25], we examined
whether β-arrestin 2 alters these parameters following
CFA.

Results
Chronic inflammatory pain does not alter voltage-
dependent Ca2+ channel function in medium-large sized
DRGs but does result in mechanical allodynia
We first characterized the effect of chronic inflammatory
pain, induced by Complete Freund’s Adjuvant injected
into the hindpaw, on VDCCs and on mechanical sensi-
tivity. Medium-large sized DRG neurons of equal capaci-
tance and therefore cell size (naive; 61 ± 5, CFA; 64 ±
6 pF), were assessed by the whole cell patch clamp tech-
nique under voltage clamp conditions. CFA did not alter
the current–voltage relationship (Table 1). Furthermore,
Ca2+ channel conductance, assessed from the maximal
tail-currents from these current–voltage recordings,
showed no effect of CFA on the conductance-voltage re-
lationship (Table 1). There was also no effect of CFA on
the steady state inactivation of Ca2+ currents (Table 1).
Furthermore CFA did not alter constitutive, voltage-
dependent current inhibition, (Table 1), or the ability of an
ubiquitously expressed Gi/o GPCR, the GABAB receptor,
to inhibit VDCCs (Table 1). However, CFA induced a
hypersensitivity to mechanical stimulation, as observed by
a decrease in the 50% withdrawal threshold as measured
with manual von Frey hair stimulation (naive: 0.99 ± 0.03,
CFA: 0.17 ± 0.01, p < 0.001, F (1,15) = 97.60). In summary,
this model of chronic inflammatory pain did not alter the
properties of voltage-dependent Ca2+ currents in
medium-large DRG neurons but, as expected, resulted in
mechanical hyperalgesia.
Delta opioid receptors show minimal functionality under
basal conditions
We next examined δOR receptor function under basal
conditions. As δORs are a member of the Gi/o-coupled
family of G-protein coupled receptors (GPCRs) and able
to inhibit VDCCs in DRG neurons we assessed VDCC in-
hibition induced by SNC80, a specific δOR agonist. We
found low levels of SNC80-VDCC inhibition, in medium-
large sized DRG neurons from untreated mice (WT, 9.6 ±
2.8% and KO, 15.3 ± 2.7% , F1,41 = 1.66, Figure 1A). We
also assessed whether SNC80 could alter the response to a
mechanical stimulus in naïve mice but found no effect of
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Figure 1 In naïve pain-free mice, SNC80 shows minimal Ca2+

channel inhibition in DRG neurons and does not alter the
response threshold to von Frey hair stimulation. A. SNC80
applied to dissociated DRG neurons from adult mice showed minimal
VDCC inhibition equally in β-arrestin 2 WT or KO mice (F1,41 = 1.66).
Exemplar currents show VDCCs before (1), during (2) and after (3)
SNC80 (1μM) application, vertical scalebar = 20 ms and horizontal
scalebar = 0.5 pA, n = 20–22. B. β-arrestin 2 WT and KO mice were
tested with vehicle or SNC80 (10 mg/kg, i.p.), and mechanical
responses were assessed 45 min later. Baseline mechanical responses
are represented by the dashed line. There was no significant effect of
SNC80 in either genotype, as determined by 2-way
ANOVA (n = 4-5mice/group).
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SNC80 (Figure 1B). Together these parameters suggest
that δORs are mostly quiescent under basal conditions.

Chronic inflammatory pain results in an increased efficacy
of SNC80 to inhibit VDCCs and to relieve chronic pain
We then examined whether CFA alters δOR function.
We found an increase in δOR-VDCC inhibition above
basal levels 2, 3, 7 and 14 days after the CFA injection in
DRGs from the ipsi-, but not contra-lateral sides to the
CFA injection in WT mice (Figure 2A). These data re-
flect both an increase in SNC80-VDCC inhibition and
an increase in the number of cells responding to SNC80,
as assessed by the percentage of cells in which SNC80
inhibited VDCCs by more than 10%. Using this criterion,
31% of the DRGs from the naive group responded to
SNC80 compared to 100% of DRGs from all time points
following CFA injury. Reflecting these ex vivo data,
SNC80 significantly attenuated CFA-induced mechanical
allodynia 2, 3, 7 and 14 days after CFA injection
(Figure 2B).

SNC80 inhibits VDCCs and relieves pain in CFA-treated
β-arrestin 2 knockout mice
SNC80-VDCC inhibition demonstrated a similar effect in
β-arrestin 2 knockout (KO) neurons, increasing above
basal levels 2, 3, 7 and 14 days after CFA injection (F(4,58) =
9.83, Figure 3). The number of neurons showing >10%
response to SNC80 reflected these levels of inhibition, in-
creasing from 63% in naive DRGs to 100% in DRGs taken
from mice 3 days post-CFA. Similar to WT mice, SNC80
reversed CFA-induced mechanical allodynia 2, 3, 7 and 14 -
days after CFA injection in KO mice (Figure 3A).

Deleting β-arrestin 2 does not alter current density but
does reduce the contribution of N-type Ca2+ channels in
β-arrestin 2 KO DRGs
Although we found no affect of CFA on Ca2+ current
density in naive vs. CFA-treated medium-large size
DRGs (Table 1), we further assessed the effect of geno-
type, KO vs WT, on current density. Supporting our pre-
vious findings (Table 1), we found no effect of CFA on
the current density of DRGs from ipsi- vs. contra-leral
sides. In addition, there was also no effect of genotype
(Figure 4A and B). As N-type Ca2+ channels are the
prevalent form of Ca2+ channels coupled to Gi/o GPCRs
in DRG neurons [26], we then determined the contribu-
tion of N-type currents to the total current by assessing
the effect of the N-type inhibitor, ϖ -Conotoxin GV1A
(10 μM) on total current amplitude. In WT mice, the N-
type contribution was equivalent in DRGs from both
CFA and non-CFA sides (Figure 4C). However, DRGs
from the CFA side of β-arrestin 2 KO mice showed less
N-type contribution to the total current than seen in
neurons from the non-CFA side (Figure 4D).

Discussion
These data demonstrate that inflammatory pain induced
by CFA results in increased functionality of δORs in
DRG neurons. This is shown by an increased inhibition
of Ca2+ channels by the δOR agonist, SNC80, which
mirrored an enhanced efficacy of SNC80 to inhibit
mechanical allodynia. These data indicate that, regard-
less of the trafficking events that may or may not be
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Figure 2 In wildtype mice CFA increased SNC80-Ca2+ channel
inhibition and reversed CFA-induced allodynia. A. CFA induced
an increase in SNC80-VDCC inhibition in WT DRG neurons from the ipsi-,
but not contra-lateral sides to the CFA injection; ANOVA: F (8,78) = 14.86,
** p < 0.01 and *** p < 0.001 vs. basal/naive inhibition, shown by the
dashed line. An exemplar current shows VDCCs before (1), during (2) and
after (3) SNC80 (1 μM) application, vertical scalebar = 20 ms and
horizontal scalebar = 0.5 pA, n = 6–20. B. The effect of SNC80 (10 mg/
kg i.p.) or saline was assessed in mice which had been treated with CFA
2, 3, 7 and 14 days prior to the test. Baseline mechanical responses are
represented by the dashed line. *** p < 0.001 as determined by
2-way ANOVA with a Holm-Sidak post-hoc analysis (n = 4–8 mice/group).

2 3 7 14 

days post-CFA 

m
ec

ha
ni

ca
l t

hr
es

ho
ld

 

2.0 

1.5 

1.0 

0.5 

0.0 

SNC80 

Veh 

*** 

*** 
*** 

*** 

B 

A 
60 

0 

10 

20 

30 

40 

50 

days post-CFA 
2 3 7 14 

*** 

*** 

2 

1,3 

*** 
** 

S
N

C
80

 (
1m

M
) 

in
hi

bi
tio

n 
(%

)

Figure 3 In β-arrestin 2 knockout mice CFA increased SNC80-Ca
2+ channel inhibition and reversed CFA-induced allodynia. A.
Although basal SNC80-VDCC inhibition tended to be higher in KO
mice, CFA increased SNC80-VDCC inhibition in DRG neurons above
basal levels; ANOVA: F(4,58) = 9.83), ** p < 0.01 and *** p < 0.001 vs.
basal/naive inhibition, shown by the dashed line. An exemplar
current shows VDCCs before (1), during (2) and after (3) SNC8 (1 μM)
application, vertical scalebar = 20 ms and horizontal scalebar = 0.5
pA, n = 6–14. B. The effect of SNC80 (10 mg/kg i.p.) or saline was
assessed in mice which had been treated with CFA 2, 3, 7 and
14 days prior to the test. Baseline mechanical responses are
represented by the dashed line. *** p < 0.001 as determined by
2-way ANOVA with a Holm-Sidak post-hoc analysis
(n = 5–9 mice/group).
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involved, chronic inflammatory pain produces an en-
hanced responsivity of δORs.
In this study, we used δOR-VDCC coupling in DRGs

as an ex vivo measure of δOR function that correlates
with the pain-relieving effects of δOR agonists. We
found that in a naïve, injury-free state the δOR agonist
SNC80 did not alter the response threshold to von Frey
filaments. However, following induction of inflammatory
pain SNC80 potently inhibited CFA-induced allodynia.
This in vivo gain of function was mirrored by an in-
creased efficacy of SNC80 to inhibit Ca2+ channels
within the DRGs. These results reflect previous work
which has shown that compared to μ agonists, δ agonists
are poor analgesics in acute pain [27] yet, they are highly
effective in chronic inflammatory and neuropathic pain,
likely due to an induction of δ receptor function follow-
ing chronic pain [6,28-31]. Further, the pain-relieving ef-
fects of δOR agonists has been previously shown to be
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Figure 4 Inflammatory pain altered VDCC-density and current-type contribution in β-arrestin 2 knockout, but not wildtype mice. A and
B. The current–voltage relationship recorded from either WT (A) or KO (B) neurons was not altered by CFA (3 days post-injection). Exemplar
currents from WT and KO neurons of the contralateral (non-CFA) and ipsilateral (CFA) sides are shown above the current–voltage graphs
depicting the maximum current induced by each voltage and corrected for cell capacitance. Vertical scalebar =20 ms and horizontal scalebar =
0.5 pA, n = 10–16. C and D. The contribution of N-type VDCCs to the total current in WT neurons was not altered by CFA (C) but was reduced in
DRG neurons from KO mice (D; F (3,25) = 4.57, n = 6–7). Exemplar currents show VDCCs measured in the absence (1) and presence (2) of the
selective N-type inhibitor, ϖ -Conotoxin GV1A (10 μM). * p < 0.05.
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mediated at the level of primary afferent neurons [10],
supporting the notion that changes in Ca2+ channel
coupling within the primary afferents would reflect
behavioral responding. In addition, we had also shown a
similar correlation following chronic use of δOR
agonists, where uncoupling of δORs from VDCCs were
observed following analgesic tolerance [8]. However, as
δOR-VDCC coupling in DRGs is one of several path-
ways activated by δOR agonists [32-34], it is likely that
the analgesic effects of δOR agonists reflect the co-
operative influence of these different signaling cascades
that may include δOR inhibition of Ca2+ channels.
δORs are a member of the Gi/o-coupled family of G-

protein coupled receptors (GPCRs) and, although able to
inhibit VDCCs in DRG neurons, δOR agonists have not
been shown to produce significant VDCC inhibition in the
basal state (Figure one, [35]). Chronic inflammatory pain
increased δOR-VDCC inhibition which could have been a
result of several factors. Likely candidates include; an
increase in the number of receptor-complexes available
for ligand activation; changes in the number or kinetics of
Ca2+ channel recruitment by these activated receptors; or
an altered signaling pathway by which δORs inhibit
VDCCs. CFA has been shown previously to reduce Ca2+

channel density in small to medium sized (<40 μM) DRG
neurons [36]. However, we did not observe any effect of
CFA on the voltage-dependent properties of Ca2+ currents
in medium to large-sized DRG neurons. It is also unlikely
that CFA induced an increase in receptor transcript and
protein levels as neither have been reported to occur pre-
viously [18,37]. However, as δORs have been found as
signalosomes associated with their cognate G-proteins and
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other signaling molecules [38], it is possible that CFA al-
tered the composition of these signalosomes. This may be
in addition to, or independent of, an increase in the num-
ber of receptors on the cell membrane as previously sug-
gested [6,18,39,40]. Interestingly other paradigms such as
treatment with bradykinin, chronic morphine, hypoxia
and alcohol have also been shown to increase δOR func-
tion [33,41-46] suggesting that δOR upregulation may
have a number of clinically useful roles [47].
Internalized δORs are primarily targeted for degradation

[7,48-51] but some receptors may also be recycled [52]
through the slow recycling, Rab11-dependent pathway
[53]. Several lines of evidence indicate that β-arrestin 2
mediates this trafficking of δORs following receptor
internalization [25,52] suggesting that we may have
observed an altered response in β-arrestin 2 KOs. How-
ever, we found no effect of deleting β-arrestin 2 on the an-
algesic profile of SNC80, or on the enhanced δOR-VDCC
coupling or VDCC density following CFA. However, we
did observe that β-arrestin 2 plays a role in the contribu-
tion of N-type Ca2+ channels to the total Ca2+ current fol-
lowing CFA. Of the different types of VDCCs that
contribute to the high voltage-activated currents in DRGs,
the N-type normally contributes ~50% of the current [54].
In KO neurons, this decreased to ~35% suggesting an in-
crease in the contribution of R or P/Q type channels so as
to maintain total current density. This raises an intriguing
possibility that β-arrestins may regulate the contribution
of Ca2+ channels to the total current following CFA.

Conclusions
In summary, our results indicate that chronic inflamma-
tory pain results in an enhancement of δOR function, both
at the level of behavioral responding and at the level of
Ca2+ channel coupling in dorsal root ganglia neurons. This
increased functionality may be due to changes in receptor
trafficking or differences in receptor-effector complexes
already at the cell membrane. This study shows that δ opi-
oid receptors are responsive following tissue injury, and
may become a promising target for the treatment of
chronic pain.

Methods
Animals
β-arrestin 2 mutant mice were generously provided by Dr.
Lefkowitz (Duke University). β-arrestin 2 (KO) and wild-
type (WT) mice for both electrophysiology and behavioral
experiments were obtained through heterozygous pairings.
Both male and female mice were used between 8–24 weeks
of age. All animal experiments were conducted in accord-
ance with the AALAC Guide for the Care and Use of
Laboratory Animals and followed institutionally approved
animal care and use protocols; OARO: 2010-025-03B and
1999-179-41.
DRG preparation
Delta receptor inhibition of VDCCs was assessed in
acutely dissociated L4-L6 DRGs from untreated adult
mice or mice that had undergone Complete Freund’s
Adjuvant injection to induce chronic inflammation in the
left paw. The DRGs were collected in Complete Saline So-
lution (CSS; in mM, NaCl: 137, KCl: 5.3, MgCl2:1, Sorbitol:
25, HEPES: 10, CaCl2: 3) and incubated in collagenase
(1.25U of TH, Roche, Indianopolis, IN), 250 nm EDTA for
20 min at 32 C, transferred to fresh CSS containing colla-
genase (1.25U of TM, Roche) with 250 nm EDTA and
0.25U papain (Roche) and incubated for 10 min at 32 C.
After 2 washes and physical trituration through a series of
graded Pasteur pipettes, the cells were spun (1000 rpm,
3 min) and plated in Neurobasal /B27/Glumax/Antibiotic/
Antimycotic (Life Technologies, Grand Island, NY)
supplemented with 10 ng/ml NGF (Life Technologies). All
recordings were performed within 5–24 h after plating.
Electrophysiology
VDCCs were recorded from medium-large sized DRG
neurons (30–100 pF) under whole-cell voltage-clamp con-
ditions as previously described [54,55]. The cells were per-
fused with an external solution containing 10 mM CaCl2,
130 mM tetraethylammonium chloride, 5 mM HEPES,
25 mM d-glucose and 0.2 μM tetrodotoxin at pH 7.35
(Sigma). The patch electrode was filled with an internal
solution composed of 105 mM CsCl, 40 mM HEPES,
5 mM d-glucose, 2.5 mM MgCl2, 10 mM EGTA,
2 mM Mg-ATP and 0.5 mM GTP at pH 7.2 (Sigma).
Episodic recordings were obtained using an Axopatch
200B patch-clamp amplifier set at a gain of 1.0, β = 0.1
and 2 kHz filter. Capacitance and series resistance were
corrected and series resistance compensated by 80 to 90%
and included a 10 μs lag. Leak currents were subtracted
using a P/6 protocol. Recorded signals were acquired and
analyzed using Axon pCLAMP v9 or 10 software (Axon
Instruments, Foster City, CA).
The properties of voltage-dependent Ca2+ currents
Ca2+ currents were evoked every 20 sec by 100 ms volt-
age steps from −80 to +10 mV. Ca2+ channel density
and conductance was assessed by evoking Ca2+ currents
from −100 to + 40 mV in 10 mV increments with a
500 ms hyperpolarizing pre-pulse to 120 mV. Steady
state inactivation was assessed by a test voltage pulse
from −80 to +10 mV preceded by pulses of increasing
voltage from −120 mV to +10 mV in 10 mV increments.
The presence of constitutively coupled channels was
measured by a 2-pulse protocol in which a 40 ms de-
polarizing pre-pulse from −120 to +40 mV preceded the
40 ms test pulse from −80 to +10 mV.
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Statistical analysis
Ca2+ channel conductance from individual cells was fitted
with the Boltzman equation; G/Gmax = [1 + exp(V-V1/2/
slope)-1 where G is the conductance of the test pulse, Gmax

is the maximal conductance, V is the voltage of the test
pulse and V1/2 is the potential corresponding to the half-
activation of the current. A modified Boltzman equation
was used to assess steady-state inactivation; I/Imax = [1 +
exp(V1/2-V/slope)

-1 where I is the peak current of the test
pulse and Imax is the maximal current [56]. Further ana-
lysis between groups was assessed by two-way ANOVA
with repeated measures (Prism v5.0). Constitutive activity
was determined by comparing the amplitude of the test
pulse in the absence (P1) or presence of the pre-pulse
(P2), expressed as a ratio (P1/P2) and analyzed by the
Student’s t-Test (Prism v5.0).

Drug application
Once 3–4 stable recordings were obtained, external so-
lution containing SNC80 1 μM, R&D, Minneapolis, MN)
or Baclofen (50 μM, Sigma) was applied to the cell until
maximum inhibition was obtained, and then washed off
using either the delta antagonist, ICI 174,864 (0.5 μM,
R&D) for SNC80-treated cells, or extracellular solution
for Baclofen-treated cells. This was followed by the
extracellular solution until stable basal currents were
obtained.

Statistical analysis
Mean Ca2+ current amplitudes were measured (pCLAMP
9.0) 5–10 ms after the depolarizing step and basal Ca 2+

currents assessed after 4–5 stable recordings were obtained.
To control for changes in current amplitude over time, the
current amplitude measured before and after drug applica-
tion was fitted by a linear function to obtain the slope of
the basal currents over time. This linear equation was
solved for x being the timepoint, or sweep number, at
which the drug was applied, so as to obtain the basal
current amplitude at the same timepoint as the applied
drug. The current amplitude in the presence of the drug
was then expressed as a percentage of the basal current
amplitude. This was subtracted from 100 to obtain the in-
hibition in the presence of the drug and expressed as a per-
centage of the basal current. Data were compared using
ANOVA with a posthoc Tukey’s test (Analyse-it-for
Microsoft Excel) with significance accepted at p < 0.05 and
are expressed as mean ± SEM. Except for recordings that
exhibited marked rundown (>30%), all recordings were in-
cluded in the dataset.

Inflammatory pain model
All experiments were performed between 8:00–16:00 h.
In all cases mice were habituated to the testing area for
20 minutes daily for 2 days prior to baseline testing. For
mechanical responses, the threshold for responses to
punctate mechanical stimuli (mechanical allodynia) was
tested according to the up-and-down method [57]. In
this case, the plantar surface of the hindpaw was stimu-
lated with a series of eight von Frey filaments (bending
force ranging from 0.01 to 2 g). A response was defined as
a lifting or shaking of the paw upon stimulation. Inflam-
matory pain was induced by injecting Complete Freund’s
Adjuvant (CFA, 1 mg Mycobacterium tuberculosis
(H37Ra, ATCC 25177)/ml of emulsion in 85% paraffin oil
and 15% mannide manooleate - Sigma) into the paw. Prior
to the injection of CFA baseline mechanical responses
(dashed line) were determined. Inflammation was induced
by injecting 15 μl of CFA into the plantar surface of the
paw, and animals were subsequently tested at different
time points post-injection [58]. SNC80 was dissolved in
0.9% saline (pH 5.5). SNC80 was administered intraperito-
neally in a volume of 10 ml/kg. On the test days (i.e. days
2, 3, 7 and 14 post - CFA) mice were injected with SNC80
or vehicle and tested 45 minutes later. Separate groups of
animals were used for days 2, 3 and 7, post-CFA. For day
14, the same group of mice as assayed on day 7 was used.

Statistical analysis
For all behavioral experiments data were analyzed using 2-
way ANOVA (Sigmastat) and expressed as mean ± SEM.
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