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Expression changes of microRNA‑1 
and its targets Connexin 43 and brain‑derived 
neurotrophic factor in the peripheral nervous 
system of chronic neuropathic rats
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Abstract 

Background:  MicroRNAs (miRNAs) are involved in the neuroplastic changes which induce and maintain neuro-
pathic pain. However, it is unknown whether nerve injury leads to altered miRNA expression and modulation of 
pain relevant target gene expression within peripheral nerves. In the present study, expression profiles of miR-1 
and the pain-relevant targets, brain derived neurotrophic factor (BDNF) and Connexin 43 (Cx43), were studied in 
peripheral neuropathic pain, which was induced by chronic constriction injury (CCI) of the sciatic nerve in rats. The 
expression of miR-1 was investigated in the sciatic nerve, dorsal root ganglion (DRG) and the ipsilateral spinal cord 
by qPCR. Changes of BDNF and Cx43 expression patterns were studied using qPCR, Western blot analysis, ELISA and 
immunohistochemistry.

Results:  In sciatic nerves of naïve rats, expression levels of miR-1 were more than twice as high as in DRG and spinal 
cord. In neuropathic rats, CCI lead to a time-dependent downregulation of miR-1 in the sciatic nerve but not in DRG 
and spinal cord. Likewise, protein expression of the miR-1 targets BDNF and Cx43 was upregulated in the sciatic 
nerve and DRG after CCI. Immunohistochemical staining revealed an endoneural abundancy of Cx43 in injured sciatic 
nerves which was absent after Sham operation.

Conclusions:  This study demonstrates that CCI leads to a regulation of miRNAs (miR-1) in the peripheral nerv-
ous system. This regulation is associated with alterations in the expression and localization of the miR-1 dependent 
pain-relevant proteins BDNF and Cx43. Further studies will have to explore the function of miRNAs in the context of 
neuropathic pain in the peripheral nervous system.
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Background
Neuropathic pain is caused by a lesion or disease of 
the somatosensory system involving alterations in the 
peripheral and the central nervous system [1]. The 
exact molecular mechanisms of neuropathic pain are 
incompletely understood and elucidation of these 
mechanisms is crucial for the development of new 

mechanism-oriented treatment strategies [2]. Neuroplas-
tic changes in the peripheral and central nervous system, 
particularly alterations in protein expression in the pain 
processing neuronal network play a key role in the devel-
opment of pathological pain [3].

MicroRNAs (miRNAs) are small non-coding RNAs 
which negatively regulate gene expression at the post-
transcriptional level and have significant impact on 
numerous physiological and pathophysiological cel-
lular processes [4]. MiRNA-targeting molecules are 
considered as possible future therapeutics for a variety 
of human diseases [5]. The fact that more than 60% of 
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all human protein-coding genes are putative targets of 
miRNAs [6] suggests that miRNAs are correspondingly 
involved in the expression changes in chronic pain states. 
Increasing evidence suggests a significant role of non-
coding RNAs, especially miRNAs, in the pathophysiol-
ogy and potential treatment options of chronic pain [7]. 
A possible role of miRNAs in the development of chronic 
pain has to date been investigated in dorsal root ganglia, 
the spinal cord or in supraspinal organs [8]. One of the 
miRNAs being involved in neuropathic pain is miR-1. 
This miRNA has been shown to be involved in the induc-
tion of neuropathic pain [9]. Additionally, miR-1 inter-
acts with the two highly pain-relevant proteins Cx43 and 
BDNF [10, 11]. It is well known that a multitude of neuro-
plastic alterations also occur in the peripheral nerve [12]. 
Furthermore, miRNAs are well abundantly expressed in 
the peripheral nerve, e.g. in Schwann cells but also in 
dendrites and axons, where they have been shown to be 
significantly regulated in response to peripheral nerve 
injury [13].

However, to date there is not data exploring the expres-
sion of miRNAs and pain relevant miRNA-target pro-
teins in the context of neuropathic pain in peripheral 
nerves.

In this study we show that miR-1 is well expressed in 
sciatic nerves of rats. Furthermore we show that constric-
tion injury of the sciatic nerve leads to a time depend-
ent downregulation of miR-1 in injured nerves. This is 
accompanied by an upregulated protein expression of 
Connexin 43 (Cx43) and brain derived neurotrophic fac-
tor (BDNF) which are well established miR-1 targets.

Results
Development of neuropathic pain in rats
Mechanical allodynia developed within 6 days after nerve 
ligation. In the left, injured hind paw, the withdrawal 
threshold in response to stimulation with von Frey hairs 
was not altered 4 h (Sham 49.6 ± 0.6 g, CCI 47.3 ± 5.1 g, 
p = 0.26) and 24 h (Sham 50.0 ± 0.1 g, CCI 45.3 ± 4.6 g, 
p = 0.06) after CCI. On day 6 (Sham 47.7 ± 1.8 g, CCI 
29.3 ± 5.1 g, p = 0.0008) and day 12 (Sham 44.5 ± 6.3 g, 
CCI 21.9 ± 8.1 g, p = 0.0007) post CCI, the withdrawal 
thresholds were significantly reduced when compared to 
Sham-operated animals (Figure 1).

Expression of miR‑1 and Cx43 and BDNF messenger RNA
The relative expression of miR-1 in sciatic nerve was 
compared to miR-1 expression in DRG and ipsilateral 
spinal cord of naïve rats. Expression level of miR-1 was 
higher in sciatic nerves than in DRG (relative expression 
DRG vs. nerve 0.37, p < 0.05) and the spinal cord (relative 
expression spinal cord vs. nerve 0.28, p < 0.05, Figure 2).

In the sciatic nerve CCI lead to a marked downregu-
lation of miR-1 12  days after nerve ligation (0.10 vs. 
Sham, p  <  0.05, Figure  3a). After 6  days, the expression 
level of miR-1 in sciatic nerve was 0.28 vs. Sham but did 
not reach a level of significance (p =  0.053). Likewise, 
at the early time points after CCI surgery, miR-1 was 
not significantly altered in sciatic nerves (4  h: 1.29 vs. 
Sham, p =  0.6, 24  h: 0.84 vs. Sham, p =  0.72). In DRG 
and ipsilateral spinal cord, the expression level remained 
unchanged at all time points analyzed (Figure 3b, c).

The expression of Cx43 mRNA in the sciatic nerve was 
increased 4 h (relative expression 1.57 vs. Sham, p < 0.05), 
24  h (relative expression  2.00 vs. Sham, p  <  0.05) and 
6 days (relative expression 2.78 vs. Sham, p < 0.05) post 
CCI surgery. After 12  days (relative expression  1.59 vs. 

Figure 1  In vivo data on mechanical allodynia induced by chronic 
constriction injury (CCI) of the sciatic nerve. Paw withdrawal threshold 
of Sham (left) and CCI (right) animals at four different time points (left 
injured paw). Significant allodynia is observed on day 6 and 12 post 
CCI surgery. Mean ± SD, ***p < 0.001 vs. Sham.

Figure 2  qPCR data demonstrating the expression of miR-1 in sciatic 
nerve (left), dorsal root ganglion (DRG, middle) and ipsilateral spinal 
cord (right) of naive rats. The expression of miR-1 is higher in periph-
eral nerve compared to DRG and spinal cord. Mean ± SD, *p < 0.05 
vs. peripheral nerve.
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Sham, p = 0.139) the relative expression of Cx43 mRNA 
declined to a not significant level (Figure 4a) compared to 
early expression. mRNA levels of BDNF in sciatic nerves 
of Sham-treated animals could not be detected using 
qPCR. In injured nerves of CCI rats however, mRNA of 
BDNF was detectable (data not shown).

In DRG, Cx43 mRNA expression remained unchanged 
4, 24 h and 12 days post CCI. Six days after nerve liga-
tion, the expression of Cx43 mRNA was reduced to 0.7-
fold vs. Sham (p < 0.05). BDNF mRNA was upregulated 
in CCI DRG after 24  h (1.5-fold vs. Sham, p =  0.002), 
6 days (1.84-fold vs. Sham, p = 0.018) and 12 days (1.58-
fold vs. Sham, p = 0.007) post surgery.

Protein expression of the miR‑1 targets Cx43 and BDNF
Cx43 and BDNF are well known targets of miR-1. We there-
fore analyzed the protein expression of Cx43 and BDNF in 
sciatic nerves and DRG. Cx43 was significantly upregulated 
in the ipsilateral sciatic nerve (5.4 fold vs. Sham, p < 0.01) 
and in L4–L6 DRG of the injured side (2.1 fold vs. Sham, 
p < 0.05) (Figure 5a, c). Likewise, ELISA showed a signifi-
cant increase of BDNF protein levels in both the sciatic 
nerve (3.1 fold vs. Sham, p < 0.01) and DRG (2.5 fold vs. 
Sham, p < 0.01) of the injured side (Figure 5b,d).

Figure 3  qPCR showing the time course of miR-1 expression follow-
ing CCI in a sciatic nerve, b DRG, c ipsilateral spinal cord. Expression 
of miR-1 is time dependently downregulated in sciatic nerve and 
unchanged in DRG and spinal cord. Mean ± SD, *p < 0.05 vs. Sham.

Figure 4  qPCR data of Cx43 mRNA expression in a peripheral nerve, 
where Cx43 is differentially expressed at three different time points 
and b DRG, where Cx43 is downregulated 6 days after CCI. c DRG: 
qPCR data of BDNF mRNA expression shows an upregulation 24 h 
and 6 days post CCI. Mean ± SD, *p < 0.05 vs. Sham.
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Immunofluorescence staining of Cx43
Immunofluorescence staining and confocal laser scan-
ning microscopy were performed to show the subcel-
lular localization of Cx43 in sciatic nerves and DRG of 
CCI and Sham treated animals. While in nerve tissue 
obtained from Sham animals Cx43 was located exclu-
sively in the perineural region, a strong Cx43 signal pre-
dominately in the endoneurium of nerves was detectable 
(Figure  6) which is not apparent in Sham nerves. DRG 
sections show that Cx43 is located in the membranes of 
small and large diameter neurons with no apparent dif-
ference between Sham and CCI DRG’s (Figure 7).

Discussion
To date, treatment of neuropathic pain remains chal-
lenging and often insufficient [14]. Elucidating the exact 
molecular mechanisms underlying neuropathic pain is an 
important prerequisite for developing more specific and 
more efficient treatment strategies [2]. In the last few years, 
the involvement of miRNAs in neuropathic pain has been 
investigated. MiRNAs are involved in the development of 
the nervous system, neural plasticity and the genesis of 
neuronal diseases [15]. In 2009, Aldrich et al. showed for 
the first time a downregulation of miR-96, -182 and -183 in 
DRG of rats in the context of neuropathic pain [16]. Since 
then, numerous studies concerning the role of miRNAs 
in experimental neuropathic pain have been published 
[17–19]. Several studies have furthermore shown that the 
application of miRNAs or its antagonists has an antinocic-
eptive effect in various animal models. These include miR-
103 [18], miR-124 [20], miR-23b [21] and miR-7a [22]. 
Beyond that, a role of extracellular miRNAs in pain signal-
ling via direct activation and excitation of nociceptor neu-
rons has been proposed recently [23]. Hence, the potential 
for miRNAs as biomarkers or therapeutics in chronic pain 
is now being discussed extensively [7, 8, 24–28]. The role 
of miRNAs in the peripheral nerve in the context of neu-
ropathic pain has however not been explored, although 
it is well known that massive protein expression changes 
accompany nerve damage [12]. In general, the contribu-
tion of miRNAs to the regulation of gene expression in 
peripheral nerves is well recognized, especially in the con-
text of regenerative processes [13]. Viader et al. [29] iden-
tified 87 miRNAs in the sciatic nerve of mice, including 
mir-1, most of which were downregulated upon periph-
eral nerve injury. Since Schwann cells represent the vast 
majority of cells in the sciatic nerve, the authors concluded 
that the detected miRNAs primarily represent the micro-
RNAome of these glia cells. Yet, a few studies also dem-
onstrated the abundance of numerous mature miRNAs in 
axons [30], whereby the functional significance in axonal 
mRNA translation remains to be elucidated.

Figure 5  a Protein expression of Cx43 in sciatic nerve; b expression 
of BDNF protein in sciatic nerve; c protein expression of Cx43 in DRG; 
d expression of BDNF protein in DRG. All experiments compare rats 
12 days after CCI to Sham. Data show a marked upregulation of Cx43 
and BDNF protein levels in nerve and DRG following CCI. Mean ± SD, 
*p < 0.05 vs. Sham, ***p < 0.001 vs. Sham.
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In the present study we could demonstrate that miR-1 
is expressed in the sciatic nerve of rats. Its expression 
level was found to be higher in sciatic nerve than in DRG 
or spinal cord. Furthermore, as a consequence of CCI 
leading to mechanical allodynia, we found miR-1 to be 
time-dependently downregulated in the sciatic nerve 
at the site of the constriction, whereas expression in the 
ipsilateral DRG and spinal cord remained unchanged. 
BDNF, a previously established target of mir-1 [11] was 
significantly upregulated in the sciatic nerve and DRG. 
Similarly, connexin-43, another established miR-1 target 
[10] was upregulated in peripheral nerves and DRG.

Kusuda and co-workers [9] investigated the expression 
of mir-1 in the DRG and spinal cord in different experi-
mental models of acute and chronic pain. After partial 
sciatic nerve ligation, a model of neuropathic pain, miR-1 
was time-dependently down-regulated in the DRG. 

Expression of miR-1 in acute, inflammatory pain, as 
well as axotomy revealed time- and stimulus-dependent 
changes in expression patterns which underline the com-
plexity of expression changes in different pain states.

Our results obtained in the spinal cord are in line with 
those described by Kusuda et al. In contrast, we found no 
changes of miR-1 expression in the DRG, which might 
result from the differences in species or surrogate model 
of neuropathic pain.

The fact that BDNF is upregulated in Schwann cells 
of peripheral nerves as response to neuronal damage is 
long known [31], as is the contribution of Schwann cell-
mediated responses to nerve injury in neuropathic pain 
[32]. Also the effect of BDNF as an ubiquitous pain medi-
ator in the nervous system is sufficiently documented, 
although its action in the peripheral system is less exten-
sively investigated [33]. These results are in line with our 

Figure 6  Immunohistochemical staining of Cx43 in sciatic nerve at lower (a, b, scale bar = 100 µm) and higher (c, d, scale bar = 20 µm) magnifi-
cation. Expression of Cx43 in Sham nerves (a, c) is very faint and exclusively located at the perineural region. 12 days after CCI Cx43 is abundantly 
expressed within the endoneurium of the sciatic nerve (b, d). En endoneurium, PE perineurium, Epi epineurium, Hoechst nuclear counterstain.
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observation that mRNA of BDNF is absent in Sham sci-
atic nerves, while it is detectable in injured nerves, most 
likely as a consequence of expression by Schwann cells.

The expression of BDNF in our study could at least in 
part be explained by an upregulation in DRG neurons 
independently of miRNAs. However, the dysregula-
tion of miR-1 expression in injured nerves could at least 
in part be involved in the expression of Cx43 in nerves. 
Interestingly, Cx43 is highly upregulated in the endoneu-
ral region of nerves where it might contribute to an 
increased electrochemical coupling of cells contribut-
ing to the induction and/or maintenance of pain. Cx43 
is the major connexin of astrocytes [34]. A recent study 
by Chen et  al. showed that the upregulation of spinal 
Cx43 contributes to the maintenance of neuropathic pain 
by chemokine release. Moreover, inhibition of Cx43 by 
intrathecal injection of GAP27, a selective Cx43-blocker, 
effectively reduced mechanical allodynia in CCI mice 
[35]. To the best of our knowledge, the present study is 
the first to show a marked upregulation of Cx43 within 
the endoneurium of injured nerves which might—besides 
a transcriptional activation of Cx43 expression—in 
part be explained by a downregulation of miR-1. This 

differential regulation of miR-1 in the peripheral nerve, 
most likely in Schwann cells, might contribute to hyper-
sensitivity following nerve damage. However, also the 
transcriptional activation of Cx43 mRNA might contrib-
ute to the protein changes observed in nerves after CCI 
and further studies are needed to clarify the impact of the 
miR-1 dysregulation in nerves.

Conclusion
In summary, our findings suggest an involvement of 
regulated miR-1 in the peripheral nerve in neuropathic 
pain. If these findings are confirmed in future studies, 
a local therapy with compounds regulating miR-1 or 
other relevant miRNAs could be a theoretical approach 
for the treatment of neuropathic pain. Ultimately, future 
research on the involvement of miRNAs in the develop-
ment of neuropathic pain should also consider the con-
tribution of miRNAs in the peripheral nervous system.

Methods
Animal experiments
The study was conducted with male Wistar rats (weight 
300–350 g, 10–12 weeks old) after approval of the local 

Figure 7  Immunohistochemical staining of Cx43 in DRG at lower (a, b, scale bar = 100 µm) and higher (c, d, scale bar = 20 µm) magnification. 
Cx43 is located at the plasma membrane of large and small diameter neurons in Sham (a, c) and CCI (12 days) rats (b, d). NeuN neuronal cell marker, 
Hoechst nuclear counterstain.
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animal care and use committee (LANUV). Neuropathic 
pain was induced by the chronic constriction injury (CCI) 
model [36] as described previously [37]. Sham-operated 
animals served as controls. The development of mechani-
cal allodynia was assessed with modified von Frey hairs 
(Plantar Aesthesiometer, Ugo Basile Inc., Comerio, Italy) 
before initial surgery and at every time point before tis-
sue extraction. The withdrawal threshold as response to 
mechanical stimulation was registered. At the end of the 
experiment, the left sciatic nerve (1 cm including the site 
of the ligations), lumbar DRG (L4–L6) and the ipsilateral 
spinal cord (L4–L6) were extracted 4, 24 h, 6 and 12 days 
after CCI or Sham operation and immediately frozen in 
liquid nitrogen (n = 6 each).

RNA isolation
Total RNA of sciatic nerve, DRG and spinal cord tis-
sue was isolated using Trizol reagent (Invitrogen, Carls-
bad, USA) according to the manufacturer’s protocol. 
RNA quantity was determined by UV spectrophotom-
etry (Nanodrop 1000, Thermo Scientific, Waltham, MA, 
USA) and RNA integrity was verified by Agilent micro-
fluid chips using an Agilent 2100 Bioanalyzer (Agilent, 
Santa Clara, CA, USA). Only RNA with a RNA integrity 
number (RIN) higher than 8 was included in the study.

Realtime quantitative PCR
1 µg of total RNA was reverse transcribed using the High 
Capacity RNA-to-cDNA Master Mix (Applied Biosys-
tems, Life Technologies, Carlsbad, CA, USA). qPCR 
assays for rno-miR-1 (Assay ID: 002064, Applied Biosys-
tems), U6 (for normalization, Assay ID: 001973, Applied 
Biosystems), BDNF (Assay ID: Rn02531967_s1) and actin 
beta (Rn00667869_m1) were applied according to the 
manufacturer’s instructions. The qPCR assay for Cx43 
was designed by and purchased from TIB Molbiol (Ber-
lin, Germany) and has the following sequences: Primer_
for: AGGAGTTCCACCAACTTTGGC, Primer_rev: 
TGGAGTAGGCTTGGACCTTGTC and Taqman probe: 
FAM-AGCTTCCCCAAGGCACTCCAGTC-BBQ. 
qPCR conditions: 50°C for 2  min, 95°C for 10  min, 40 
cycles of 95°C for 15 s, 60°C for 60 s on an Applied Bio-
systems 7300HT thermocycler (Applied Biosystems). All 
samples were run in duplicates. Relative expression was 
estimated using the ΔΔCq-method [38] and the relative 
expression software tool [39].

Protein isolation and Western Blot experiments
To analyze Cx43 protein expression in the sciatic nerve 
and DRG, samples were pulverized in liquid nitrogen, 
homogenized in a buffer of pH 8.0 (50 mM Tris, 150 mM 
NaCl, 1% NP40, 0.5% Na-Deoxycholate, 0.1% SDS, 40 μl/
ml Complete) and centrifuged at 4°C, 8,000g for 10 min. 

The supernatant was harvested and the protein content 
was measured according to Lowry et  al. Sodium dode-
cyl sulfate polyacrylamide gel electrophoresis separated 
equal amounts of protein (40 μg per lane). The gel was 
run for 85 min at 100 V and the proteins were transferred 
to a polyvinylidene difluoride membrane at 220  mA for 
1 h. The membrane was blocked with 5% dried skimmed 
milk in Tris-buffered saline with 0.1% Tween for 2  h at 
room temperature and incubated with the primary anti-
body (Cx43, ab11370, abcam, Cambridge, UK, 1:1,000) 
overnight at 4°C. After washing with cold TBS-T three 
times for 10  min the secondary antibody was applied 
for 2 h. The membrane was washed again in TBS-T and 
bound antibodies were visualized using the enhanced 
chemoluminescent detection method by a digital cam-
era (cool snap HQ2; Photometrics®, Tuscon, AZ). Sig-
nals were quantified and standardized against GAPDH 
(Abcam ab8245, Cambridge, UK) by densitometry (GelS-
can; BioSciTec GmbH, Frankfurt/Main, Germany).

ELISA
BDNF protein levels of sciatic nerve and DRG were 
analysed using the BDNF Emax® ImmunoAssay System 
(Promega, Madison, WI, USA) according to the manu-
facturer’s protocol as described previously [40]. Briefly, 
96-well plates were coated with anti-BDNF monoclonal 
antibody and incubated at 4°C overnight. The plates were 
washed with TBS-T and incubated with 200 μl of Block 
and Sample buffer (BDNF Emax™ ImmunoAssay System, 
Promega, Madison, WI, USA) for 1 h at room tempera-
ture. 100 μl of each sample prepared as described above 
was transferred to the anti-BDNF-coated ELISA plate. 
BDNF levels were determined from the standard curve 
prepared for each plate. The standard curves were linear 
within the range used (0–500 pg/ml).

Immunohistochemical staining and confocal microscopy
DRG and nerve tissue was removed and embedded in Tis-
sue -Tek® O.C.T. (Sakura Finetek Europe, Alphan aan den 
Rijin, The Netherlands) in cryomolds at −40°C without 
prior treatment and stored at −20°C. Cryosections of rat 
DRG and nerve tissue (8 µm) were fixed in 4% PFA con-
taining 0.1  M phosphate buffer for 10  min and washed 
in 3× PBS for 10  min. Slices were blocked with 10% 
goat serum in PBS containing 0.2% saponin. Cross sec-
tions of sciatic nerves were incubated with Cx43 (Cx43, 
ab11370, abcam, Cambridge, UK, 1:1,000), DRG sections 
were incubated with Cx43 and NeuN antibodies (Anti-
NeuN, clone A60, Cat. # MAB377, Millipore, Temecula, 
USA) at 4°C overnight. After washing with PBS/saponin, 
slices were incubated with Cy3-labeled anti-rabbit IgG 
(Lot number 81,350, Dianova, Hamburg, Germany, 1:500) 
and Alexa Fluor 488 conjugated goat anti-mouse IgG 
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(A-11029, Life Technologies Carlsbad, USA, 1:500) con-
taining Hoechst 34580 (1:10,000) as nuclear counterstain 
for 1 h at room temperature. After washing with PBS/sap-
onin, slices were mounted with FuoroMount G medium. 
Immunostained samples were analysed using a Zeiss 
LSM510META confocal microscope (Jena, Germany).

Statistical analysis
Behavioral data, Western Blot data and BDNF ELISA 
results were analyzed by student’s t test (GraphPad Prism 
version 6, GraphPad Software, San Diego, CA USA). 
qPCR data was analyzed using the relative expression 
software tool [39]. Data are presented as mean  ±  SD. 
p < 0.05 was considered statistically significant.
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